1
|
Lin W, Yu Z, Luo Y, He W, Yan G, Peng C. Photoprotection Differences between Dominant Tree Species at Mid- and Late-Successional Stages in Subtropical Forests in Different Seasonal Environments. Int J Mol Sci 2022; 23:ijms23105417. [PMID: 35628227 PMCID: PMC9140998 DOI: 10.3390/ijms23105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Plants growing in subtropical regions are often affected by high temperature and high light in summer and low temperature and high light in winter. However, few studies have compared the photoprotection mechanism of tree species at different successional stages in these two environments, although such studies would be helpful in understanding the succession of forest communities in subtropical forests. In order to explore the strategies used by dominant species at different successional stages to cope with these two environmental conditions, we selected two dominant species in the mid-successional stage, Schima superba and Castanopsis chinensis, and two dominant species in the late-successional stage, Machilus chinensis and Cryptocarya chinensis. The cell membrane permeability, chlorophyll fluorescence, chlorophyll content, and a few light-protective substances of these dominant species were measured in summer and winter. The results show that in summer, the young leaves of dominant species in the mid-successional stage showed higher anthocyanin content and superoxide dismutase (SOD) activity, while those in the late-successional stage showed higher flavonoid and total phenolic content, total antioxidant activity, non-photochemical quenching (NPQ), and carotenoid/chlorophyll (Car/Chl) ratio. In winter, young leaves of dominant species in the mid-successional stage were superior to those in the late-successional stage only in terms of catalase (CAT) activity and NPQ, while the anthocyanin, flavonoids, and total phenol content, total antioxidant capacity, and Car/Chl ratio were significantly lower compared to the late-successional stage. Our results show that the dominant species in different successional stages adapted to environmental changes in different seasons through the alterations in their photoprotection strategies. In summer, the dominant species in the mid-successional stage mainly achieved photoprotection through light shielding and reactive-oxygen-species scavenging by SOD, while the antioxidant capacity of trees in the late-successional stage mainly came from an increased antioxidative compounds and heat dissipation. In winter, the dominant species in the mid-successional stage maintained their photoprotective ability mainly through the scavenging of reactive oxygen species by CAT and the heat dissipation provided by NPQ, while those in the late-successional stage were mainly protected by a combination of processes, including light shielding, heat dissipation, and antioxidant effects provided by enzymatic and non-enzymatic antioxidant systems. In conclusion, our study partially explains the mechanism of community succession in subtropical forests.
Collapse
|
2
|
Quero G, Bonnecarrère V, Fernández S, Silva P, Simondi S, Borsani O. Light-use efficiency and energy partitioning in rice is cultivar dependent. PHOTOSYNTHESIS RESEARCH 2019; 140:51-63. [PMID: 30448978 DOI: 10.1007/s11120-018-0605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
One of the main limitations of rice yield in regions of high productive performance is the light-use efficiency (LUE). LUE can be determined at the whole-plant level or at the photosynthetic apparatus level (quantum yield). Both vary according to the intensity and spectral quality of light. The aim of this study was to analyze the cultivar dependence regarding LUE at the plant level and quantum yield using four rice cultivars and four light environments. To achieve this, two in-house Light Systems were developed: Light System I which generates white light environments (spectral quality of 400-700 nm band) and Light System II which generates a blue-red light environment (spectral quality of 400-500 nm and 600-700 nm bands). Light environment conditioned the LUE and quantum yield in PSII of all evaluated cultivars. In white environments, LUE decreased when light intensity duplicated, while in blue-red environments no differences on LUE were observed. Energy partition in PSII was determined by the quantum yield of three de-excitation processes using chlorophyll fluorescence parameters. For this purpose, a quenching analysis followed by a relaxation analysis was performed. The damage of PSII was only increased by low levels of energy in white environments, leading to a decrease in photochemical processes due to the closure of the reaction centers. In conclusion, all rice cultivars evaluated in this study were sensible to low levels of radiation, but the response was cultivar dependent. There was not a clear genotypic relation between LUE and quantum yield.
Collapse
Affiliation(s)
- Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 809, Montevideo, Uruguay
- Instituto Nacional de Investigación Agropecuaria (INIA), Unidad de Biotecnología. Estación Experimental Wilson Ferreira Aldunate, Ruta 48, Km 10, Rincón del Colorado, 90200, Canelones, Uruguay
| | - Victoria Bonnecarrère
- Instituto Nacional de Investigación Agropecuaria (INIA), Unidad de Biotecnología. Estación Experimental Wilson Ferreira Aldunate, Ruta 48, Km 10, Rincón del Colorado, 90200, Canelones, Uruguay.
| | - Sebastián Fernández
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay
| | - Pedro Silva
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 809, Montevideo, Uruguay
| | - Sebastián Simondi
- Area de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo), Padre Contreras 1300, Mendoza, Argentina
| | - Omar Borsani
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 809, Montevideo, Uruguay
| |
Collapse
|
3
|
Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4249-4262. [PMID: 28922753 PMCID: PMC5853873 DOI: 10.1093/jxb/erx213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 05/18/2023]
Abstract
This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance.
Collapse
Affiliation(s)
- Yonglan Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Correspondence:
| |
Collapse
|
4
|
Camel V, Galeano E, Carrer H. RED DE COEXPRESIÓN DE 320 GENES DE Tectona grandis RELACIONADOS CON PROCESOS DE ESTRÉS ABIÓTICO Y XILOGÉNESIS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Schneider GF, Cheesman AW, Winter K, Turner BL, Sitch S, Kursar TA. Current ambient concentrations of ozone in Panama modulate the leaf chemistry of the tropical tree Ficus insipida. CHEMOSPHERE 2017; 172:363-372. [PMID: 28088026 DOI: 10.1016/j.chemosphere.2016.12.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Tropospheric ozone (O3) is a major air pollutant and greenhouse gas, affecting carbon dynamics, ecological interactions, and agricultural productivity across continents and biomes. Elevated [O3] has been documented in tropical evergreen forests, the epicenters of terrestrial primary productivity and plant-consumer interactions. However, the effects of O3 on vegetation have not previously been studied in these forests. In this study, we quantified ambient O3 in a region shared by forests and urban/commercial zones in Panama and found levels two to three times greater than in remote tropical sites. We examined the effects of these ambient O3 levels on the growth and chemistry of seedlings of Ficus insipida, a regionally widespread tree with high stomatal conductance, using open-top chambers supplied with ozone-free or ambient air. We evaluated the differences across treatments in biomass and, using UPLC-MS-MS, leaf secondary metabolites and membrane lipids. Mean [O3] in ambient air was below the levels that induce chronic stress in temperate broadleaved trees, and biomass did not differ across treatments. However, leaf secondary metabolites - including phenolics and a terpenoid - were significantly downregulated in the ambient air treatment. Membrane lipids were present at lower concentrations in older leaves grown in ambient air, suggesting accelerated senescence. Thus, in a tree species with high O3 uptake via high stomatal conductance, current ambient [O3] in Panamanian forests are sufficient to induce chronic effects on leaf chemistry.
Collapse
Affiliation(s)
- Gerald F Schneider
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| | - Alexander W Cheesman
- College of Science & Engineering, James Cook University, Cairns, Queensland, 4870, Australia
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Stephen Sitch
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - Thomas A Kursar
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
6
|
Contin DR, Munné-Bosch S. Interspecific variation in vitamin E levels and the extent of lipid peroxidation in pioneer and non-pioneer species used in tropical forest restoration. TREE PHYSIOLOGY 2016; 36:1151-1161. [PMID: 27052435 DOI: 10.1093/treephys/tpw018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Reforestation projects have gained interest over recent years due to the loss of biodiversity in tropical regions as a result of large deforestation by anthropogenic actions. However, better knowledge on the tolerance of plant species to environmental stresses is needed for reforestation success. Here, we evaluated the photoprotective and antioxidant capacity, in terms of vitamin E accumulation, of five pioneer (Platypodium elegans Vogel, Schinus terebinthifolius Raddi, Lafoensia pacari A. St.-Hil, Cecropia pachystachya Trécul. and Aegiphila sellowiana Cham.) and five non-pioneer (Myracrodruon urundeuva Allemão, Cedrela fissilis Vell., Genipa americana L., Copaifera langsdorffii Desf. and Hymenaea courbaril L.) species, in relation to the extent of lipid peroxidation in leaves. Furthermore, we examined differences between sun and shade leaves on vitamin E accumulation and the extent of lipid peroxidation. Pioneer plants showed on average 33% higher malondialdehyde levels, an indicator of lipid peroxidation, than non-pioneer species, but no significant differences in vitamin E contents. In contrast, a marked interspecific variation was observed in the levels of α-tocopherol and its precursor, γ-tocopherol. Natural variation revealed interesting relationships between vitamin E levels and the extent of lipid peroxidation in leaves. The pioneer species, P. elegans, did not accumulate α-tocopherol and displayed the highest levels of malondialdehyde. Sun and shade leaves accumulated vitamin E levels to a similar extent, except for the pioneer L. pacari and the non-pioneer C. langsdorffii, the former accumulating more α-tocopherol in sun leaves and the latter in shade leaves. We conclude that interspecific variation is higher than both leaf type and successional-group variation in terms of vitamin E accumulation and the extent of lipid peroxidation, and that vitamin E levels, particularly those of α-tocopherol, negatively correlate with the extent of lipid peroxidation, thus supporting a photoprotective and antioxidant function for vitamin E in plants growing in tropical environments.
Collapse
Affiliation(s)
- Daniele R Contin
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| |
Collapse
|
7
|
Krause GH, Winter K, Krause B, Virgo A. Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and Calophyllum longifolium. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 42:42-51. [PMID: 32480652 DOI: 10.1071/fp14095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/25/2014] [Indexed: 06/11/2023]
Abstract
Previous heat tolerance tests of higher plants have been mostly performed with darkened leaves. However, under natural conditions, high leaf temperatures usually occur during periods of high solar radiation. In this study, we demonstrate small but significant increases in the heat tolerance of illuminated leaves. Leaf disks of mature sun leaves from two neotropical tree species, Ficus insipida Willd. and Calophyllum longifolium Willd., were subjected to 15min of heat treatment in the light (500µmol photons m-2s-1) and in the dark. Tissue temperatures were controlled by floating the disks on the surface of a water bath. PSII activity was determined 24h and 48h after heating using chlorophyll a fluorescence. Permanent tissue damage was assessed visually during long-term storage of leaf sections under dim light. In comparison to heat treatments in the dark, the critical temperature (T50) causing a 50% decline of the fluorescence ratio Fv/Fm was increased by ~1°C (from ~52.5°C to ~53.5°C) in the light. Moreover, illumination reduced the decline of Fv/Fm as temperatures approached T50. Visible tissue damage was reduced following heat treatment in the light. Experiments with attached leaves of seedlings exposed to increasing temperatures in a gas exchange cuvette also showed a positive effect of light on heat tolerance.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| | - Barbara Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Republic of Panama
| |
Collapse
|
8
|
Adams WW, Muller O, Cohu CM, Demmig-Adams B. May photoinhibition be a consequence, rather than a cause, of limited plant productivity? PHOTOSYNTHESIS RESEARCH 2013; 117:31-44. [PMID: 23695654 DOI: 10.1007/s11120-013-9849-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/10/2013] [Indexed: 05/03/2023]
Abstract
Photoinhibition in leaves in response to high and/or excess light, consisting of a decrease in photosynthesis and/or photosynthetic efficiency, is frequently equated to photodamage and often invoked as being responsible for decreased plant growth and productivity. However, a review of the literature reveals that photoinhibited leaves characterized for foliar carbohydrate levels were invariably found to possess high levels of sugars and starch. We propose that photoinhibition should be placed in the context of whole-plant source-sink regulation of photosynthesis. Photoinhibition may represent downregulation of the photosynthetic apparatus in response to excess light when (1) more sugar is produced in leaves than can be utilized by the rest of the plant and/or (2) more light energy is harvested than can be utilized by the chloroplast for the fixation of carbon dioxide into sugars.
Collapse
Affiliation(s)
- William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA,
| | | | | | | |
Collapse
|
9
|
Krause GH, Cheesman AW, Winter K, Krause B, Virgo A. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:822-7. [PMID: 23399405 DOI: 10.1016/j.jplph.2013.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/09/2013] [Indexed: 05/11/2023]
Abstract
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancón, Republic of Panama.
| | | | | | | | | |
Collapse
|
10
|
Krause GH, Winter K, Matsubara S, Krause B, Jahns P, Virgo A, Aranda J, García M. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. PHOTOSYNTHESIS RESEARCH 2012; 113:273-285. [PMID: 22466529 DOI: 10.1007/s11120-012-9731-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/27/2012] [Indexed: 05/28/2023]
Abstract
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panama, Republic of Panama.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:20-36. [PMID: 32688624 DOI: 10.1071/fp08214] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/10/2008] [Indexed: 05/21/2023]
Abstract
A survey of photosynthetic pigments, including 86 species from 64 families, was conducted for leaves of neotropical vascular plants to study sun-shade patterns in carotenoid biosynthesis and occurrence of α-carotene (α-Car) and lutein epoxide (Lx). Under low light, leaves invested less in structural components and more in light harvesting, as manifested by low leaf dry mass per area (LMA) and enhanced mass-based accumulation of chlorophyll (Chl) and carotenoids, especially lutein and neoxanthin. Under high irradiance, LMA was greater and β-carotene (β-Car) and violaxanthin-cycle pool increased on a leaf area or Chl basis. The majority of plants contained α-Car in leaves, but the α- to β-Car ratio was always low in the sun, suggesting preference for β-Car in strong light. Shade and sun leaves had similar β,ε-carotenoid contents per unit Chl, whereas sun leaves had more β,β-carotenoids than shade leaves. Accumulation of Lx in leaves was found to be widely distributed among taxa: >5 mmol mol Chl-1 in 20% of all species examined and >10 mmol mol Chl-1 in 10% of woody species. In Virola elongata (Benth.) Warb, having substantial Lx in both leaf types, the Lx cycle was operating on a daily basis although Lx restoration in the dark was delayed compared with violaxanthin restoration.
Collapse
Affiliation(s)
- Shizue Matsubara
- Institut für Phytosphäre (ICG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Heinrich Krause
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| | - Kim G Beisel
- Institut für Phytosphäre (ICG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Jahns
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| |
Collapse
|
12
|
Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K. Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. PLANT, CELL & ENVIRONMENT 2008; 31:548-561. [PMID: 18208510 DOI: 10.1111/j.1365-3040.2008.01788.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dynamics and possible function of the lutein epoxide (Lx) cycle, that is, the reversible conversion of Lx to lutein (L) in the light-harvesting antennae, were investigated in leaves of tropical tree species. Photosynthetic pigments were quantified in nine Inga species and species from three other genera. In Inga, Lx levels were high in shade leaves (mostly above 20 mmol mol(-1) chlorophyll) and low in sun leaves. In Virola surinamensis, both sun and shade leaves exhibited very high Lx contents (about 60 mmol mol(-1) chlorophyll). In Inga marginata grown under high irradiance, Lx slowly accumulated within several days upon transfer to deep shade. When shade leaves of I. marginata were briefly exposed to the sunlight, both violaxanthin and Lx were quickly de-epoxidized. Subsequently, overnight recovery occurred only for violaxanthin, not for Lx. In such leaves, containing reduced levels of Lx and increased levels of L, chlorophyll fluorescence induction showed significantly slower reduction of the photosystem II electron acceptor, Q(A), and faster formation as well as a higher level of non-photochemical quenching. The results indicate that slow Lx accumulation in Inga leaves may improve light harvesting under limiting light, while quick de-epoxidation of Lx to L in response to excess light may enhance photoprotection.
Collapse
Affiliation(s)
- Shizue Matsubara
- Phytosphere Institute (ICG-3), Research Centre Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Krause GH, Jahns P, Virgo A, García M, Aranda J, Wellmann E, Winter K. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1311-22. [PMID: 17074417 DOI: 10.1016/j.jplph.2006.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 05/12/2023]
Abstract
Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Panama, Republic of Panama.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gallé A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. THE NEW PHYTOLOGIST 2007; 174:799-810. [PMID: 17504463 DOI: 10.1111/j.1469-8137.2007.02047.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The capability to withstand and to recover from severe summer droughts is becoming an important issue for tree species in central Europe, as dry periods are predicted to occur more frequently over the coming decades. Changes in leaf gas exchange, chlorophyll a fluorescence and leaf compounds related to photoprotection were analysed in young Quercus pubescens trees under field conditions during two summers (2004 and 2005) of progressive drought and subsequent rewatering. Photochemistry was reversibly down-regulated and dissipation of excess energy was enhanced during the stress phase, while contents of leaf pigments and antioxidants were almost unaltered. Plant water status was restored immediately after rewatering. Net photosynthesis (P(n)) measured at ambient CO2 recovered from inhibition by drought within 4 wk. P(n) measured at elevated CO2--to overcome stomatal limitations--was restored after a few days. A network of photoprotective mechanisms acted in preserving the potential functionality of the photosynthetic apparatus during severe drought, leading to a rapid recovery of photosynthetic activity after rewatering. Thus, Q. pubescens seems to be capable of withstanding and surviving extreme drought events.
Collapse
Affiliation(s)
- Alexander Gallé
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Pierre Haldimann
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Urs Feller
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| |
Collapse
|