1
|
Nick P. Taming the fire-transcription factors for redox control in animals and plants. PROTOPLASMA 2024; 261:395-396. [PMID: 38581453 PMCID: PMC11021289 DOI: 10.1007/s00709-024-01948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Affiliation(s)
- Peter Nick
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
2
|
Peethambaran PK, Glenz R, Höninger S, Shahinul Islam SM, Hummel S, Harter K, Kolukisaoglu Ü, Meynard D, Guiderdoni E, Nick P, Riemann M. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC PLANT BIOLOGY 2018; 18:311. [PMID: 30497415 DOI: 10.1186/s12870-018-1521-1520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Productivity of important crop rice is greatly affected by salinity. The plant hormone jasmonate plays a vital role in salt stress adaptation, but also evokes detrimental side effects if not timely shut down again. As novel strategy to avoid such side effects, OsJAZ8, a negative regulator of jasmonate signalling, is expressed under control of the salt-inducible promoter of the transcription factor ZOS3-11, to obtain a transient jasmonate signature in response to salt stress. To modulate the time course of jasmonate signalling, either a full-length or a dominant negative C-terminally truncated version of OsJAZ8 driven by the ZOS3-11 promoter were expressed in a stable manner either in tobacco BY-2 cells, or in japonica rice. RESULTS The transgenic tobacco cells showed reduced mortality and efficient cycling under salt stress adaptation. This was accompanied by reduced sensitivity to Methyl jasmonate and increased responsiveness to auxin. In the case of transgenic rice, the steady-state levels of OsJAZ8 transcripts were more efficiently induced under salt stress compared to the wild type, this induction was more pronounced in the dominant-negative OsJAZ8 variant. CONCLUSIONS The result concluded that, more efficient activation of OsJAZ8 was accompanied by improved salt tolerance of the transgenic seedlings and demonstrates the impact of temporal signatures of jasmonate signalling for stress tolerance.
Collapse
Affiliation(s)
| | - René Glenz
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sabrina Höninger
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - S M Shahinul Islam
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sabine Hummel
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Klaus Harter
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Üner Kolukisaoglu
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Donaldo Meynard
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398, Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398, Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany.
| |
Collapse
|
3
|
Peethambaran PK, Glenz R, Höninger S, Shahinul Islam SM, Hummel S, Harter K, Kolukisaoglu Ü, Meynard D, Guiderdoni E, Nick P, Riemann M. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC PLANT BIOLOGY 2018; 18:311. [PMID: 30497415 PMCID: PMC6267056 DOI: 10.1186/s12870-018-1521-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Productivity of important crop rice is greatly affected by salinity. The plant hormone jasmonate plays a vital role in salt stress adaptation, but also evokes detrimental side effects if not timely shut down again. As novel strategy to avoid such side effects, OsJAZ8, a negative regulator of jasmonate signalling, is expressed under control of the salt-inducible promoter of the transcription factor ZOS3-11, to obtain a transient jasmonate signature in response to salt stress. To modulate the time course of jasmonate signalling, either a full-length or a dominant negative C-terminally truncated version of OsJAZ8 driven by the ZOS3-11 promoter were expressed in a stable manner either in tobacco BY-2 cells, or in japonica rice. RESULTS The transgenic tobacco cells showed reduced mortality and efficient cycling under salt stress adaptation. This was accompanied by reduced sensitivity to Methyl jasmonate and increased responsiveness to auxin. In the case of transgenic rice, the steady-state levels of OsJAZ8 transcripts were more efficiently induced under salt stress compared to the wild type, this induction was more pronounced in the dominant-negative OsJAZ8 variant. CONCLUSIONS The result concluded that, more efficient activation of OsJAZ8 was accompanied by improved salt tolerance of the transgenic seedlings and demonstrates the impact of temporal signatures of jasmonate signalling for stress tolerance.
Collapse
Affiliation(s)
| | - René Glenz
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sabrina Höninger
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | | | - Sabine Hummel
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Klaus Harter
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Üner Kolukisaoglu
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Donaldo Meynard
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398 Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398 Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
4
|
Chen HW, Shao KH, Wang SJ. Light-modulated seminal wavy roots in rice mediated by nitric oxide-dependent signaling. PROTOPLASMA 2015; 252:1291-1304. [PMID: 25619895 DOI: 10.1007/s00709-015-0762-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Rice (Oryza sativa L.) seminal roots from germinated seeds help establish seedlings, but the seminal root growth and morphology are sensitive to environmental factors. Our previous research showed that several indica-type rice varieties such as Taichung native 1 (TCN1) showed light-induced wavy roots. Also, auxin and oxylipins are two signaling factors regulating the wavy root photomorphology. To investigate the signaling pathway, here, we found that nitric oxide (NO) was a second messenger triggering the signal transduction of light stimuli to induce the wavy morphology of seminal roots in rice. Moreover, interactions between oxylipins and phytohormones such as ethylene and auxin participating in the NO-dependent regulatory pathway of light-induced wavy roots were examined. The order of action of signaling components in the pathway was NO, oxylipins, ethylene, and auxin.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | | | | |
Collapse
|
5
|
Li J, Jia H. cGMP modulates Arabidopsis lateral root formation through regulation of polar auxin transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:105-17. [PMID: 23500713 DOI: 10.1016/j.plaphy.2013.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/15/2013] [Indexed: 05/02/2023]
Abstract
The phytohormone auxin participates in lateral root formation and primary root growth in plants. The auxin gradient formation is mainly regulated by the direction of polar auxin transport (PAT). PAT requires PIN family proteins, which are auxin transport facilitators and contribute to the establishment and maintenance of auxin gradients and mediate multiple developmental processes. Here, we report the effect of the 3', 5'-cyclic guanosine monophosphate (cGMP), an important second messenger, on postembryonic developmental of Arabidopsis lateral root. We find that enhanced cGMP level through the application of the membrane permeable cGMP analog 8-Br-cGMP, promotes the initiation of lateral root primordia and formation of lateral root. 6-Anilino-5,8-quinolinedione (Ly83583, the guanylate cyclase inhibitor) negatively regulates the process. cGMP also mediates acropetal auxin transport and basipetal auxin transport in the root. We further find that 8-Br-cGMP and Ly83583 change the expression of auxin transport genes and alter the polar localization and expression of PIN1 and PIN2 proteins. Moreover, Ly83583 affects actin organization and localization. Taken together, we propose that cGMP affects auxin transport and auxin gradient through modulation PINs proteins localization and expression. cGMP regulates postembryonic formation of Arabidopsis lateral root through the crosstalk with PAT.
Collapse
Affiliation(s)
- Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | |
Collapse
|
6
|
Nick P. Probing the actin-auxin oscillator. PLANT SIGNALING & BEHAVIOR 2010; 5:94-8. [PMID: 20023411 PMCID: PMC2884107 DOI: 10.4161/psb.5.2.10337] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 05/20/2023]
Abstract
The directional transport of the plant hormone auxin depends on transcellular gradients of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. To get insight into this question, actin bundling was induced by overexpression of the actin-binding domain of talin in tobacco BY-2 cells and in rice plants. This bundling can be reverted by addition of auxins, which allows to address the role of actin organization on the flux of auxin. In both systems, the reversion of a normal actin configuration can be restored by addition of exogenous auxins and this fully restores the respective auxin-dependent functions. These findings lead to a model of a self-referring regulatory circuit between polar auxin transport and actin organization. To further dissect the actin-auxin oscillator, we used photoactivated release of caged auxin in tobacco cells to demonstrate that auxin gradients can be manipulated at a subcellular level.
Collapse
Affiliation(s)
- Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
7
|
Qiao F, Petrášek J, Nick P. Light can rescue auxin-dependent synchrony of cell division in a tobacco cell line. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:503-10. [PMID: 19884227 PMCID: PMC2803214 DOI: 10.1093/jxb/erp319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 10/01/2009] [Accepted: 10/13/2009] [Indexed: 05/20/2023]
Abstract
Pattern formation in plants has to cope with ambient variability and therefore must integrate environmental cues such as light. Synchrony of cell divisions was previously observed in cell files of tobacco suspension cultures, which represents a simple case of pattern formation. To develop cellular approaches for light-dependent patterning, light-responsive tobacco cell lines were screened from the cell line Nicotiana tabacum L. cv. Virginia Bright Italia 0 (VBI-0). The light responsive and auxin-autonomous cell line VBI-3 was isolated. As in the progenitor line VBI-0, cell divisions are synchronized in VBI-3 during exponential growth phase. This synchrony can be inhibited by 1-N-naphthylphthalamic acid, an auxin transport inhibitor, and this process was accompanied by the disassembly of actin filaments. However, the synchrony could be rescued when the cells were cultured under white light or with exogenous indolyl-3-acetic acid. The rescue was most efficient for continuous far-red light followed by continuous blue light, whereas continuous red light was least effective. These findings are discussed in the context of phytochrome-induced auxin biosynthesis and auxin-dependent synchrony of cell division.
Collapse
Affiliation(s)
- Fei Qiao
- Institute of Botany 1, University of Karlsruhe, Kaiserstrasse 2, D-76128 Karlsruhe, Germany
| | - Jan Petrášek
- Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 16502 Prague 6, Czech Republic
- Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 12844 Prague 2, Czech Republic
| | - Peter Nick
- Institute of Botany 1, University of Karlsruhe, Kaiserstrasse 2, D-76128 Karlsruhe, Germany
| |
Collapse
|
8
|
Riemann M, Bouyer D, Hisada A, Müller A, Yatou O, Weiler EW, Takano M, Furuya M, Nick P. Phytochrome A requires jasmonate for photodestruction. PLANTA 2009; 229:1035-45. [PMID: 19184094 DOI: 10.1007/s00425-009-0891-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/07/2009] [Indexed: 05/23/2023]
Abstract
The plant photoreceptor phytochrome is organised in a small gene family with phytochrome A (phyA) being unique, because it is specifically degraded upon activation by light. This so called photodestruction is thought to be important for dynamic aspects of sensing such as measuring day length or shading by competitors. Signal-triggered proteolytic degradation has emerged as central element of signal crosstalk in plants during recent years, but many of the molecular players are still unknown. We therefore analyzed a jasmonate (JA)-deficient rice mutant, hebiba, that in several aspects resembles a mutant affected in photomorphogenesis. In this mutant, the photodestruction of phyA is delayed as shown by in vivo spectroscopy and Western blot analysis. Application of methyl-JA (MeJA) can rescue the delayed phyA photodestruction in the mutant in a time- and dose-dependent manner. Light regulation of phyA transcripts thought to be under control of stable phytochrome B (phyB) is still functional. The delayed photodestruction is accompanied by an elevated sensitivity of phytochrome-dependent growth responses to red and far-red light.
Collapse
Affiliation(s)
- Michael Riemann
- Institute of Botany 1, Universität Karlsruhe, Kaiserstrasse 2, 76128 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Baluska F, Mancuso S. Plant neurobiology: from sensory biology, via plant communication, to social plant behavior. Cogn Process 2008; 10 Suppl 1:S3-7. [PMID: 18998182 DOI: 10.1007/s10339-008-0239-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/06/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
In plants, numerous parameters of both biotic and abiotic environments are continuously monitored. Specialized cells are evolutionary-optimized for effective translation of sensory input into developmental and motoric output. Importantly, diverse physical forces, influences, and insults induce immediate electric responses in plants. Recent advances in plant cell biology, molecular biology, and sensory ecology will be discussed in the framework of recently initiated new discipline of plant sciences, namely plant neurobiology.
Collapse
|
10
|
Barlow PW. Reflections on 'plant neurobiology'. Biosystems 2008; 92:132-47. [PMID: 18336993 DOI: 10.1016/j.biosystems.2008.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/19/2007] [Accepted: 01/22/2008] [Indexed: 11/28/2022]
Abstract
Plant neurobiology, a new and developing area in the plant sciences, is a meeting place for scientists concerned with exploring how plants perceive signs within their environment and convert them into internal electro-chemical ('plant neurobiological') signals. These signals, in turn, permit rapid modifications of physiology and development that help plants adjust to changes in their environment. The use of the epithet 'neurobiology' in the context of plant life has, however, led to misunderstanding about the aims, content, and scope of this topic. This difficulty is possibly due to the terminology used, since this is often unfamiliar in the context of plants. In the present article, the scope of plant neurobiology is explored and some of analogical and metaphorical aspects of the subject are discussed. One approach to reconciling possible problems of using the term 'plant neurobiology' and, at the same time, of analysing information transfer in plants and the developmental processes which are regulated thereby, is through Living Systems Theory (LST). This theory specifically directs attention to the means by which information is gathered and processed, and then dispersed throughout the hierarchy of organisational levels of the plant body. Attempts to identify the plant 'neural' structures point to the involvement of the vascular tissue - xylem and phloem - in conveying electrical impulses generated in zones of special sensitivity to receptive locations throughout the plant in response to mild stress. Vascular tissue therefore corresponds, at the level of organismic organisation, with the informational 'channel and net' subsystem of LST.
Collapse
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| |
Collapse
|
11
|
Ahad A, Nick P. Actin is bundled in activation-tagged tobacco mutants that tolerate aluminum. PLANTA 2007; 225:451-68. [PMID: 16909289 DOI: 10.1007/s00425-006-0359-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 07/10/2006] [Indexed: 05/09/2023]
Abstract
A panel of aluminum-tolerant (AlRes) mutants was isolated by protoplast-based T-DNA activation tagging in the tobacco cultivar SR1. The mutants fell into two phenotypic classes: a minority of the mutants were fertile and developed similarly to the wild type (type I), the majority was male-sterile and grew as semi-dwarfs (type II). These traits, along with the aluminum tolerance, were inherited in a monogenic dominant manner. Both types of mutants were characterized by excessive bundling of actin microfilaments and by a strongly increased abundance of actin, a phenotype that could be partially phenocopied in the wild type by treatment with aluminum chloride. The actin bundles could be dissociated into finer strands by addition of exogenous auxin in both types of mutants. However, actin microfilaments and leaf expansion were sensitive to blockers of actin assembly in the wild type and in the mutants of type I, whereas they were more tolerant in the mutants of type II. The mutants of type II displayed a hypertrophic development of vasculature, manifest in form of supernumerary leaf veins and extended xylem layers in stems and petioles. Whereas mutants of type I were characterized by a normal, but aluminum-tolerant polar auxin-transport, auxin-transport was strongly promoted in the mutants of type II. The phenotype of these mutants is discussed in terms of reduced endocytosis leading, concomitantly with aluminum tolerance, to changes in polar auxin transport.
Collapse
Affiliation(s)
- Abdul Ahad
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden.
| | | |
Collapse
|