1
|
Zhou F, Feng W, Mou K, Yu Z, Zeng Y, Zhang W, Zhou Y, Li Y, Gao H, Xu K, Feng C, Jing Y, Li H. Genome-Wide Analysis and Expression Profiling of Soybean RbcS Family in Response to Plant Hormones and Functional Identification of GmRbcS8 in Soybean Mosaic Virus. Int J Mol Sci 2024; 25:9231. [PMID: 39273180 PMCID: PMC11395302 DOI: 10.3390/ijms25179231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| |
Collapse
|
2
|
Using Hybrid Artificial Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield and Fresh Biomass Using Hyperspectral Vegetation Indices. REMOTE SENSING 2021. [DOI: 10.3390/rs13132555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advanced high-throughput field phenotyping combined with sophisticated big data analysis methods have provided plant breeders with unprecedented tools for a better prediction of important agronomic traits, such as yield and fresh biomass (FBIO), at early growth stages. This study aimed to demonstrate the potential use of 35 selected hyperspectral vegetation indices (HVI), collected at the R5 growth stage, for predicting soybean seed yield and FBIO. Two artificial intelligence algorithms, ensemble-bagging (EB) and deep neural network (DNN), were used to predict soybean seed yield and FBIO using HVI. Considering HVI as input variables, the coefficients of determination (R2) of 0.76 and 0.77 for yield and 0.91 and 0.89 for FBIO were obtained using DNN and EB, respectively. In this study, we also used hybrid DNN-SPEA2 to estimate the optimum HVI values in soybeans with maximized yield and FBIO productions. In addition, to identify the most informative HVI in predicting yield and FBIO, the feature recursive elimination wrapper method was used and the top ranking HVI were determined to be associated with red, 670 nm and near-infrared, 800 nm, regions. Overall, this study introduced hybrid DNN-SPEA2 as a robust mathematical tool for optimizing and using informative HVI for estimating soybean seed yield and FBIO at early growth stages, which can be employed by soybean breeders for discriminating superior genotypes in large breeding populations.
Collapse
|
3
|
Wang J, Jacobs JL, Roth MG, Chilvers MI. Temporal Dynamics of Fusarium virguliforme Colonization of Soybean Roots. PLANT DISEASE 2019; 103:19-27. [PMID: 30358505 DOI: 10.1094/pdis-03-18-0384-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soybean sudden death syndrome (SDS) caused by Fusarium virguliforme is one of the most yield limiting soybean diseases in the United States. SDS disease symptoms include root rot and foliar symptoms induced by fungal toxins. Soybean cultivar resistance is one of the most effective SDS disease management options, but no cultivar displays complete resistance. Soybean SDS foliar symptoms are the primary phenotype used to screen and breed for SDS resistance. Root rot or root colonization measures are seldom utilized, partly due to the lack of convenient and accurate methods for quantification of F. virguliforme. In this study, greenhouse and field experiments were conducted to determine the temporal dynamics of F. virguliforme colonization of soybean roots using quantitative real-time PCR (qPCR). The infection coefficient (IC), or ratio of F. virguliforme DNA to soybean DNA, was determined in soybean cultivars with different SDS foliar resistance ratings. In greenhouse experiments, F. virguliforme was detected in all cultivars 7 days after planting (DAP), with a peak in IC at 14 DAP. All soybean cultivars developed SDS foliar symptoms, but F. virguliforme soybean root colonization levels did not significantly correlate with SDS foliar symptom severity. In field experiments, SDS foliar symptoms developed among soybean cultivars in alignment with provided foliar resistance ratings; however, the F. virguliforme IC were not significantly different between SDS foliar symptomatic and asymptomatic cultivars. F. virguliforme was detected in all cultivars at the first sample collection point 25 DAP (V3 vegetative growth stage), and the IC increased throughout the season, peaking at the last sample collection point 153 DAP (postharvest). Collectively, appearance and disease severity ratings of SDS foliar symptoms were not associated with F. virguliforme quantity in roots, suggesting a need to include F. virguliforme root colonization in breeding efforts to screen soybean germplasm for F. virguliforme root infection resistance. The findings also demonstrates root colonization of the pathogen on nonsymptomatic soybean cultivars leading to persistence of the pathogen in the field, and possible hidden yield loss.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Janette L Jacobs
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Mitchell G Roth
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
4
|
Rosati RG, Lario LD, Hourcade ME, Cervigni GDL, Luque AG, Scandiani MM, Spampinato CP. Primary metabolism changes triggered in soybean leaves by Fusarium tucumaniae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:91-100. [PMID: 30080645 DOI: 10.1016/j.plantsci.2018.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Sudden death syndrome (SDS) of soybean can be caused by at least four distinct Fusarium species, with F. tucumaniae being the main causal agent in Argentina. The fungus is a soil-borne pathogen that is largely confined to the roots, but damage also reaches aerial part of the plant and interveinal chlorosis and necrosis, followed by premature defoliation can be observed. In this study, two genetically diverse soybean cultivars, one susceptible (NA 4613) and one partially resistant (DM 4670) to SDS infection, were inoculated with F. tucumaniae or kept uninoculated. Leaf samples at 7, 10, 14 and 25 days post-inoculation (dpi) were chosen for analysis. With the aim of detecting early markers that could potentially discriminate the cultivar response to SDS, gas chromatography-mass spectrometry (GC-MS) analyses and biochemical studies were performed. Metabolic analyses show higher levels of several amino acids in the inoculated than in the uninoculated susceptible cultivar starting at 10 dpi. Biochemical studies indicate that pigment contents and Rubisco level were reduced while class III peroxidase activity was increased in the inoculated susceptible plant at 10 dpi. Taken together, our results indicate that the pathogen induced an accumulation of amino acids, a decrease of the photosynthetic activity, and an increase of plant-specific peroxidase activity in the susceptible cultivar before differences of visible foliar symptoms between genotypes could be observed, thus suggesting that metabolic and biochemical approaches may contribute to a rapid characterization of the cultivar response to SDS.
Collapse
Affiliation(s)
- Romina G Rosati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Luciana D Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Mónica E Hourcade
- Laboratorio de Cromatografía Gaseosa y Espectrometría de Masas, Sala de Instrumental Central, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Gerardo D L Cervigni
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alicia G Luque
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María M Scandiani
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
5
|
Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome) in Soybean. REMOTE SENSING 2018. [DOI: 10.3390/rs10030426] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Sahu BB, Baumbach JL, Singh P, Srivastava SK, Yi X, Bhattacharyya MK. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis. PLoS One 2017; 12:e0169963. [PMID: 28095498 PMCID: PMC5241000 DOI: 10.1371/journal.pone.0169963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.
Collapse
Affiliation(s)
- Binod B. Sahu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jordan L. Baumbach
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Interdepartmental Genetic Program, Iowa State University, Ames, Iowa, United States of America
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Xiaoping Yi
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Madan K. Bhattacharyya
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Interdepartmental Genetic Program, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
7
|
Iqbal MJ, Majeed M, Humayun M, Lightfoot DA, Afzal AJ. Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme. Appl Biochem Biotechnol 2016; 180:1657-1674. [PMID: 27491306 DOI: 10.1007/s12010-016-2194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
Abstract
Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.
Collapse
Affiliation(s)
- M Javed Iqbal
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
| | - Maryam Majeed
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Maheen Humayun
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - David A Lightfoot
- Department of Molecular Biology, Microbiology, and Biochemistry, Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, and Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Ahmed J Afzal
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
- Department of Molecular Biology, Microbiology, and Biochemistry, Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, and Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
8
|
Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers MI, Roth MG, Bi K, TerAvest D, Weebadde P, Kramer DM. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160592. [PMID: 27853580 PMCID: PMC5099005 DOI: 10.1098/rsos.160592] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/26/2016] [Indexed: 05/08/2023]
Abstract
Large-scale high-throughput plant phenotyping (sometimes called phenomics) is becoming increasingly important in plant biology and agriculture and is essential to cutting-edge plant breeding and management approaches needed to meet the food and fuel needs for the next century. Currently, the application of these approaches is severely limited by the availability of appropriate instrumentation and by the ability to communicate experimental protocols, results and analyses. To address these issues, we have developed a low-cost, yet sophisticated open-source scientific instrument designed to enable communities of researchers, plant breeders, educators, farmers and citizen scientists to collect high-quality field data on a large scale. The MultispeQ provides measurements in the field or laboratory of both, environmental conditions (light intensity and quality, temperature, humidity, CO2 levels, time and location) and useful plant phenotypes, including photosynthetic parameters-photosystem II quantum yield (ΦII), non-photochemical exciton quenching (NPQ), photosystem II photoinhibition, light-driven proton translocation and thylakoid proton motive force, regulation of the chloroplast ATP synthase and potentially many others-and leaf chlorophyll and other pigments. Plant phenotype data are transmitted from the MultispeQ to mobile devices, laptops or desktop computers together with key metadata that gets saved to the PhotosynQ platform (https://photosynq.org) and provides a suite of web-based tools for sharing, visualization, filtering, dissemination and analyses. We present validation experiments, comparing MultispeQ results with established platforms, and show that it can be usefully deployed in both laboratory and field settings. We present evidence that MultispeQ can be used by communities of researchers to rapidly measure, store and analyse multiple environmental and plant properties, allowing for deeper understanding of the complex interactions between plants and their environment.
Collapse
Affiliation(s)
- Sebastian Kuhlgert
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Greg Austic
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Robert Zegarac
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Isaac Osei-Bonsu
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Donghee Hoh
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Genetics Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Mitchell G. Roth
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Genetics Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Kevin Bi
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Dan TerAvest
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | | - David M. Kramer
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Author for correspondence: David M. Kramer e-mail:
| |
Collapse
|
9
|
Swaminathan S, Abeysekara NS, Liu M, Cianzio SR, Bhattacharyya MK. Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:495-506. [PMID: 26678962 DOI: 10.1007/s00122-015-2643-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/21/2015] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE Soybean deploys multiple genetic mechanisms to confer tolerance to Fusarium virguliforme toxins. This study revealed that F. virguliforme culture filtrates could be used in mapping QTL underlying foliar SDS resistance. Sudden death syndrome (SDS) is a major soybean disease throughout most of the soybean growing regions in the world including the United States. The disease is caused by the fungal pathogen, Fusarium virguliforme (Fv). The fungus produces several toxins that are responsible for development of interveinal leaf chlorosis and necrosis, which are typical foliar SDS symptoms. Growing of resistant cultivars has been the most effective method in controlling the disease. The objective of the present study was to identify quantitative trait loci (QTL) underlying host responses of soybean to Fv toxins present in culture filtrates. To accomplish this objective, two recombinant inbred line (RIL) populations, AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582), segregating for SDS resistance were evaluated for foliar symptom development by applying two screening protocols, the stem cutting and the root feeding assays. The AX19286 population revealed two major and seven minor QTL for SDS resistance. In the AX19287 population, we identified five major QTL and three minor QTL. The two QTL mapped to Chromosome 7 [molecular linkage group (MLG) M] and Chromosome 20 (MLG I) are most likely novel, and were detected through screening of the AX19287 population with stem cutting and root feeding assays, respectively. This study established that Fv culture filtrates could be employed in mapping QTL underlying foliar SDS resistance. The outcomes of the research also suggest that multiple genetic mechanisms might be used by soybean to overcome the toxic effects of the toxins secreted by the pathogen into culture filtrates.
Collapse
Affiliation(s)
| | - Nilwala S Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Min Liu
- Visiting Scholar, Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Shenyang Agricultural University, 120 Dongling Ave., Shenyang, 110866, Liaoning, China
| | - Silvia R Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
10
|
Abeysekara NS, Swaminathan S, Desai N, Guo L, Bhattacharyya MK. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:105-14. [PMID: 26795155 DOI: 10.1016/j.plantsci.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean.
Collapse
Affiliation(s)
- Nilwala S Abeysekara
- Department of Agronomy, Iowa State University, Ames, IA, USA; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | | | | | | | | |
Collapse
|
11
|
Wang B, Swaminathan S, Bhattacharyya MK. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean. PLoS One 2015; 10:e0145156. [PMID: 26709700 PMCID: PMC4692527 DOI: 10.1371/journal.pone.0145156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/01/2015] [Indexed: 12/01/2022] Open
Abstract
Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed.
Collapse
Affiliation(s)
- Bing Wang
- Department of Agronomy, Iowa State University, Ames, 50011–1010, United States of America
| | - Sivakumar Swaminathan
- Department of Agronomy, Iowa State University, Ames, 50011–1010, United States of America
| | - Madan K. Bhattacharyya
- Department of Agronomy, Iowa State University, Ames, 50011–1010, United States of America
| |
Collapse
|
12
|
Xiang Y, Scandiani MM, Herman TK, Hartman GL. Optimizing Conditions of a Cell-Free Toxic Filtrate Stem Cutting Assay to Evaluate Soybean Genotype Responses to Fusarium Species that Cause Sudden Death Syndrome. PLANT DISEASE 2015; 99:502-507. [PMID: 30699546 DOI: 10.1094/pdis-08-14-0791-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell-free toxic culture filtrates from Fusarium virguliforme, the causal fungus of soybean sudden death syndrome (SDS), cause foliar symptoms on soybean stem cuttings similar to those obtained from root inoculations in whole plants and those observed in production fields. The objectives of this study were to (i) optimize the production conditions for F. virguliforme cell-free toxic culture filtrates and the incubation conditions of the stem cutting assay used to test the toxicity of the cell-free toxic culture filtrates, and (ii) use the optimized assay and a whole plant root inoculation assay to compare four SDS-causing isolates on a panel of selected soybean genotypes. Area under the disease progress curve (AUDPC) values were highest (P = 0.05) when cuttings were immersed in culture filtrate of fungus grown in soybean dextrose broth, in filtrate produced from the fungus grown for 18 or 22 days, and when stem cuttings were incubated at 30°C. AUDPC values and shoot dry weights from the whole plant root inoculations and the AUDPC values from the stem cutting assay differed (P < 0.05) among nine soybean genotypes tested with F. virguliforme and F. tucumaniae isolates, and the AUDPC values from the two assays were positively correlated (r = 0.44 at P < 0.0001).
Collapse
Affiliation(s)
- Y Xiang
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - M M Scandiani
- Centro de Referencia de Micología, Fac. de Cs Bioq. y Farm. UNR, Suipacha 531, Rosario, Argentina
| | - T K Herman
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - G L Hartman
- USDA-Agricultural Research Services and Department of Crop Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
13
|
Li X, Yang Y, Sun X, Lin H, Chen J, Ren J, Hu X, Yang Y. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS One 2014; 9:e107605. [PMID: 25225913 PMCID: PMC4167240 DOI: 10.1371/journal.pone.0107605] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/11/2014] [Indexed: 01/13/2023] Open
Abstract
Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat and drought. During the first stage, malondialdehyde and reactive oxygen species (ROS) contents were induced by heat, but many protective substances, including antioxidant enzymes, proline, abscisic acid (ABA), dehydrin, and small heat shock proteins (sHSPs), were also stimulated. The plants thus actively defended themselves against stress and exhibited few pathological morphological features, most likely because a new cellular homeostasis was established through the collaborative operation of physiological and proteomic responses. During the second stage, ROS homeostasis was overwhelmed by substantial ROS production and a sharp decline in antioxidant enzyme activities, while the synthesis of some protective elements, such as proline and ABA, was suppressed. As a result, photosynthetic levels in P. yunnanensis decreased sharply and buds began to die, despite continued accumulation of sHSPs and dehydrin. This study supplies important information about the effects of extreme abiotic environments on woody plants.
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunqiang Yang
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudong Sun
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huaming Lin
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Jian Ren
- Department of Grassland Science, Yunnan Agricultural University, Kunming, China
| | - Xiangyang Hu
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Abeysekara NS, Bhattacharyya MK. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins. PLoS One 2014; 9:e93667. [PMID: 24845418 PMCID: PMC4028188 DOI: 10.1371/journal.pone.0093667] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/09/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. RESULTS Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. CONCLUSION This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and possible defense mechanisms that may be involved in conferring immunity against F. virguliforme and other soybean pathogens.
Collapse
Affiliation(s)
- Nilwala S. Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | | |
Collapse
|
15
|
Srivastava SK, Huang X, Brar HK, Fakhoury AM, Bluhm BH, Bhattacharyya MK. The genome sequence of the fungal pathogen Fusarium virguliforme that causes sudden death syndrome in soybean. PLoS One 2014; 9:e81832. [PMID: 24454689 PMCID: PMC3891557 DOI: 10.1371/journal.pone.0081832] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/28/2013] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Fusarium virguliforme causes sudden death syndrome (SDS) of soybean, a disease of serious concern throughout most of the soybean producing regions of the world. Despite the global importance, little is known about the pathogenesis mechanisms of F. virguliforme. Thus, we applied Next-Generation DNA Sequencing to reveal the draft F. virguliforme genome sequence and identified putative pathogenicity genes to facilitate discovering the mechanisms used by the pathogen to cause this disease. METHODOLOGY/PRINCIPAL FINDINGS We have generated the draft genome sequence of F. virguliforme by conducting whole-genome shotgun sequencing on a 454 GS-FLX Titanium sequencer. Initially, single-end reads of a 400-bp shotgun library were assembled using the PCAP program. Paired end sequences from 3 and 20 Kb DNA fragments and approximately 100 Kb inserts of 1,400 BAC clones were used to generate the assembled genome. The assembled genome sequence was 51 Mb. The N50 scaffold number was 11 with an N50 Scaffold length of 1,263 Kb. The AUGUSTUS gene prediction program predicted 14,845 putative genes, which were annotated with Pfam and GO databases. Gene distributions were uniform in all but one of the major scaffolds. Phylogenic analyses revealed that F. virguliforme was closely related to the pea pathogen, Nectria haematococca. Of the 14,845 F. virguliforme genes, 11,043 were conserved among five Fusarium species: F. virguliforme, F. graminearum, F. verticillioides, F. oxysporum and N. haematococca; and 1,332 F. virguliforme-specific genes, which may include pathogenicity genes. Additionally, searches for candidate F. virguliforme pathogenicity genes using gene sequences of the pathogen-host interaction database identified 358 genes. CONCLUSIONS The F. virguliforme genome sequence and putative pathogenicity genes presented here will facilitate identification of pathogenicity mechanisms involved in SDS development. Together, these resources will expedite our efforts towards discovering pathogenicity mechanisms in F. virguliforme. This will ultimately lead to improvement of SDS resistance in soybean.
Collapse
Affiliation(s)
- Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
| | - Hargeet K. Brar
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Ahmad M. Fakhoury
- Department of Plant, Soil Science, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Burton H. Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | | |
Collapse
|
16
|
Pudake RN, Swaminathan S, Sahu BB, Leandro LF, Bhattacharyya MK. Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Curr Genet 2013; 59:107-17. [PMID: 23702608 DOI: 10.1007/s00294-013-0392-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 12/13/2022]
Abstract
The soil borne fungus, Fusarium virguliforme, causes sudden death syndrome (SDS) in soybean, which is a serious foliar and root rot disease. The pathogen has never been isolated from the diseased foliar tissues; phytotoxins produced by the pathogen are believed to cause foliar SDS symptoms. One of these toxins, a 13.5-kDa acidic protein named FvTox1, has been hypothesized to interfere with photosynthesis in infected soybean plants and cause foliar SDS. The objective of this study is to determine if FvTox1 is involved in foliar SDS development. We created and studied five independent knockout fvtox1 mutants to study the function of FvTox1. We conducted Agrobacterium tumefaciens-mediated transformation to accomplish homologous recombination of FvTox1 with a hygromycin B resistance gene, hph, to generate the fvtox1 mutants. Approximately 40 hygromycin-resistant transformants were obtained from 10(6) conidial spores of the F. virguliforme Mont-1 isolate when the spores were co-cultivated with the A. tumefaciens EHA105 but not with LBA4044 strain carrying a recombinant binary plasmid, in which the hph gene encoding hygromycin resistance was flanked by 5'- and 3'-end FvTox1 sequences. We observed homologous recombination-mediated integration of hph into the FvTox1 locus among five independent fvtox1 mutants. In stem-cutting assays using cut soybean seedlings fed with cell-free F. virguliforme culture filtrates, the knockout fvtox1 mutants caused chlorophyll losses and foliar SDS symptoms, which were over twofold less than those caused by the virulent F. virguliforme Mont-1 isolate. Similarly, in root inoculation assays, more than a twofold reduction in foliar SDS development and chlorophyll losses was observed among the seedlings infected with the fvtox1 mutants as compared to the seedlings infected with the wild-type Mont-1 isolate. These results suggest that FvTox1 is a major virulence factor involved in foliar SDS development in soybean. It is expected that interference of the function of this toxin in transgenic soybean plants will lead to generation of SDS-resistant soybean cultivars.
Collapse
Affiliation(s)
- Ramesh N Pudake
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
| | | | | | | | | |
Collapse
|
17
|
Radwan O, Li M, Calla B, Li S, Hartman GL, Clough SJ. Effect of Fusarium virguliforme phytotoxin on soybean gene expression suggests a role in multidimensional defence. MOLECULAR PLANT PATHOLOGY 2013; 14:293-307. [PMID: 23240728 PMCID: PMC6638634 DOI: 10.1111/mpp.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important yield-limiting disease of soybean. This soil-borne fungus colonizes soybean roots causing root rot, and also releases a phytotoxin that is translocated to leaves causing interveinal chlorosis and necrosis leading to defoliation and early maturation. The objective of our study was to compare gene expression profiles during the early response of soybean leaves exposed to sterile culture filtrates of F. virguliforme in soybean genotypes with different levels of resistance to SDS. The analysis identified SDS-related defence genes that were induced in the most resistant genotype, but not in the other genotypes. Further functional annotations based on sequence homology suggested that some of the induced genes probably encode proteins involved in cell wall modification, detoxification, defence responses, primary metabolism and membrane transport. Quantitative real-time reverse-transcribed polymerase chain reaction confirmed the differential transcript accumulation of a subset of these genes. In addition, in silico mapping of differentially expressed genes to SDS-resistant quantitative trait loci allowed for the identification of new potential defence genes that could be genetically mapped to the soybean genome, and could be used further in a marker-assisted selection programme. A comparison of the response of soybean to F. virguliforme phytotoxin (Fv toxin) relative to other biotic and abiotic stresses revealed that the resistance response to Fv toxin is quite similar to the response to inoculation with an incompatible Pseudomonas syringae pv. glycinea strain, suggesting that Fv toxin might induce hypersensitive response pathways in soybean leaf tissues in the absence of pathogen in these tissues.
Collapse
Affiliation(s)
- Osman Radwan
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
18
|
Brar HK, Bhattacharyya MK. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:817-24. [PMID: 22397408 DOI: 10.1094/mpmi-12-11-0317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.
Collapse
Affiliation(s)
- Hargeet K Brar
- Department of Agronomy and Interdepartmental Genetics Graduate Major Program, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
19
|
Brar HK, Swaminathan S, Bhattacharyya MK. The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1179-88. [PMID: 21635141 DOI: 10.1094/mpmi-12-10-0285] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fusarium virguliforme causes sudden death syndrome (SDS) in soybean. The pathogen has never been isolated from diseased foliar tissues; therefore, one or more toxins have been considered to cause foliar SDS development. Cell-free F. virguliforme culture filtrates containing a toxin causes foliar SDS in soybean. A low-molecular-weight protein of approximately 13.5 kDa (FvTox1), purified from F. virguliforme culture filtrates, produces foliar SDS-like symptoms in cut soybean seedlings. Anti-FvTox1 monoclonal antibodies raised against the purified FvTox1 were used in isolating the FvTox1 gene. In the presence of light, recombinant FvTox1 protein expressed in an insect cell line resulted in chlorosis and necrosis in soybean leaf disks that are typical foliar SDS symptoms. SDS-susceptible but not the SDS-resistant soybean lines were sensitive to the baculovirus-expressed toxin. The requirement of light for foliar SDS-like symptom development indicates that FvTox1 induces foliar SDS in soybean, most likely through production of free radicals by interrupting photosynthesis.
Collapse
Affiliation(s)
- Hargeet K Brar
- Department of Agronomy, Iowa State University, Ames, Iowa 50011-1010, USA
| | | | | |
Collapse
|
20
|
Radwan O, Liu Y, Clough SJ. Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:958-72. [PMID: 21751852 DOI: 10.1094/mpmi-11-10-0271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sudden death syndrome (SDS) of soybean can be caused by any of four distinct Fusarium species, with F. virguliforme and F. tucumaniae being the main casual agents in North and South America, respectively. Although the fungal tissue is largely confined to the roots, the fungus releases a toxin that is translocated to leaf tissues, in which it causes interveinal chlorosis and necrosis leading to scorching symptoms and possible defoliation. In this study, we report on an Affymetrix analysis measuring transcript abundances in resistant (PI 567.374) and susceptible (Essex) roots upon infection by F. virguliforme, 5 and 7 days postinoculation. Many of the genes with increased expression were common between resistant and susceptible plants (including genes related to programmed cell death, the phenylpropanoid pathway, defense, signal transduction, and transcription factors), but some genotype-specific expression was noted. Changes in small (sm)RNA levels between inoculated and mock-treated samples were also studied and implicate a role for these molecules in this interaction. In total, 2,467 genes were significantly changing in the experiment, with 1,694 changing in response to the pathogen; 93 smRNA and 42 microRNA that have putative soybean gene targets were identified from infected tissue. Comparing genotypes, 247 genes were uniquely modulating in the resistant host, whereas 378 genes were uniquely modulating in the susceptible host. Comparing locations of differentially expressed genes to known resistant quantitative trait loci as well as identifying smRNA that increased while their putative targets decreased (or vice versa) allowed for the narrowing of candidate SDS defense-associated genes.
Collapse
Affiliation(s)
- Osman Radwan
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
21
|
Kazi S, Shultz J, Afzal J, Johnson J, Njiti VN, Lightfoot DA. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:967-77. [PMID: 18324383 DOI: 10.1007/s00122-008-0728-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 02/01/2008] [Indexed: 05/22/2023]
Abstract
Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). "Hartwig", a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar "Flyer". Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R2 = 28.1%; Satt115; P = 0.003, R2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R2 = 13%). The loci and markers will provide tagged alleles with which to improve the breeding of cultivars combining resistances to SDS leaf scorch, root infection and SCN HG Type 1.3.6.7.
Collapse
Affiliation(s)
- S Kazi
- Plant Biotechnology and Genomics Core-Facility, Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | | | | | | | |
Collapse
|