1
|
Zaki RM, Ali MAM, Said M, Chaudhary AA, Boufahja F, Afzal O, Abu-Elsaoud AM, Abdel Halim AS. Molecular mechanisms underlying the effects of statins on bone metabolism: an evolving paradigm of statins delivery modalities for bone regeneration. Pharmacol Rep 2025; 77:624-644. [PMID: 40167878 DOI: 10.1007/s43440-025-00716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Statins, recognized for their lipid-lowering capabilities, have demonstrated osteoanabolic and anti-resorptive effects on bone metabolism. The effects encompass the overexpression of bone morphogenetic proteins, heightened osteoblast activity, and the control of inflammation. Nevertheless, conventional systemic administration of statins has difficulties, including restricted bone bioavailability and possible adverse effects. Recent improvements in targeted and localized drug delivery are revolutionizing the therapeutic landscape for statins in bone applications. This review consolidates existing knowledge regarding the molecular processes by which statins influence bone metabolism and describes novel drug delivery methods such as nano-carriers, biomaterial scaffolds, and controlled-release systems. It seeks to address current knowledge deficiencies and offer insights into how enhanced bioavailability and specificity can optimize the efficiency of statins in bone regeneration. The review integrates molecular insights with novel pharmacological strategies to inform future research and clinical applications, pinpointing critical areas for exploration, such as optimal dose, delivery safety, and clinical efficacy.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| | - Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdelghafar M Abu-Elsaoud
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Dadson K, Thavendiranathan P, Hauck L, Grothe D, Azam MA, Stanley-Hasnain S, Mahiny-Shahmohammady D, Si D, Bokhari M, Lai PF, Massé S, Nanthakumar K, Billia F. Statins Protect Against Early Stages of Doxorubicin-induced Cardiotoxicity Through the Regulation of Akt Signaling and SERCA2. CJC Open 2022; 4:1043-1052. [PMID: 36562012 PMCID: PMC9764135 DOI: 10.1016/j.cjco.2022.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods Rosuvastatin was intraperitoneally administered into adult male mice at 100 μg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.
Collapse
Affiliation(s)
- Keith Dadson
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Shanna Stanley-Hasnain
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Daoyuan Si
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Mahmoud Bokhari
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,Corresponding author: Dr Filio Billia, Toronto General Hospital Research Institute, University Health Network, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7 Canada. Tel.: +1-416-340-4800 x6805; fax: +1-416-340-4012.
| |
Collapse
|
3
|
Reactive Oxygen Species and Oxidative Stress in Vascular-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7906091. [PMID: 35419169 PMCID: PMC9001081 DOI: 10.1155/2022/7906091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) refers to the enhancement of oxidation and the decreased of related antioxidant enzymes activity under pathological conditions, resulting in relatively excess reactive oxygen species (ROS), causing cytotoxicity, which leads to tissue damage and is linked to neurodegenerative diseases, cardiovascular diseases, diabetes, cancers, and many other pathologies. As an important intracellular signaling molecule, ROS can regulate numerous physiological actions, such as vascular reactivity and neuronal function. According to several studies, the uncontrolled production of ROS is related to vascular injury. The growing evidence revealing how traditional risk factors translate into ROS and lead to vasculitis and other vascular diseases. In this review, we sought to mainly discuss the role of ROS and antioxidant mechanisms in vascular-related diseases, especially cardiovascular and common macrovascular diseases.
Collapse
|
4
|
Patel KK, Sehgal VS, Kashfi K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur J Pharmacol 2022; 922:174906. [PMID: 35321818 PMCID: PMC9007885 DOI: 10.1016/j.ejphar.2022.174906] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Statins are a class of drugs widely used worldwide to manage hypercholesterolemia and the prevention of secondary heart attacks. Currently, available statins vary in terms of their pharmacokinetic and pharmacodynamic profiles. Although the primary target of statins is the inhibition of HMG-CoA reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis, statins exhibit many pleiotropic effects downstream of the mevalonate pathway. These pleiotropic effects include the ability to reduce myocardial fibrosis, pathologic cardiac disease states, hypertension, promote bone differentiation, anti-inflammatory, and antitumor effects through multiple mechanisms. Although these pleiotropic effects of statins may be a cause for enthusiasm, there are many adverse effects that, for the most part, are unappreciated and need to be highlighted. These adverse effects include myopathy, new-onset type 2 diabetes, renal and hepatic dysfunction. Although these adverse effects may be relatively uncommon, considering the number of people worldwide who use statins daily, the actual number of people affected becomes quite large. Also, co-administration of statins with several other medications, herbal agents, and foods, which interact through common enzymatic pathways, can have untoward clinical consequences. In this review, we address these concerns.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Viren S Sehgal
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| |
Collapse
|
5
|
Pharmacological inhibition of Rac1 attenuates myocardial abnormalities in tail-suspended mice. J Cardiovasc Transl Res 2022; 15:805-815. [DOI: 10.1007/s12265-021-10197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
|
6
|
Chen Y, Yu S, Zhang N, Li Y, Chen S, Chang Y, Sun G, Sun Y. Atorvastatin prevents Angiotensin II induced myocardial hypertrophy in vitro via CCAAT/enhancer-binding protein β. Biochem Biophys Res Commun 2017; 486:423-430. [DOI: 10.1016/j.bbrc.2017.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
|
7
|
Tuerdi N, Xu L, Zhu B, Chen C, Cao Y, Wang Y, Zhang Q, Li Z, Qi R. Preventive effects of simvastatin nanoliposome on isoproterenol-induced cardiac remodeling in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1899-1907. [DOI: 10.1016/j.nano.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/16/2016] [Accepted: 05/01/2016] [Indexed: 11/26/2022]
|
8
|
Zhang L, Cheng L, Wang Q, Zhou D, Wu Z, Shen L, Zhang L, Zhu J. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:174-82. [PMID: 25630653 DOI: 10.1093/abbs/gmu131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coronary artery disease (CAD) is a major health problem worldwide. The most severe form of CAD is acute coronary syndrome (ACS). Recent studies have demonstrated the beneficial role of atorvastatin in ACS; however, the mechanisms underlying this effect have not been fully clarified. Growing evidence indicates that activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in oxidative stress-induced cardiomyocyte apoptosis during ACS. In this study, we examined whether atorvastatin inhibits H2O2-induced LOX-1 expression and H9c2 cardiomyocyte apoptosis, and investigated the underlying signaling pathway. Treatment of H9c2 cardiomyocytes with H2O2 resulted in elevated expression of LOX-1 mRNA and protein, as well as increased caspase-3 and -9 protein expression and cell apoptosis. H2O2-induced LOX-1 expression, caspase protein expression, and cardiomyocyte apoptosis were attenuated by pretreatment with atorvastatin. Atorvastatin activated H2O2-inhibited phosphorylation of Akt in a concentration-dependent manner. The Akt inhibitor, LY294002, inhibited the effect of atorvastatin on inducing Akt phosphorylation and on suppressing H2O2-mediated caspase up-regulation and cell apoptosis. These findings indicate that atorvastatin protects cardiomyocyte from oxidative stress via inhibition of LOX-1 expression and apoptosis, and that activation of H2O2-inhibited phosphorylation of Akt may play an important role in the protective function of atorvastatin.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Qiqi Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Dongchen Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Ling Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 31003, China
| |
Collapse
|
9
|
Abstract
The advent of statins has revolutionised the treatment of patients with raised plasma cholesterol and increased cardiovascular risk. However, the beneficial effects of this class of drugs are far greater than would be expected from lowering of cholesterol alone, and they appear to offer cardiovascular protection at multiple levels, primarily as a result of their pleiotropic activity. Indeed, their favourable effects on the heart seem to be mediated in part through reduced prenylation and subsequent inhibition of small GTPases, particularly those of the Rho family. Such statin-mediated effects are manifested by reduced onset of heart failure and improvements in cardiac dysfunction and remodelling in heart failure patients. Experimental studies have shown that statins mediate their effects on the two major resident cell types of the heart--cardiomyocytes and cardiac fibroblasts--and thus facilitate improvement of adverse remodelling of ischaemic or non-ischaemic aetiology. This review examines evidence for the cellular effects of statins in the heart, and discusses the underlying molecular mechanisms at the level of the cardiomyocyte (hypertrophy, cell death and contractile function) and the cardiac fibroblast (differentiation, proliferation, migration and extracellular matrix synthesis). The prospects for future therapies and ongoing clinical trials are also summarised.
Collapse
|
10
|
Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol 2009; 47:698-705. [DOI: 10.1016/j.yjmcc.2009.07.024] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/08/2009] [Accepted: 07/27/2009] [Indexed: 11/23/2022]
|
11
|
Combined simvastatin–manidipine protect against ischemia–reperfusion injury in isolated hearts from normocholesterolemic rats. Eur J Pharmacol 2008; 587:224-30. [PMID: 18442813 DOI: 10.1016/j.ejphar.2008.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/28/2008] [Accepted: 03/13/2008] [Indexed: 11/22/2022]
|
12
|
Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E, Libby P, Swirski FK, Weissleder R. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008; 117:1153-60. [PMID: 18268141 PMCID: PMC2673051 DOI: 10.1161/circulationaha.107.756510] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Ischemic injury of the myocardium causes timed recruitment of neutrophils and monocytes/macrophages, which produce substantial amounts of local myeloperoxidase (MPO). MPO forms reactive chlorinating species capable of inflicting oxidative stress and altering protein function by covalent modification. We have used a small-molecule, gadolinium-based activatable sensor for magnetic resonance imaging of MPO activity (MPO-Gd). MPO-Gd is first radicalized by MPO and then either spontaneously oligomerizes or binds to matrix proteins, all leading to enhanced spin-lattice relaxivity and delayed washout kinetics. We hypothesized that MPO imaging could be used to measure inflammatory responses after myocardial ischemia locally and noninvasively in a murine model. METHODS AND RESULTS We injected 0.3 mmol/kg MPO-Gd (or Gd-DTPA as control) and performed magnetic resonance imaging up to 120 minutes later in mice 2 days after myocardial infarction. The contrast-to-noise ratio (infarct versus septum) after Gd-DTPA injection peaked at 10 minutes and returned to preinjection values at 60 minutes. After injection of MPO-Gd, the contrast-to-noise ratio peaked later and was higher than Gd-DTPA (40.8+/-10.4 versus 10.5+/-0.2; P<0.05). MPO imaging was validated by magnetic resonance imaging of MPO-/- mice and correlated well with immunoreactive staining (r2=0.92, P<0.05), tissue activity by guaiacol assay (r2=0.65, P<0.001), and immunoblotting. In time course imaging, activity peaked 2 days after coronary ligation. Flow cytometry of digested infarcts detected MPO in neutrophils and monocytes/macrophages. Furthermore, serial MPO imaging accurately tracked the antiinflammatory effects of atorvastatin therapy after ischemia-reperfusion injury. CONCLUSIONS MPO-Gd enables in vivo assessment of MPO activity in injured myocardium. This approach allows noninvasive evaluation of the inflammatory response to ischemia and has the potential to guide the development of novel cardioprotective therapies.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
González A, Ravassa S, López B, Loperena I, Querejeta R, Díez J. Apoptosis in hypertensive heart disease: a clinical approach. Curr Opin Cardiol 2008; 21:288-94. [PMID: 16755196 DOI: 10.1097/01.hco.0000231397.64362.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW It is widely accepted that there are two principal forms of cell death, namely, necrosis and apoptosis. According to the classical view, necrosis is the major mechanism of cardiomyocyte death in cardiac diseases. RECENT DEVELOPMENTS In the past few years observations have been made showing that cardiomyocyte apoptosis occurs in diverse conditions including hypertensive heart disease, and that apoptosis may be a contributing cause of loss and functional abnormalities of cardiomyocytes in this condition. SUMMARY This review will summarize recent evidence demonstrating the potential contribution of cardiomyocyte apoptosis to heart failure in hypertensive patients. In addition, some strategies aimed to detect and prevent apoptosis of cardiomyocytes will be considered.
Collapse
Affiliation(s)
- Arantxa González
- Division of Cardiovascular Sciences, Centre for Applied Medical Research, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Left ventricular hypertrophy (LVH), despite its adaptive nature, is associated with an increased risk of cardiovascular morbidity and mortality. Achievement of LVH regression is thus considered a principal therapeutic aim. However, regression of LVH induced by various therapeutic means may exhibit differing patterns, with variable biological implications. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have been shown to induce prevention or regression of LVH in different models of pathological myocardial growth. In addition to reduction of LV mass, statins were shown to reduce myocardial fibrosis, increase capillary density network and attenuate electrical instability of the hypertrophied heart. Most importantly, statins improved systolic and diastolic LV function and even decreased mortality. The inhibition of hypertrophic growth was only partly achieved by reduction of haemodynamic overload. Direct mechanisms, such as inhibition of neurohumoral activation in the myocardial tissue, attenuated production of growth factors and markers of inflammation and reduction of oxidative stress also seem to participate. The protective effect of statins was associated with the inhibition of expression and activation of small guanosintriphosphate-binding proteins such as Ras and Rho, which control the intensity of oxidative stress, the production and availability of nitric oxide, and the expression of genes involved in myocardial growth. In addition to reduction of LV mass, statins may also improve the prognosis of LVH independently of their lipid-lowering effect.
Collapse
Affiliation(s)
- F Simko
- School of Medicine, Komensky University, Bratislava, Slovak Republic.
| |
Collapse
|
15
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 5084] [Impact Index Per Article: 282.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
16
|
Kurian KC, Rai P, Sankaran S, Jacob B, Chiong J, Miller AB. The effect of statins in heart failure: beyond its cholesterol-lowering effect. J Card Fail 2006; 12:473-8. [PMID: 16911915 DOI: 10.1016/j.cardfail.2006.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/29/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Statins known as 3-hydroxyl-3-methyl-glutaryl-coenzyme A (HMG-CoA) are designed to lower plasma cholesterol levels. They are used to treat hypercholesterolemia, ischemic heart disease patients, heart transplant recipients, in prevention of Alzheimer's dementia, multiple sclerosis, and have also been shown to reduce cancer risk. METHODS AND RESULTS The idea of statin treatment in chronic heart failure is not well established. It has been shown to be beneficial in patients with ischemic heart disease with heart failure. Emerging trends show their usefulness in patients with nonischemic heart failure. Statins exhibit pleiotropic effects in stabilizing the atherosclerotic plaques, improvement of endothelial function, inhibition of cell migration and proliferation, and reduction of inflammation and oxidative stress. They also improve autonomic function with an increased parasympathetic drive, downregulate the angiotensin II type I receptors, and induce angiogenesis. CONCLUSION This article is a review on the current knowledge on statin use in heart failure.
Collapse
Affiliation(s)
- Kizhake C Kurian
- Division of Cardiology, University of Florida Health Science Center-Jacksonville, Jacksonville, Florida 32223, USA
| | | | | | | | | | | |
Collapse
|