1
|
Mantry S, Das PK, Sankaraiah J, Panda S, Silakabattini K, Reddy Devireddy AK, Barik CS, Khalid M. Advancement on heparin-based hydrogel/scaffolds in biomedical and tissue engineering applications: Delivery carrier and pre-clinical implications. Int J Pharm 2025:125733. [PMID: 40398669 DOI: 10.1016/j.ijpharm.2025.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The advancement of biomaterials utilization in biomedical and tissue regenerative applications has emerged progressively. Hydrogels are three-dimensional, hydrophilic polymeric networks that replicate the natural extracellular matrix (ECM), establishing a hydrated porous milieu that emulates biological functions such as proliferation and differentiation of cellular components. The application of biological macromolecules, particularly Heparin-based hydrogel, has garnered considerable interest owing to various intrinsic biological and mechanical properties. This comprehensive review paper is designed to elucidate the derivation of heparin and its purification method for biomedical uses. The article briefly outlines the diverse physiochemical and biological properties of heparin derivative-based hydrogels/scaffolds and emphasizes their significance as vehicles for growth factors, genes, and cells in complex biomedical and tissue engineering applications. This publication also summarizes the potential concerns associated with heparin-based derivatives, efforts to address these issues, and current clinical perspectives. This represents the inaugural instance of an extensive summarization of heparin-based hydrogels in biomedical applications, emphasizing pre-clinical and clinical investigations, which will further assist the scientific community in addressing the challenges associated with heparin-based hydrogels in biomedical contexts.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmacy, Sarala Birla University, Birla Knowledge City, P.O.- Mahilong, Purulia Road, Ranchi 835103 Jharkhand, India.
| | - Prabhat Kumar Das
- Department of Pharmacology, GRY Institute of Pharmacy, Borawan, Khargone, MP, India
| | - Jonna Sankaraiah
- Department of Process Development, Medytox Inc., 102, Osongsaengmyeong 4-ro, Osong-eup, Heugdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India.
| | - Kotaiah Silakabattini
- Department of Pharmacognosy, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur 522019 Andhra Pradesh, India
| | - Ashok Kumar Reddy Devireddy
- Department of Pharmacology, A M Reddy Memorial College of Pharmacy, Petlurivaripalem, Narasaraopet, Palnadu (Dt), A.P 522601, India
| | - Chandra Sekhar Barik
- Department of Pharmacology, School of Pharmacy, DRIEMS University, Kotasahi, Kairapari, Tangi, Cuttack, Odisha 754022, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| |
Collapse
|
2
|
Helmecke T, Hahn D, Ruland A, Tsurkan MV, Maitz MF, Werner C. Adsorbed polymer conjugates to adaptively inhibit blood coagulation activation by medical membranes. J Control Release 2024; 368:344-354. [PMID: 38417559 DOI: 10.1016/j.jconrel.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany; Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
3
|
Afsar B, Afsar RE. The role of glycosaminoglycans in blood pressure regulation. Microcirculation 2023; 30:e12832. [PMID: 37794746 DOI: 10.1111/micc.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Essential hypertension (HT) is the global health problem and is a major risk factor for the development of cardiovascular and kidney disease. High salt intake has been associated with HT and impaired kidney sodium excretion is considered to be a major mechanism for the development of HT. Although kidney has a very important role in regulation of BP, this traditional view of BP regulation was challenged by recent findings suggesting that nonosmotic tissue sodium deposition is very important for BP regulation. This new paradigm indicates that sodium can be stored and deposited nonosmotically in the interstitium without water retention and without increased BP. One of the major determinants of this deposition is glycosaminoglycans (GAGs). By binding to GAGs found in the endothelial surface layer (ESL) which contains glycocalyx, sodium is osmotically inactivated and not induce concurrent water retention. Thus, GAGs has important function for homeostatic BP and sodium regulation. In the current review, we summarized the role of GAGs in ESL and BP regulation.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| | - Rengin Elsurer Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
4
|
The Choice of Anticoagulant Influences the Characteristics of Bone Marrow Aspirate Concentrate and Mesenchymal Stem Cell Bioactivity In Vitro. Stem Cells Int 2022; 2022:8259888. [PMID: 35910535 PMCID: PMC9337942 DOI: 10.1155/2022/8259888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
Bone marrow aspirate concentrate (BMC) is commonly used as a therapeutic agent to resolve orthopedic injuries, using its unique cellularity to reduce inflammation and prime the region for repair. The aspiration of the bone marrow is performed using either sodium citrate (SC) or heparin sodium (HS) as an anticoagulant and processed via centrifugation to concentrate the cellular constituents. To date, the consideration of the impact of the two commonly used anticoagulants on the mesenchymal stem/stromal cell (MSC) population has been overlooked. The current study assesses the differences in the BMCs produced using 15% SC and HS at 1,000 U/mL or 100 U/mL final v./v. as an anticoagulant using in vitro metrics including total nucleated cell counts (TNC) and viability, the ability for mesenchymal stromal/stem cells (MSCs) to establish colony-forming units with fibroblast morphology (CFU-f), and cytokine expression profile of the MSC cultures. Our findings demonstrate that HS-derived BMC cultures result in higher CFU-f formation and CFU-f frequency at both concentrations assessed compared to SC-derived BMC cultures. In addition, there were significant differences in 27% (7 of 26) of the cytokines quantified in HS-derived BMC cultures compared to SC-derived BMC cultures with implications for MSC plasticity and self-renewal.
Collapse
|
5
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
6
|
Datta P, Zhang F, Dordick JS, Linhardt RJ. Platelet factor 4 polyanion immune complexes: heparin induced thrombocytopenia and vaccine-induced immune thrombotic thrombocytopenia. Thromb J 2021; 19:66. [PMID: 34526009 PMCID: PMC8443112 DOI: 10.1186/s12959-021-00318-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This is a review article on heparin-induced thrombocytopenia, an adverse effect of heparin therapy, and vaccine-induced immune thrombotic thrombocytopenia, occurring in some patients administered certain coronavirus vaccines. MAIN BODY/TEXT Immune-mediated thrombocytopenia occurs when specific antibodies bind to platelet factor 4 /heparin complexes. Platelet factor 4 is a naturally occurring chemokine, and under certain conditions, may complex with negatively charged molecules and polyanions, including heparin. The antibody-platelet factor 4/heparin complex may lead to platelet activation, accompanied by other cascading reactions, resulting in cerebral sinus thrombosis, deep vein thrombosis, lower limb arterial thrombosis, myocardial infarction, pulmonary embolism, skin necrosis, and thrombotic stroke. If untreated, heparin-induced thrombocytopenia can be life threatening. In parallel, rare incidents of spontaneous vaccine-induced immune thrombotic thrombocytopenia can also occur in some patients administered certain coronavirus vaccines. The role of platelet factor 4 in vaccine-induced thrombosis with thrombocytopenia syndrome further reinforces the importance the platelet factor 4/polyanion immune complexes and the complications that this might pose to susceptible individuals. These findings demonstrate, how auxiliary factors can complicate heparin therapy and drug development. An increasing interest in biomanufacturing heparins from non-animal sources has driven a growing interest in understanding the biology of immune-mediated heparin-induced thrombocytopenia, and therefore, the development of safe and effective biosynthetic heparins. SHORT CONCLUSION In conclusion, these findings further reinforce the importance of the binding of platelet factor 4 with known and unknown polyanions, and the complications that these might pose to susceptible patients. In parallel, these findings also demonstrate how auxiliary factors can complicate the heparin drug development.
Collapse
Affiliation(s)
- Payel Datta
- Heparin Applied Research Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Heparin Applied Research Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Heparin Applied Research Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Heparin Applied Research Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
7
|
Chemical Modification of Glycosaminoglycan Polysaccharides. Molecules 2021; 26:molecules26175211. [PMID: 34500644 PMCID: PMC8434129 DOI: 10.3390/molecules26175211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible. Here, the current knowledge concerning the chemical modification of GAGs, one of the principal approaches for the study of the structure-function relationships in these molecules, is reviewed. Some additional methods that were applied successfully to the analysis and/or processing of other carbohydrates, but which could be suitable in GAG chemistry, are also discussed.
Collapse
|
8
|
Datta P, Fu L, Brodfuerer P, Dordick JS, Linhardt RJ. High density fermentation of probiotic E. coli Nissle 1917 towards heparosan production, characterization, and modification. Appl Microbiol Biotechnol 2021; 105:1051-1062. [PMID: 33481068 DOI: 10.1007/s00253-020-11079-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
Heparosan is a naturally occurring non-sulfated glycosaminoglycan. Heparosan serves as the substrate for chemoenzymatic synthesis of biopharmaceutically important heparan sulfate and heparin. Heparosan is biologically inert molecule, non-toxic, and non-immunogenic and these qualities of heparosan make it an ideal drug delivery vehicle. The critical-to-quality (CTQ) attributes for heparosan applications include composition of heparosan, absence of any unnatural moieties, and heparosan molecular weight size and unimodal distribution. Probiotic bacteria E. coli Nissle 1917 (EcN) is a natural producer of heparosan. The current work explores production of EcN heparosan and process parameters that may impact the heparosan CTQ attributes. Results show that EcN could be grown to high cell densities (OD600 160-180) in a chemically defined media. The fermentation process is successfully scaled from 5-L to 100-L bioreactor. The chemical composition of heparosan from EcN was confirmed using nuclear magnetic resonance. Results demonstrate that heparosan molecular weight distribution may be influenced by fermentation and purification conditions. Size exclusion chromatography analysis shows that the heparosan purified from fermentation broth results in bimodal distribution, and cell-free supernatant results in unimodal distribution (average molecular weight 68,000 Da). The yield of EcN-derived heparosan was 3 g/L of cell free supernatant. We further evaluated the application of Nissle 1917 heparosan for chemical modification to prepare N-sulfo heparosan (NSH), the first intermediate precursor for heparin and heparan sulfate. KEY POINTS: • High cell density fermentation, using a chemically defined fermentation media for the growth of probiotic bacteria EcN (E. coli Nissle 1917, a natural producer of heparosan) is reported. • Process parameters towards the production of monodispersed heparosan using probiotic bacteria EcN (Nissle 1917) has been explored and discussed. • The media composition and the protocol (SOPs and batch records) have been successfully transferred to contract manufacturing facilities and industrial partners.
Collapse
Affiliation(s)
- Payel Datta
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Li Fu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Paul Brodfuerer
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
9
|
Pepi LE, Sanderson P, Stickney M, Amster IJ. Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review. Mol Cell Proteomics 2021; 20:100025. [PMID: 32938749 PMCID: PMC8724624 DOI: 10.1074/mcp.r120.002267] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.
Collapse
Affiliation(s)
- Lauren E Pepi
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | | | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
10
|
Kim SY, Jin W, Sood A, Montgomery DW, Grant OC, Fuster MM, Fu L, Dordick JS, Woods RJ, Zhang F, Linhardt RJ. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res 2020; 181:104873. [PMID: 32653452 PMCID: PMC7347485 DOI: 10.1016/j.antiviral.2020.104873] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and continues to spread around the globe at an unprecedented rate. To date, no effective therapeutic is available to fight its associated disease, COVID-19. Our discovery of a novel insertion of glycosaminoglycan (GAG)-binding motif at S1/S2 proteolytic cleavage site (681-686 (PRRARS)) and two other GAG-binding-like motifs within SARS-CoV-2 spike glycoprotein (SGP) led us to hypothesize that host cell surface GAGs may interact SARS-CoV-2 SGPs to facilitate host cell entry. Using a surface plasmon resonance direct binding assay, we found that both monomeric and trimeric SARS-CoV-2 SGP bind more tightly to immobilized heparin (KD = 40 pM and 73 pM, respectively) than the SARS-CoV and MERS-CoV SGPs (500 nM and 1 nM, respectively). In competitive binding studies, the IC50 of heparin, tri-sulfated non-anticoagulant heparan sulfate, and non-anticoagulant low molecular weight heparin against SARS-CoV-2 SGP binding to immobilized heparin were 0.056 μM, 0.12 μM, and 26.4 μM, respectively. Finally, unbiased computational ligand docking indicates that heparan sulfate interacts with the GAG-binding motif at the S1/S2 site on each monomer interface in the trimeric SARS-CoV-2 SGP, and at another site (453-459 (YRLFRKS)) when the receptor-binding domain is in an open conformation. The current study serves a foundation to further investigate biological roles of GAGs in SARS-CoV-2 pathogenesis. Furthermore, our findings may provide additional basis for further heparin-based interventions for COVID-19 patients exhibiting thrombotic complications.
Collapse
Affiliation(s)
- So Young Kim
- Department of Medicine, Division of Pulmonary and Critical Care, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, Medical and Research Sections, La Jolla, CA, USA.
| | - Weihua Jin
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Amika Sood
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - David W Montgomery
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark M Fuster
- Department of Medicine, Division of Pulmonary and Critical Care, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, Medical and Research Sections, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Li Fu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
11
|
Guan L, Xue Y, Ding W, Zhao Z. Biosynthesis and regulation mechanisms of the Pasteurella multocida capsule. Res Vet Sci 2019; 127:82-90. [PMID: 31678457 DOI: 10.1016/j.rvsc.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Pasteurella multocida possesses a polysaccharide capsule composed of a viscous surface layer that acts as a critical structural component and virulence factor. Capsular polysaccharides are structurally similar to vertebrate glycosaminoglycans, providing an immunological mechanism for bacterial molecular mimicry, resistance to phagocytosis, and immune evasion during the infection process. In recent years, a series of important research advances have been made in understanding the biosynthesis and regulatory aspects of the P. multocida capsule. This review systematically examines the serogroups, polysaccharide composition and structures, biosynthetic loci and functions, biosynthesis pathways, and expression regulation mechanisms of the P. multocida capsule, supplying a theoretical basis for the molecular pathogenesis of the P. multocida capsule and the future development of capsular polysaccharide vaccines.
Collapse
Affiliation(s)
- Lijun Guan
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yun Xue
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenwen Ding
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhanqin Zhao
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
12
|
Wang P, Lo Cascio F, Gao J, Kayed R, Huang X. Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides. Chem Commun (Camb) 2018; 54:10120-10123. [PMID: 30128457 PMCID: PMC6193484 DOI: 10.1039/c8cc05072d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined heparin like oligosaccharides up to decasaccharides were synthesized. It was discovered for the first time that heparin oligosaccharides, as short as tetrasaccharides, can bind with the most toxic tau species, i.e., tau oligomers with nM KD. The binding significantly reduced the cellular uptake of toxic tau oligomers and protected the cells from tau oligomer induced cytotoxicity.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, 90127, Palermo, Italy
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
13
|
Vu TT, Gooderham M. Adverse Drug Reactions and Cutaneous Manifestations Associated With Anticoagulation. J Cutan Med Surg 2017. [PMID: 28639463 DOI: 10.1177/1203475417716364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anticoagulants are amongst the most commonly prescribed medications worldwide. Although rare, localised and systemic drug reactions have been reported with anticoagulants that can lead to significant morbidity and mortality. Some of the first signs of drug reactions to anticoagulants are cutaneous changes that, when recognised early, can prevent significant complications. Dermatologists should be aware of these changes to make an early and accurate diagnosis. This is particularly important in instances of skin-induced necrosis caused by systemic toxicity to anticoagulants. This review discusses adverse drug reactions to the traditional anticoagulants, warfarin and heparin, and the newer direct oral anticoagulants (DOACs) such as the thrombin inhibitor, dabigatran, and the factor Xa inhibitors, rivaroxaban, apixaban, and edoxaban. In particular, this review provides dermatologists with a framework for early diagnosis and management of patients with drug reactions to anticoagulants and alerts them to potential bleeding complications associated with minor procedures.
Collapse
Affiliation(s)
- Trang T Vu
- 1 University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| | - Melinda Gooderham
- 2 Skin Centre for Dermatology, Peterborough, ON, Canada.,3 Probity Medical Research, Waterloo, ON, Canada.,4 Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Schultz VL, Zhang X, Linkens K, Rimel J, Green DE, DeAngelis PL, Linhardt RJ. Chemoenzymatic Synthesis of 4-Fluoro-N-Acetylhexosamine Uridine Diphosphate Donors: Chain Terminators in Glycosaminoglycan Synthesis. J Org Chem 2017; 82:2243-2248. [PMID: 28128958 DOI: 10.1021/acs.joc.6b02929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unnatural uridine diphosphate (UDP)-sugar donors, UDP-4-deoxy-4-fluoro-N-acetylglucosamine (4FGlcNAc) and UDP-4-deoxy-4-fluoro-N-acetylgalactosamine (4FGalNAc), were prepared using both chemical and chemoenzymatic syntheses relying on N-acetylglucosamine-1-phosphate uridylyltransferase (GlmU). The resulting unnatural UDP-sugar donors were then tested as substrates in glycosaminoglycan synthesis catalyzed by various synthases. UDP-4FGlcNAc was transferred onto an acceptor by Pastuerella multocida heparosan synthase 1 and subsequently served as a chain terminator.
Collapse
Affiliation(s)
- Victor L Schultz
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Xing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Kathryn Linkens
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jenna Rimel
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Dixy E Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology , 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma 73126, United States
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology , 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma 73126, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
15
|
Dulaney S, Xu Y, Wang P, Tiruchinapally G, Wang Z, Kathawa J, El-Dakdouki MH, Yang B, Liu J, Huang X. Divergent Synthesis of Heparan Sulfate Oligosaccharides. J Org Chem 2015; 80:12265-79. [PMID: 26574650 PMCID: PMC4685427 DOI: 10.1021/acs.joc.5b02172] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/01/2022]
Abstract
Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis.
Collapse
Affiliation(s)
- Steven
B. Dulaney
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Yongmei Xu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peng Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gopinath Tiruchinapally
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhen Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jolian Kathawa
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| | - Bo Yang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jian Liu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Zong C, Venot A, Dhamale O, Boons GJ. Fluorous supported modular synthesis of heparan sulfate oligosaccharides. Org Lett 2013; 15:342-5. [PMID: 23293947 PMCID: PMC3563243 DOI: 10.1021/ol303270v] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular synthesis of heparan sulfate fragments is greatly facilitated by employing an anomeric aminopentyl linker protected by a benzyloxycarbonyl group modified by a perfluorodecyl tag, which made it possible to purify highly polar intermediates by fluorous solid phase extraction. This tagging methodology made it also possible to perform repeated glycosylations to drive reactions to completion.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Omkar Dhamale
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602
| |
Collapse
|
17
|
Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2012; 33:665-92. [PMID: 22495734 DOI: 10.1002/med.21263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan.
Collapse
Affiliation(s)
- Pingli Li
- Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
18
|
DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 2012; 94:295-305. [PMID: 22391966 DOI: 10.1007/s00253-011-3801-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 10/28/2022]
Abstract
Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen's sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| |
Collapse
|
19
|
Robinson LN, Artpradit C, Raman R, Shriver ZH, Ruchirawat M, Sasisekharan R. Harnessing glycomics technologies: integrating structure with function for glycan characterization. Electrophoresis 2012; 33:797-814. [PMID: 22522536 PMCID: PMC3743516 DOI: 10.1002/elps.201100231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycans, or complex carbohydrates, are a ubiquitous class of biological molecule which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships.
Collapse
Affiliation(s)
- Luke N. Robinson
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Charlermchai Artpradit
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Rahul Raman
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Zachary H. Shriver
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Mathuros Ruchirawat
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Ram Sasisekharan
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
20
|
Baik JY, Gasimli L, Yang B, Datta P, Zhang F, Glass CA, Esko JD, Linhardt RJ, Sharfstein ST. Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin. Metab Eng 2012; 14:81-90. [PMID: 22326251 DOI: 10.1016/j.ymben.2012.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
Abstract
Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary.
Collapse
Affiliation(s)
- Jong Youn Baik
- College of Nanoscale Science and Engineering, University at Albany-State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Masuko S, Higashi K, Wang Z, Bhaskar U, Hickey AM, Zhang F, Toida T, Dordick J, Linhardt RJ. Ozonolysis of the double bond of the unsaturated uronate residue in low-molecular-weight heparin and K5 heparosan. Carbohydr Res 2011; 346:1962-6. [PMID: 21742314 PMCID: PMC3229283 DOI: 10.1016/j.carres.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/15/2022]
Abstract
Ozone is known to add across and cleave carbon-carbon double bonds. Ozonolysis is widely used for the preparation of pharmaceuticals, for bleaching substances and for killing microorganisms in air and water sources. Some polysaccharides and oligosaccharides, such as those prepared using chemical or enzymatic β-elimination, contain a site of unsaturation. We examined ozonolysis of low-molecular-weight heparins (LMWHs), enoxaparin and logiparin, and heparosan oligo- and polysaccharides for the removal of the nonreducing terminal unsaturated uronate residue. 1D (1)H NMR showed that these ozone-treated polysaccharides retained the same structure as the starting polysaccharide, except that the C4-C5 double bond in the nonreducing end unsaturated uronate had been removed. The anticoagulant activity of the resulting product from enoxaparin and logiparin was comparable to that of the starting material. These results demonstrate that ozonolysis is an important tool for the removal of unsaturated uronate residues from LMWHs and heparosan without modification of the core polysaccharide structure or diminution of anticoagulant activity. This reaction also has potential applications in the chemoenzymatic synthesis of bioengineered heparin from Escherichia coli-derived K5 heparosan.
Collapse
Affiliation(s)
- Sayaka Masuko
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Kyohei Higashi
- Graduate School of Pharmaceutical Sciences Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Zhenyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; telephone: 518-355-4062; fax: 518-276-2207
| | - Ujjwal Bhaskar
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Anne Marie Hickey
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Jonathan Dordick
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; telephone: 518-355-4062; fax: 518-276-2207
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; telephone: 518-355-4062; fax: 518-276-2207
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
22
|
Wang Z, Xu Y, Yang B, Tiruchinapally G, Sun B, Liu R, Dulaney S, Liu J, Huang X. Preactivation-based, one-pot combinatorial synthesis of heparin-like hexasaccharides for the analysis of heparin-protein interactions. Chemistry 2010; 16:8365-75. [PMID: 20623566 PMCID: PMC3094016 DOI: 10.1002/chem.201000987] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heparin (HP) and heparan sulfate (HS) play important roles in many biological events. Increasing evidence has shown that the biological functions of HP and HS can be critically dependent upon their precise structures, including the position of the iduronic acids and sulfation patterns. However, unraveling the HP code has been extremely challenging due to the enormous structural variations. To overcome this hurdle, we investigated the possibility of assembling a library of HP/HS oligosaccharides using a preactivation-based, one-pot glycosylation method. A major challenge in HP/HS oligosaccharide synthesis is stereoselectivity in the formation of the cis-1,4-linkages between glucosamine and the uronic acid. Through screening, suitable protective groups were identified on the matching glycosyl donor and acceptor, leading to stereospecific formation of both the cis-1,4- and trans-1,4-linkages present in HP. The protective group chemistry designed was also very flexible. From two advanced thioglycosyl disaccharide intermediates, all of the required disaccharide modules for library preparation could be generated in a divergent manner, which greatly simplified building-block preparation. Furthermore, the reactivity-independent nature of the preactivation-based, one-pot approach enabled us to mix the building blocks. This allowed rapid assembly of twelve HP/HS hexasaccharides with systematically varied and precisely controlled backbone structures in a combinatorial fashion. The speed and the high yields achieved in glycoassembly without the need to use a large excess of building blocks highlighted the advantages of our approach, which can be of general use to facilitate the study of HP/HS biology. As a proof of principle, this panel of hexasaccharides was used to probe the effect of backbone sequence on binding with the fibroblast growth factor-2 (FGF-2). A trisaccharide sequence of 2-O-sulfated iduronic acid flanked by N-sulfated glucosamines was identified to be the minimum binding motif and N-sulfation was found to be critical. This provides useful information for further development of more potent compounds towards FGF-2 binding, which can have potential applications in wound healing and anticancer therapy.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Yongmei Xu
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (USA)
| | - Bo Yang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | | | - Bin Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Renpeng Liu
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (USA)
| | - Steven Dulaney
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Jian Liu
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (USA)
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| |
Collapse
|
23
|
Powell AK, Ahmed YA, Yates EA, Turnbull JE. Generating heparan sulfate saccharide libraries for glycomics applications. Nat Protoc 2010; 5:821-33. [PMID: 20379137 DOI: 10.1038/nprot.2010.17] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natural and semi-synthetic heparan sulfate (HS) saccharide libraries are a valuable resource for investigating HS structure-function relationships, enabling high-throughput glycomics studies. Owing to the difficulty of chemical or in vitro enzymatic synthesis of HS saccharides, the structural diversity displayed in saccharides from tissue or cell sources cannot be readily accessed. In contrast, saccharide libraries can be generated by partial digestion of tissue-derived HS polysaccharide chains and chromatographic fractionation of the resulting saccharide mixtures. Fractionation is initially on the basis of hydrodynamic volume, using size exclusion chromatography. Further fractionation, on the basis of charge using strong anion exchange, can subsequently be applied. Desalting and sample concentration follows each fractionation step. Chromatographic fractions are generated that contain purified, or partially purified, saccharides. Here we describe a comprehensive protocol for generation of structurally diverse natural saccharide libraries from HS variants that is fast (approximately 3 weeks) and reproducible.
Collapse
Affiliation(s)
- Andrew K Powell
- Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
24
|
Abstract
This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications.
Collapse
Affiliation(s)
- Aaron D. Baldwin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
25
|
Glycosaminoglycans from earthworms (Eisenia andrei). Glycoconj J 2009; 27:249-57. [PMID: 20013352 DOI: 10.1007/s10719-009-9273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/26/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
Abstract
The whole tissue of the earthworm (Eisenia andrei) was lyophilized and extracted to purify glycosaminoglycans. Fractions, eluting from an anion-exchange column at 1.0 M and 2.0 M NaCl, showed the presence of acidic polysaccharides on agarose gel electrophoresis. Monosaccharide compositional analysis showed that galactose and glucose were most abundant monosaccharides in both fractions. Depolymerization of the polysaccharide mixture with glycosaminoglycan-degrading enzymes confirmed the presence of chondroitin sulfate/dermatan sulfate and heparan sulfate in the 2.0 M NaCl fraction. The content of GAGs (uronic acid containing polysaccharide) in the 2.0 M NaCl fraction determined by carbazole assay was 2%. Disaccharide compositional analysis using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis after chondroitinase digestion (ABC and ACII), showed that the chondroitin sulfate/dermatan sulfate contained a 4-O-sulfo (76%), 2,4-di-O-sulfo (15%), 6-O-sulfo (6%), and unsulfated (4%) uronic acid linked N-acetylgalactosamine residues. LC-ESI-MS analysis of heparin lyase I/II/III digests demonstrated the presence of N-sulfo (69%), N-sulfo-6-O-sulfo (25%) and 2-O-sulfo-N-sulfo-6-O-sulfo (5%) uronic acid linked N-acetylglucosamine residues.
Collapse
|
26
|
Arungundram S, Al-Mafraji K, Asong J, Leach FE, Amster IJ, Venot A, Turnbull JE, Boons GJ. Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies. J Am Chem Soc 2009; 131:17394-405. [PMID: 19904943 PMCID: PMC2820250 DOI: 10.1021/ja907358k] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although hundreds of heparan sulfate binding proteins have been identified and implicated in a myriad of physiological and pathological processes, very little information is known about the ligand requirements for binding and mediating biological activities by these proteins. This difficulty results from a lack of technology for establishing structure-activity relationships, which in turn is due to the structural complexity of natural heparan sulfate (HS) and difficulties of preparing well-defined HS oligosaccharides. To address this deficiency, we developed a modular approach for the parallel combinatorial synthesis of HS oligosaccharides that utilizes a relatively small number of selectively protected disaccharide building blocks, which can easily be converted into glycosyl donors and acceptors. The utility of the modular building blocks has been demonstrated by the preparation of a library of 12 oligosaccharides, which has been employed to probe the structural features of HS for inhibiting the protease, BACE-1. The complex variations in activity with structural changes support the view that important functional information is embedded in HS sequences. Furthermore, the most active derivative provides an attractive lead compound for the preparation of more potent compounds, which may find use as a therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- Sailaja Arungundram
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - Kanar Al-Mafraji
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
| | - Jinkeng Asong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - Franklin E. Leach
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - I. Jonathan Amster
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
| | - Jeremy E. Turnbull
- Center for Glycobiology, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| |
Collapse
|
27
|
Zhang Z, Xie J, Liu H, Liu J, Linhardt RJ. Quantification of heparan sulfate disaccharides using ion-pairing reversed-phase microflow high-performance liquid chromatography with electrospray ionization trap mass spectrometry. Anal Chem 2009; 81:4349-55. [PMID: 19402671 DOI: 10.1021/ac9001707] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glycosaminoglycan (GAG) family of biomacromolecules is composed acidic and linear chains of repeating disaccharide units. Quantitative disaccharide composition analysis is essential for the study and characterization of GAGs. Heparan sulfate and heparin consist of multiple disaccharide units and can be well-separated by ion-pairing reversed-phase microflow high-performance liquid chromatography (IPRP-Mf-HPLC). Each disaccharide can be detected and its mass confirmed by electrospray ionization mass spectrometry (ESI-MS). Isotopically enriched disaccharides were prepared chemoenzymatically from a uniformly (13)C,(15)N-labeled N-acetylheparosan (-GlcA(1-->4)GlcNAc-) obtained from the fermentation of E. coli K5. These isotopically enriched disaccharides have identical HPLC retention times and mass spectra as their unlabeled counterparts and were used in liquid chromatography-mass spectrometry (LC-MS) as internal standards. The ratio of intensities between each pair of enriched and nonenriched disaccharides showed a linear relationship as a function of concentration. With the use of these calibration curves, the amount of each disaccharide (> or = 2 ng/disaccharide) could be quantified in four heparan sulfate samples analyzed by this method.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | | | | | | | | |
Collapse
|
28
|
Cummings RD. The repertoire of glycan determinants in the human glycome. MOLECULAR BIOSYSTEMS 2009; 5:1087-104. [PMID: 19756298 DOI: 10.1039/b907931a] [Citation(s) in RCA: 385] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The number of glycan determinants that comprise the human glycome is not known. This uncertainty arises from limited knowledge of the total number of distinct glycans and glycan structures in the human glycome, as well as limited information about the glycan determinants recognized by glycan-binding proteins (GBPs), which include lectins, receptors, toxins, microbial adhesins, antibodies, and enzymes. Available evidence indicates that GBP binding sites may accommodate glycan determinants made up of 2 to 6 linear monosaccharides, together with their potential side chains containing other sugars and modifications, such as sulfation, phosphorylation, and acetylation. Glycosaminoglycans, including heparin and heparan sulfate, comprise repeating disaccharide motifs, where a linear sequence of 5 to 6 monosaccharides may be required for recognition. Based on our current knowledge of the composition of the glycome and the size of GBP binding sites, glycoproteins and glycolipids may contain approximately 3000 glycan determinants with an additional approximately 4000 theoretical pentasaccharide sequences in glycosaminoglycans. These numbers provide an achievable target for new chemical and/or enzymatic syntheses, and raise new challenges for defining the total glycome and the determinants recognized by GBPs.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd. #4001, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Abstract
Heparin is unique as one of the oldest drugs currently still in widespread clinical use as an anticoagulant, a natural product, one of the first biopolymeric drugs, and one of the few carbohydrate drugs. Recently, certain batches of heparin have been associated with anaphylactoid-type reactions, some leading to hypotension and death. These reactions were traced to contamination with a semi-synthetic oversulfated chondroitin sulfate (OSCS). This Highlight reviews the heparin contamination crisis, its resolution, and the lessons learned. Pharmaceutical scientists now must consider dozens of natural and synthetic heparinoids as potential heparin contaminants. Effective assays, which can detect both known and unknown contaminants, are required to monitor the quality of heparin. Safer and better-regulated processes are needed for heparin production.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Chemistry, and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. Fax: +1 518-276-3405; Tel: +1 518-276-3404
| | - Zhenqing Zhang
- Department of Chemistry, and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. Fax: +1 518-276-3405; Tel: +1 518-276-3404
| | - Robert J. Linhardt
- Department of Chemistry, and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. Fax: +1 518-276-3405; Tel: +1 518-276-3404
- Department of Chemical Biological Engineering and Department Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
- Center for of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| |
Collapse
|
30
|
|
31
|
Inhibition of Taq polymerase as a method for screening heparin for oversulfated contaminants. Biomaterials 2008; 29:4808-14. [DOI: 10.1016/j.biomaterials.2008.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/20/2008] [Indexed: 11/22/2022]
|
32
|
Weïwer M, Sherwood T, Green DE, Chen M, DeAngelis PL, Liu J, Linhardt RJ. Synthesis of uridine 5'-diphosphoiduronic acid: a potential substrate for the chemoenzymatic synthesis of heparin. J Org Chem 2008; 73:7631-7. [PMID: 18759479 PMCID: PMC2639712 DOI: 10.1021/jo801409c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An improved understanding of the biological activities of heparin requires structurally defined heparin oligosaccharides. The chemoenzymatic synthesis of heparin oligosaccharides relies on glycosyltransferases that use UDP-sugar nucleotides as donors. Uridine 5'-diphosphoiduronic acid (UDP-IdoA) and uridine 5'-diphosphohexenuronic acid (UDP-HexUA) have been synthesized as potential analogues of uridine 5'-diphosphoglucuronic acid (UDP-GlcA) for enzymatic incorporation into heparin oligosaccharides. Non-natural UDP-IdoA and UDP-HexUA were tested as substrates for various glucuronosyltransferases to better understand enzyme specificity.
Collapse
Affiliation(s)
- Michel Weïwer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
| | - Trevor Sherwood
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma
| | - Miao Chen
- University of North Carolina School of Pharmacy, Division of Medicinal Chemistry and Natural Products, CB no. 7360 Beard Hall, Room 309, Chapel Hill, North Carolina 27599-7360
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma
| | - Jian Liu
- University of North Carolina School of Pharmacy, Division of Medicinal Chemistry and Natural Products, CB no. 7360 Beard Hall, Room 309, Chapel Hill, North Carolina 27599-7360
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
- Department of Chemical and Biological Engineering and Department of Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
| |
Collapse
|
33
|
Affiliation(s)
- Leo R Zacharski
- VA Hospital, Research Service (151), White River Jct, Vermont 05009, USA
| | - Agnes YY Lee
- Associate Professor McMaster University, Department of Medicine, Hamilton, Ontario, Canada
- Hamilton Health Sciences Henderson Hospital, 711 Concession Street, Hamilton, ON, L8V 1C3, Canada ;
| |
Collapse
|
34
|
Gemma E, Meyer O, Uhrín D, Hulme AN. Enabling methodology for the end functionalization of glycosaminoglycan oligosaccharides. MOLECULAR BIOSYSTEMS 2008; 4:481-95. [PMID: 18493641 DOI: 10.1039/b801666f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The chemical functionalization of glycosaminoglycans is very challenging due to their structural heterogeneity and polyanionic character; but as an enabling technology it promises rich rewards in terms of the structural and biological data it will afford. This review surveys the known methods for the preparation of glycosaminoglycan oligosaccharides and conditions for the selective functionalization of both the reducing and non-reducing ends. The synthetic merits of each approach are discussed, together with the structural modification of the glycosaminoglycan oligosaccharide which they confer. Recent applications of this methodology are highlighted, including introduction of functional labels for gel mobility shift assays and NMR studies of glycosaminoglycan-protein complexes, and synthesis of immobilised glycosaminoglycan arrays.
Collapse
Affiliation(s)
- Emiliano Gemma
- School of Chemistry, The University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, UK
| | | | | | | |
Collapse
|