1
|
Hosseini MS, Jadidi-Niaragh F. An updated systematic review and meta-analysis on the efficacy and safety of nivolumab/relatlimab combination therapy in melanoma patients. Arch Dermatol Res 2025; 317:755. [PMID: 40358773 DOI: 10.1007/s00403-025-04270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
- Iranian Cancer Control Center (MACSA) - Tabriz Branch, Tabriz, Iran.
| | - Farhad Jadidi-Niaragh
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Tawbi HA, Hodi FS, Lipson EJ, Schadendorf D, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas H, Lao CD, Janoski De Menezes J, Dalle S, Arance AM, Grob JJ, Ratto B, Rodriguez S, Mazzei A, Dolfi S, Long GV. Three-Year Overall Survival With Nivolumab Plus Relatlimab in Advanced Melanoma From RELATIVITY-047. J Clin Oncol 2025; 43:1546-1552. [PMID: 39671533 PMCID: PMC12054981 DOI: 10.1200/jco.24.01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 12/15/2024] Open
Abstract
Nivolumab plus relatlimab demonstrated a statistically significant improvement in progression-free survival (PFS), along with a clinically meaningful, but not statistically significant improvement in overall survival (OS) and a numerically higher objective response rate (ORR) compared with nivolumab in the RELATIVITY-047 trial (ClinicalTrials.gov identifier: NCT03470922). We report updated descriptive efficacy and safety results from RELATIVITY-047 with a median follow-up of 33.8 months. Median PFS was 10.2 months (95% CI, 6.5 to 15.4) with nivolumab plus relatlimab and 4.6 months (95% CI, 3.5 to 6.5) with nivolumab (hazard ratio [HR], 0.79 [95% CI, 0.66 to 0.95]); median OS was 51.0 months (95% CI, 34.0 to not reached) and 34.1 (95% CI, 25.2 to 44.7) months, respectively (HR, 0.80 [95% CI, 0.66 to 0.99]). ORR was 43.7% (95% CI, 38.4 to 49.0) with nivolumab plus relatlimab and 33.7% (95% CI, 28.8 to 38.9) with nivolumab. Efficacy across the majority of prespecified subgroups favored the combination. No new or unexpected safety signals were identified. Overall, at 3-year follow-up, the benefit observed with nivolumab plus relatlimab compared with nivolumab in patients with advanced melanoma was sustained, with the OS HR 95% CI upper bound now <1. This benefit is accompanied by a safety profile consistent with previous reports.
Collapse
Affiliation(s)
| | | | - Evan J. Lipson
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Dirk Schadendorf
- University of Essen and the German Cancer Consortium, Essen, Germany
| | - Paolo A. Ascierto
- Istituto Nazionale dei Tumori IRCCS “Fondazione G. Pascale,” Naples, Italy
| | - Luis Matamala
- Instituto Oncológico Fundación Arturo López Pérez and Department of Oncology, Instituto Nacional dfoel Cáncer, Santiago, Chile
| | | | - Piotr Rutkowski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Helen Gogas
- National and Kapodistrian University of Athens, Athens, Greece
| | - Christopher D. Lao
- Michigan Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | | | - Stéphane Dalle
- Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France
| | | | | | | | | | | | | | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| |
Collapse
|
3
|
Fujisawa Y, Yoshikawa S, Takenouchi T, Mori S, Asai J, Uhara H, Ichigosaki Y, Fujimura T, Nakamura Y, Nakamura Y, Ohno F, Fukumoto T, Ozawa T, Namikawa K, Sugihara S, Hoashi T, Shimauchi T, Sawada Y, Iwata H, Maeda T, Miyagawa T, Shibayama Y, Hatta N, Kishi A, Ishikawa M, Kawahira H, Katoh N, Okuyama R. Melanoma skin cancer statistics derived from 7442 Japanese patients: Japanese melanoma study. Int J Clin Oncol 2025; 30:844-855. [PMID: 40192945 DOI: 10.1007/s10147-025-02747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Malignant melanoma (MM) is a rare but aggressive cutaneous cancer, accounting for only 2% of skin cancers in Japan but nearly half of skin cancer-related deaths. While the global incidence of MM is rising, its epidemiology varies significantly by ethnicity and geographic region. In Japan, melanoma incidence remains lower than in Western countries, with acral lentiginous melanoma (ALM) being the most prevalent subtype. However, comprehensive epidemiological and clinical data remain limited. METHODS We analyzed data from 7442 Japanese melanoma patients collected between 2005 and 2022 through the Japanese Melanoma Study (JMS). Demographic, clinical, and survival data were evaluated, including subtype distribution, TNM staging, and treatment outcomes. RESULTS ALM was the most common subtype (40.8%), followed by superficial spreading melanoma (20.2%). Lymph node metastasis was observed in 28.6% of cases, and distant metastasis in 10.9%. The BRAF mutation rate was 27.2%, with significantly lower frequencies in ALM (8.5%) and mucosal melanoma (4.8%). Among Stage IV patients, those treated with both immune checkpoint inhibitors (ICIs) and BRAF(+ MEK) inhibitors demonstrated significantly improved survival compared to chemotherapy alone (P < 0.05). Adjuvant BRAF(+ MEK) inhibitor therapy also resulted in superior relapse-free survival compared to those who did not receive adjuvant therapy (P < 0.005). CONCLUSION This study provides the largest dataset of Japanese melanoma patients to date, highlighting distinct epidemiological and clinical characteristics. Given their lower BRAF mutation rates and the limited efficacy of current ICI treatments, these findings emphasize the urgent need for optimize immunotherapy strategies in Japanese melanoma patients.
Collapse
Affiliation(s)
- Yasuhiro Fujisawa
- Department of Dermatology, Ehime University, 454 Shizugawa, Toon, Ehime, 791-0204, Japan.
| | | | | | - Shoichiro Mori
- Department of Dermatology, Nagoya University, Nagoya, Japan
| | - Jun Asai
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ichigosaki
- Department of Dermatology and Plastic Surgery, Kumamoto University, Kumamoto, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Nakamura
- Department of Dermatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Toshiyuki Ozawa
- Pharmaco-Physiology & Kinetics Collaborative Research Division, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Sugihara
- Department of Dermatology, Okayama University, Okayama, Japan
| | | | - Takatoshi Shimauchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Hakata, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshitsugu Shibayama
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naohito Hatta
- Department of Dermatology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Akiko Kishi
- Department of Dermatology, Toranomon Hospital, Tokyo, Japan
| | - Masashi Ishikawa
- Department of Dermatology, Saitama Cancer Center Hospital, Ina, Japan
| | - Hisao Kawahira
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University, Matsumoto, Japan
| |
Collapse
|
4
|
Jiang Y, Dai A, Huang Y, Li H, Cui J, Yang H, Si L, Jiao T, Ren Z, Zhang Z, Mou S, Zhu H, Guo W, Huang Q, Li Y, Xue M, Jiang J, Wang F, Li L, Zhong Q, Wang K, Liu B, Wang J, Fan G, Guo J, Chen L, Workman CJ, Shen Z, Kong Y, Vignali DAA, Xu C, Wang H. Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs. Cell 2025; 188:2354-2371.e18. [PMID: 40101708 DOI: 10.1016/j.cell.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/16/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
Lymphocyte activation gene 3 (LAG3) has emerged as a promising cancer immunotherapy target, but the mechanism underlying LAG3 activation upon ligand engagement remains elusive. Here, LAG3 was found to undergo robust non-K48-linked polyubiquitination upon ligand engagement, which promotes LAG3's inhibitory function instead of causing degradation. This ubiquitination could be triggered by the engagement of major histocompatibility complex class II (MHC class II) and membrane-bound (but not soluble) fibrinogen-like protein 1 (FGL1). LAG3 ubiquitination, mediated redundantly by the E3 ligases c-Cbl and Cbl-b, disrupted the membrane binding of the juxtamembrane basic residue-rich sequence, thereby stabilizing the LAG3 cytoplasmic tail in a membrane-dissociated conformation enabling signaling. Furthermore, LAG3 ubiquitination is crucial for the LAG3-mediated suppression of antitumor immunity in vivo. Consistently, LAG3 therapeutic antibodies repress LAG3 ubiquitination, correlating with their checkpoint blockade effects. Moreover, patient cohort analyses suggest that LAG3/CBL coexpression could serve as a biomarker for response to LAG3 blockade. Collectively, our study reveals an immune-checkpoint-triggering mechanism with translational potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Anran Dai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China
| | - Hua Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Haochen Yang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Tao Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Zhengxu Ren
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Si Mou
- BeiGene, Ltd, Beijing 102206, China
| | | | - Wenhui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Qiang Huang
- School of Medicine, Shanghai University, Shanghai 200444, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an 710032, China
| | - Yilin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Manman Xue
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Baichuan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China
| | - Jinjiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an 710032, China
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shanghai Academy of Natural Sciences (SANS), Shanghai 200031, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Academy of Natural Sciences (SANS), Shanghai 200031, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Long GV, Shklovskaya E, Satgunaseelan L, Mao Y, da Silva IP, Perry KA, Diefenbach RJ, Gide TN, Shivalingam B, Buckland ME, Gonzalez M, Caixeiro N, Vergara IA, Bai X, Rawson RV, Hsiao E, Palendira U, Phan TG, Menzies AM, Carlino MS, Quek C, Grimmond SM, Vissers JHA, Yeo D, Rasko JEJ, Khasraw M, Neyns B, Reardon DA, Ashley DM, Wheeler H, Back M, Scolyer RA, Drummond J, Wilmott JS, Rizos H. Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma. Nat Med 2025; 31:1557-1566. [PMID: 40016450 DOI: 10.1038/s41591-025-03512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/14/2025] [Indexed: 03/01/2025]
Abstract
Glioblastoma (GBM) is an aggressive primary adult brain tumor that rapidly recurs after standard-of-care treatments, including surgery, chemotherapy and radiotherapy. While immune checkpoint inhibitor therapies have transformed outcomes in many tumor types, particularly when used neoadjuvantly or as a first-line treatment, including in melanoma brain metastases, they have shown limited efficacy in patients with resected or recurrent GBM. The lack of efficacy has been attributed to the scarcity of tumor-infiltrating lymphocytes (TILs), an immunosuppressive tumor microenvironment and low tumor mutation burden typical of GBM tumors, plus exclusion of large molecules from the brain parenchyma. We hypothesized that upfront neoadjuvant combination immunotherapy, administered with disease in situ, could induce a stronger immune response than treatment given after resection or after recurrence. Here, we present a case of newly diagnosed IDH-wild-type, MGMT promoter unmethylated GBM, treated with a single dose of neoadjuvant triplet immunotherapy (anti-programmed cell death protein 1 plus anti-cytotoxic T-lymphocyte protein 4 plus anti-lymphocyte-activation gene 3) followed by maximal safe resection 12 days later. The anti-programmed cell death protein 1 drug was bound to TILs in the resected GBM and there was marked TIL infiltration and activation compared with the baseline biopsy. After 17 months, there is no definitive sign of recurrence. If used first line, before safe maximal resection, checkpoint inhibitors are capable of immune activation in GBM and may induce a response. A clinical trial of first-line neoadjuvant combination checkpoint inhibitor therapy in newly diagnosed GBM is planned (GIANT; trial registration no. NCT06816927 ).
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia.
- Mater Hospital, North Sydney, New South Wales, Australia.
- Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Elena Shklovskaya
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Macquarie University, Macquarie Park, New South Wales, Australia
| | - Laveniya Satgunaseelan
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yizhe Mao
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Inês Pires da Silva
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen A Perry
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Russell J Diefenbach
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Macquarie University, Macquarie Park, New South Wales, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Michael E Buckland
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Maria Gonzalez
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
| | - Nicole Caixeiro
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- NSW Health Pathology, Sydney, New South Wales, Australia
| | - Edward Hsiao
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Umaimainthan Palendira
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Tri Giang Phan
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Blacktown Hospital, Blacktown, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Camelia Quek
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Sean M Grimmond
- Collaborative Centre for Genomic Cancer Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Joseph H A Vissers
- Collaborative Centre for Genomic Cancer Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Dannel Yeo
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centenary Institute, Camperdown, New South Wales, Australia
| | - John E J Rasko
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Centenary Institute, Camperdown, New South Wales, Australia
| | | | - Bart Neyns
- Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Helen Wheeler
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael Back
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- NSW Health Pathology, Sydney, New South Wales, Australia
| | - James Drummond
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- North Shore Radiology & Nuclear Medicine, St Leonards, New South Wales, Australia
- Brain Imaging Laboratory, The Brain Cancer Group, St Leonards, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Helen Rizos
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Macquarie University, Macquarie Park, New South Wales, Australia
| |
Collapse
|
6
|
Maul LV, Ramelyte E, Dummer R, Mangana J. Management of metastatic melanoma with combinations including PD-1 inhibitors. Expert Opin Biol Ther 2025; 25:1-12. [PMID: 40159098 DOI: 10.1080/14712598.2025.2485315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Melanoma is among the most immunogenic malignancies. The advent of immune checkpoint inhibitors (ICIs) has revolutionized the landscape of melanoma treatment. Long-term durable cancer control is possible in nearly 50% of non-resectable, metastatic melanoma patients with anti-CTLA4 and anti-PD-1 antibodies. AREAS COVERED This review provides a critical overview of the current data and future research directions on the management of metastatic melanoma with ICIs. We reviewed the efficacy and safety of combinations with PD-1 inhibitors through PubMed database research (Nov 2024-Mar 2025). EXPERT OPINION A decade after ipilimumab's approval, challenges remain. To cure more patients, the development of combinations is warranted. Combinations with a limited number of ipilimumab applications improve the overall survival outcome by approximately 10%, with a dramatic increase in adverse events including fatal events. Anti-LAG3/nivolumab is a promising alternative, offering similar efficacy to ipilimumab/nivolumab with better tolerability. In our opinion, ipilimumab/nivolumab combination should be the first-line therapy for high-risk patients (high LDH, brain or liver metastasis), while nivolumab/relatlimab or PD-1 monotherapy may be preferable for lower-risk cases. However, treatment decisions are increasingly complex, since most patients nowadays are pretreated in the (neo)-adjuvant setting. The key limitation today is the lack of biomarkers to guide individualized treatment strategies.
Collapse
Affiliation(s)
- Lara Valeska Maul
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Szabó IL, Emri G, Ladányi A, Tímár J. Clinical Applications of the Molecular Landscape of Melanoma: Integration of Research into Diagnostic and Therapeutic Strategies. Cancers (Basel) 2025; 17:1422. [PMID: 40361349 PMCID: PMC12071057 DOI: 10.3390/cancers17091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The molecular landscape of cutaneous melanoma is complex and heterogeneous, and a deeper understanding of the genesis and progression of the tumor driven by genetic alterations is essential for the development of effective diagnostic and therapeutic strategies. Molecular diagnostics and the use of biomarkers are increasingly playing a role in treatment decisions. However, further research is urgently needed to elucidate the relationships between complex genetic alterations and the effectiveness of target therapies (although BRAF mutation is still the only targeted genetic alteration). Further research is required to exploit other targetable genetic alterations such as NRAS, KIT or rare mutations. Treatment guidelines for cutaneous melanoma are continually evolving based on data from recent and ongoing clinical trials. These advancements reflect changes mainly in the optimal timing of systemic therapy and the choice of combination therapies increasingly tailored to molecular profiles of individual tumors. Mono- or combination immunotherapies demonstrated unprecedented success of melanoma treatment; still, there is room for improvement: though several factors of primary or acquired resistance are known, they are not part of patient management as biomarkers. The novel developments of cancer vaccines to treat melanoma (melanoma-marker-based or personalized neoantigen-based) are encouraging; introduction of them into clinical practice without proper biomarkers would be the same mistake made in the case of first-generation immunotherapies.
Collapse
Affiliation(s)
- Imre Lőrinc Szabó
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.L.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.L.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary;
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| |
Collapse
|
8
|
Verdys P, Johansen AZ, Gupta A, Presti M, Dionisio E, Madsen DH, Curioni-Fontecedro A, Donia M. Acquired resistance to immunotherapy in solid tumors. Trends Mol Med 2025:S1471-4914(25)00061-9. [PMID: 40274520 DOI: 10.1016/j.molmed.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Acquired resistance to immunotherapy (ARI) is a major challenge in solid tumors, limiting long-term success in up to 65% of patients who initially respond to immunotherapy. Defining ARI clinically remains complex, but ongoing efforts aim to establish standardized criteria. This review describes recent insights into ARI, revealing complex mechanisms involving both tumor-intrinsic mechanisms - such as antigen loss and presentation defects, interferon γ (IFNγ) insensitivity, tumor-mediated T cell exclusion, and metabolic reprogramming - as well as extrinsic factors such as inhibitory molecule upregulation, immunosuppressive cells, extracellular matrix (ECM) remodeling, and dysbiotic microbiota. Understanding the development of ARI is crucial for prevention and effective interventions. The integration of innovative strategies and translational research on appropriately collected samples is key to overcoming ARI and ensuring durable benefits for patients.
Collapse
Affiliation(s)
- Perrine Verdys
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anurag Gupta
- Department of Medical Oncology, University of Fribourg, Fribourg, Switzerland
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Edoardo Dionisio
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
9
|
Wolchok JD, Hodi FS, Larkin J. Nivolumab plus Ipilimumab in Advanced Melanoma. Reply. N Engl J Med 2025; 392:1246. [PMID: 40138568 DOI: 10.1056/nejmc2501311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
10
|
Patel SP, Sheth RA, Davis C, Medina T. Combination Immunotherapy With Nivolumab Plus Ipilimumab in Melanoma of Unknown Primary. J Clin Oncol 2025; 43:907-911. [PMID: 39913893 DOI: 10.1200/jco-24-01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 05/07/2025] Open
Abstract
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice.
Collapse
Affiliation(s)
| | - Rahul A Sheth
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
11
|
Long GV, Larkin J, Schadendorf D, Grob JJ, Lao CD, Márquez-Rodas I, Wagstaff J, Lebbé C, Pigozzo J, Robert C, Ascierto PA, Atkinson V, Postow MA, Atkins MB, Sznol M, Callahan MK, Topalian SL, Sosman JA, Kotapati S, Thakkar PK, Ritchings C, Pe Benito M, Re S, Soleymani S, Hodi FS. Pooled Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone in Patients With Advanced Melanoma. J Clin Oncol 2025; 43:938-948. [PMID: 39504507 PMCID: PMC11895829 DOI: 10.1200/jco.24.00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Nivolumab (NIVO) + ipilimumab (IPI) combination and NIVO monotherapy have demonstrated durable clinical benefit in patients with unresectable/metastatic melanoma. This analysis describes long-term overall survival (OS) with the combination or monotherapy pooled across all major company-sponsored trials, as well as clinical factors associated with survival, in patients with immune checkpoint inhibitor (ICI) treatment-naïve unresectable/metastatic melanoma. METHODS Data were pooled from six CheckMate studies in ICI treatment-naïve patients receiving NIVO + IPI (NIVO 1 mg/kg + IPI 3 mg/kg or NIVO 3 mg/kg + IPI 1 mg/kg) or NIVO monotherapy (3 mg/kg). OS was assessed for each treatment, as well as in select subgroups. Cox proportional multivariate analysis (MVA) and classification and regression tree (CART) analyses were performed within treatment arms. RESULTS Median follow-up for OS was 45.0 months for patients treated with NIVO + IPI (n = 839) and 35.8 months for patients treated with NIVO (n = 536). OS was longer with NIVO + IPI versus NIVO monotherapy (hazard ratio, 0.78 [95% CI, 0.67 to 0.91]), with 6-year OS rates of 52% versus 41%, respectively. Consistent benefit was observed in BRAF-mutant and BRAF-wild-type patients and those with normal and elevated lactate dehydrogenase (LDH). Numerical difference in OS was also observed across PD-L1 expression levels, although more pronounced with no/low PD-L1 expression. Clinical factors associated with decreased survival in both the MVA and CART analyses were LDH > upper limit of normal with either treatment, age ≥65 years with NIVO + IPI, and the presence of liver metastases with NIVO monotherapy. CONCLUSION In this large, pooled nonrandomized retrospective analysis, we observed that NIVO + IPI provides longer OS than NIVO in patients with ICI treatment-naïve advanced melanoma and identifies clinical factors that appear to be associated with survival for each treatment, which may assist with treatment decision making.
Collapse
Affiliation(s)
- Georgina V. Long
- Melanoma Institute Australia and Royal North Shore and Mater Hospitals, The University of Sydney, Sydney, NSW, Australia
| | - James Larkin
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Dirk Schadendorf
- University Hospital, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | | | | | | | - John Wagstaff
- Swansea University Medical School, Swansea, United Kingdom
| | - Céleste Lebbé
- Université Paris Cité, AP-HP Dermato-oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital, Paris, France
| | | | - Caroline Robert
- Gustave Roussy, Institut National de la Santé et de la Recherche Médicale U981, Paris, France
| | - Paolo A. Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Victoria Atkinson
- Princess Alexandra Hospital, Woolloongabba, and Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Michael A. Postow
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | | | - Mario Sznol
- Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | - Margaret K. Callahan
- Princess Alexandra Hospital, Woolloongabba, and Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Suzanne L. Topalian
- Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | | | | | | | | | - Sandra Re
- Bristol Myers Squibb, Princeton, NJ
- Current address Daiichi Sankyo, Inc, Basking Ridge, NJ
| | | | | |
Collapse
|
12
|
Long GV, Atkinson V, Lo SN, Guminski AD, Sandhu SK, Brown MP, Gonzalez M, McArthur GA, Menzies AM. Ipilimumab plus nivolumab versus nivolumab alone in patients with melanoma brain metastases (ABC): 7-year follow-up of a multicentre, open-label, randomised, phase 2 study. Lancet Oncol 2025; 26:320-330. [PMID: 39978375 DOI: 10.1016/s1470-2045(24)00735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 02/22/2025]
Abstract
BACKGROUND Patients with melanoma brain metastases respond well to immunotherapy, but long-term comparative survival data are scarce. We aimed to assess the efficacy of ipilimumab plus nivolumab versus nivolumab alone in patients with melanoma brain metastases at 7 years. METHODS This open-label, randomised, phase 2 study was conducted at four sites (two research institute cancer centres and two university teaching hospitals) in Australia. Patients aged 18 years or older with active, immunotherapy-naive melanoma brain metastases and Eastern Cooperative Oncology Group performance status of 0-2 were eligible. Asymptomatic patients with no previous brain-directed therapy were randomly assigned (5:4) using the biased-coin minimisation method (after a safety run-in of six patients) to cohort A (intravenous ipilimumab 3 mg/kg plus nivolumab 1 mg/kg every 3 weeks for four doses, then nivolumab 3 mg/kg every 2 weeks) or cohort B (intravenous nivolumab 3 mg/kg every 2 weeks). Patients with previous brain-directed therapy, neurological symptoms, or leptomeningeal disease were assigned to cohort C (non-randomised; intravenous nivolumab 3 mg/kg every 2 weeks). The primary endpoint was best intracranial response (complete or partial response) from week 12. Secondary survival endpoints included intracranial progression-free survival and overall survival. Safety was assessed from the first dose of treatment to at least 100 days after treatment discontinuation. Analyses were performed in patients who received at least one dose of study drug. The main analysis has been reported, and this is a long-term follow up of the ABC trial. This trial is registered with ClinicalTrials.gov, NCT02374242, and is ongoing. FINDINGS Between Nov 4, 2014, and April 21, 2017, 89 patients were assessed for eligibility, 79 of whom were enrolled and assigned to cohort A (n=36), cohort B (n=27), or cohort C (n=16). Three patients (one in cohort A and two in cohort B) were excluded due to ineligibility. 17 (22%) of 76 patients were female and 59 (78%) were male. At data cutoff (March 26, 2024), the median follow-up was 7·6 years (IQR 6·9-8·2). Overall intracranial responses occurred in 18 (51% [95% CI 34-69]) patients from cohort A, five (20% [7-41]) from cohort B, and one (6% [0-30]) from cohort C. 7-year intracranial progression-free survival was 42% (95% CI 29-63) in cohort A, 15% (6-39) in cohort B, and 6% (1-42) in cohort C. 7-year overall survival was 48% (34-68) in cohort A, 26% (13-51) in cohort B, and 13% (3-46) in cohort C. Safety results were consistent with the primary analysis. 50 patients died, including 18 (51%) from cohort A, 18 (72%) from cohort B, and 14 (88%) from cohort C. INTERPRETATION Our findings suggest that ipilimumab plus nivolumab maintains efficacy to at least 7 years in patients with active asymptomatic brain metastasis. Upfront ipilimumab plus nivolumab should be the standard of care for patients with melanoma brain metastasis; a trial investigating the role of stereotactic surgery in this new paradigm is ongoing. FUNDING Melanoma Institute Australia and Bristol Myers Squibb.
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Mater Hospital, Sydney, NSW, Australia.
| | - Victoria Atkinson
- Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Alexander D Guminski
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia
| | - Shahneen K Sandhu
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Michael P Brown
- Royal Adelaide Hospital, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; University of Adelaide, Adelaide, SA, Australia
| | - Maria Gonzalez
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia; Medical, Dental, and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Mater Hospital, Sydney, NSW, Australia
| |
Collapse
|
13
|
Cheruvu S, McMahon D, Larkin J. Navigating the landscape of immune checkpoint inhibitors and novel immunotherapies in melanoma: long-term outcomes, progress, and challenges. Expert Opin Biol Ther 2025; 25:245-256. [PMID: 39895540 DOI: 10.1080/14712598.2025.2456485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Melanoma has become the poster child for transformative outcomes in advanced malignancy from the use of immunotherapy over the last 10-15 years with median survival improving from ~ 1 to > 5 years. With the increasing repertoire of immune checkpoint inhibitors (ICI) and other novel immunotherapeutic approaches, integrating and sequencing treatments to create new paradigms has gained prominence, with focus on optimizing toxicity management and complex scenarios such as immunotherapy resistance, brain metastases, fertility, and duration of follow-up. AREAS COVERED In this review, we summarize the progress and emerging evidence in melanoma treatments to date and consider management and possible future directions to improve outcomes for above-mentioned specific patient cohorts. EXPERT OPINION Personalized care with integration of novel prognostic and predictive biomarkers is the way forward in tailoring not only patient selection and choice of therapy, but also duration of treatment and surveillance to allow for early recurrence detection and access to newer therapies such as tumor infiltrating lymphocytes (TIL) to maximize the curative fraction of melanoma patients. Further research is needed in optimizing ICI and other immunotherapy toxicity management, including reducing steroid exposure for better patient outcomes and preserving quality of life.
Collapse
Affiliation(s)
- Sowmya Cheruvu
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - David McMahon
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - James Larkin
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| |
Collapse
|
14
|
Li WJ, Najdawi W, Badla O, Galor A, Karp CL. Immune Checkpoint Inhibitors in the Treatment of Ocular Surface Cancers: A Review. Semin Ophthalmol 2025:1-11. [PMID: 39923258 DOI: 10.1080/08820538.2025.2458658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have transformed cancer therapy by targeting key immune pathways such as PD-1, PD-L1, CTLA-4, and LAG-3 to enhance the immune system's ability to combat malignancies. Their use in treating ocular surface tumors is an emerging area of interest, particularly in conjunctival melanoma (CM) and ocular surface squamous neoplasia (OSSN). Some studies have indicated the potential of ICI's in sebaceous gland carcinoma (SeC), conjunctival lymphoma, and Kaposi sarcoma. PURPOSE This review aims to evaluate the role of ICIs in treating ocular surface tumors, focusing on their mechanisms of action, clinical outcomes, and therapeutic potential. METHODS A literature review was conducted by searching Pubmed for studies published between January 2014 and October 2024. Studies included were original research, clinical trials, case reports and series, and reviews. RESULTS ICIs, including pembrolizumab and nivolumab, have shown promising results in CM, achieving tumor regression and disease stabilization in advanced and metastatic cases. ICIs have also demonstrated efficacy in OSSN, particularly in lesions with high tumor mutational burden, with responses ranging from partial to complete resolution. Although clinical data for SeC and conjunctival lymphoma remain limited to isolated reports, these studies suggest a role for ICIs in managing refractory or advanced disease. CONCLUSION ICIs hold transformative potential in improving outcomes for ocular surface malignancies, particularly in cases where conventional treatments fail or pose significant morbidity. Despite their promise, challenges persist, including variable response rates, immune-related adverse events, and the need for reliable predictive biomarkers. Comprehensive prospective studies are necessary to refine the application of ICIs, optimize treatment strategies, and expand therapeutic options for these challenging cancers.
Collapse
Affiliation(s)
- Wendy J Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| | - Wisam Najdawi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| | - Omar Badla
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| | - Anat Galor
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
- Department of Ophthalmology, Miami Veterans Hospital, Miami, FL, USA
| | - Carol L Karp
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| |
Collapse
|
15
|
Chen G, Sun DC, Ba Y, Zhang YX, Zhou T, Zhao YY, Zhao HY, Fang WF, Huang Y, Wang Z, Deng C, Hu DS, Wang W, Lin JG, Li GL, Luo SX, Fu ZC, Zhu HS, Wang HL, Cai SL, Kang XQ, Zhang L, Yang YP. Anti-LAG-3 antibody LBL-007 plus anti-PD-1 antibody toripalimab in advanced nasopharyngeal carcinoma and other solid tumors: an open-label, multicenter, phase Ib/II trial. J Hematol Oncol 2025; 18:15. [PMID: 39920751 PMCID: PMC11806529 DOI: 10.1186/s13045-025-01666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
PURPOSE Open-label phase Ib/II study to investigate the safety and efficacy of LBL-007, an anti-LAG-3 antibody, plus toripalimab, an anti-PD-1 antibody, in patients with previously treated advanced nasopharyngeal carcinoma (NPC) and other solid tumors. METHODS Patients with advanced tumors refractory to prior standard therapies were enrolled. In phase Ib, patients received LBL-007 200 mg or 400 mg and toripalimab 240 mg intravenously once every 3 weeks. In phase II, all patients received LBL-007 at the recommended phase II dose (RP2D) and toripalimab 240 mg intravenously once every 3 weeks. The primary end points were safety in phase Ib and objective response rate (ORR) in phase II. The exploratory end point was the predictive capability of LAG-3 and PD-L1 expression for efficacy. RESULTS Between November 30, 2021, and December 1, 2023, 80 patients were enrolled, including 30 (37.5%) with NPC and 50 (62.5%) with other tumors. Median follow-up was 26.0 months. In Phase Ib, LBL-007 was administered at 200 mg to four patients and 400 mg to six patients, with no dose-limiting toxicities observed. Therefore, the 400 mg dose of LBL-007 was established as the RP2D and administered to 70 patients in phase II. Nine (11.3%) of 80 patients had grade 3 or 4 treatment-related adverse events, the most common of which included anemia (2.5%), hyponatremia (2.5%), increased alanine aminotransferase (2.5%), increased aspartate aminotransferase (1.3%), and fatigue (1.3%). Eight patients (10.0%) had treatment-related serious adverse events. No treatment-related deaths were reported. In immunotherapy-naive NPC patients (n = 12), ORR was 33.3%, disease control rate (DCR) was 75%, and median progression-free survival (PFS) was 10.8 months (95% CI, 1.3 to not estimated). In IO-treated NPC patients (n = 17), ORR was 11.8%, DCR was 64.7%, and median PFS was 2.7 months (95% CI, 1.4 to 4.9). For other tumors, ORRs were 15.8% in immunotherapy-naive patients and 3.7% in immunotherapy-treated patients. Patients with ≥ 2 + LAG-3 expression had a higher ORR of 28.0%, compared to 7.7% in those with < 2 + LAG-3 expression. CONCLUSION LBL-007 plus toripalimab exhibited a manageable safety profile in patients with advanced solid tumors and demonstrated promising antitumor activity in NPC, especially in immunotherapy-naive patients. These findings warrant further validation in future studies.
Collapse
Affiliation(s)
- Gang Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Dong-Chen Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yi Ba
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Ya-Xiong Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuan-Yuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Hong-Yun Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wen-Feng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhen Wang
- Department of Oncology, Linyi Cancer Hospital, Linyi, P.R. China
| | - Chao Deng
- Cancer Center, Chong Qing University Three Gorges Hospital, Chongqing, P.R. China
| | - De-Sheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, P.R. China
| | - Wei Wang
- Hunan Cancer Hospital, Changsha, P.R. China
| | | | - Gui-Ling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Su-Xia Luo
- Department of Oncology, Henan Cancer Hospital, Zhengzhou, P.R. China
| | - Zhi-Chao Fu
- Department of Radiotherapy, No. 900 Hospital of the PLA Joint Logistics Support Force, Fuzhou, P.R. China
| | - Hai-Sheng Zhu
- Department of Oncology, The First People's Hospital of Yulin, Yulin, P.R. China
| | - Hui-Li Wang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Sheng-Li Cai
- Nanjing Leads Biolabs Co., Ltd., Nanjing, P.R. China
| | | | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yun-Peng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, P.R. China.
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
16
|
Kreft S, Lorigan P. Combination Immunotherapy for Advanced Melanoma-How to Choose? J Clin Oncol 2025; 43:478-479. [PMID: 39496095 DOI: 10.1200/jco-24-02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Affiliation(s)
- Sophia Kreft
- Sophia Kreft, MB, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom; and Paul Lorigan, MB, BCH, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom, Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Paul Lorigan
- Sophia Kreft, MB, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom; and Paul Lorigan, MB, BCH, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom, Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Wladis EJ, Rothschild MI, Bohnak CE, Adam AP. New therapies for unresectable or metastatic cutaneous eyelid and orbital melanoma. Orbit 2025; 44:137-143. [PMID: 38796755 DOI: 10.1080/01676830.2024.2351514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
PURPOSE Newer treatment options offer the promise of improved outcomes for metastatic and unresectable melanoma. This investigation was performed to review these modalities for cutaneous eyelid and orbital disease. METHODS A search for articles that were related to this subject was performed in the PubMed database, and the bibliographies of these manuscripts were reviewed to ensure capture of the appropriate literature. Data was abstracted and analyzed. RESULTS Historically, patients who suffer from melanoma of the ocular adnexa have fared poorly. Approaches that employ BRAF and mitogen-associated protein kinase inhibitors, immunotherapy, and novel cellular therapies improve outcomes and survival rates, although the side effect profiles of these agents are problematic. Most of the existing strategies have not explored ocular adnexal disease specifically, and treatment plans are generally adapted from the general cutaneous oncology literature. CONCLUSIONS Thanks to advances in our comprehension of the cellular biology of the disease, the management of unresectable and metastatic melanoma has evolved considerably over the past several years. Newer modalities will likely continue to improve survival and reduce adverse events.
Collapse
Affiliation(s)
- Edward J Wladis
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
- Department of Otolaryngology, Albany Medical College, Albany, New York, USA
| | - Michael I Rothschild
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
| | - Carisa E Bohnak
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
| | - Alejandro P Adam
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
- Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
18
|
Martínez-Vila C, Teixido C, Aya F, Martín R, González-Navarro EA, Alos L, Castrejon N, Arance A. Detection of Circulating Tumor DNA in Liquid Biopsy: Current Techniques and Potential Applications in Melanoma. Int J Mol Sci 2025; 26:861. [PMID: 39859576 PMCID: PMC11766255 DOI: 10.3390/ijms26020861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting BRAFV600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up. In melanoma, liquid biopsy has shown promising results, with a potential role in predicting relapse in resected high-risk patients or in disease monitoring during the treatment of advanced disease. Several components in peripheral blood have been analyzed, such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), and circulant tumoral DNA (ctDNA), which have turned out to be particularly promising. To analyze ctDNA in blood, different techniques have proven to be useful, including digital droplet polymerase chain reaction (ddPCR) to detect specific mutations and, more recently, next-generation sequencing (NGS) techniques, which allow analyzing a broader repertoire of the mutation landscape of each patient. In this review, our goal is to update the current understanding of liquid biopsy, focusing on the use of ctDNA as a biological material in the daily clinical management of melanoma patients, in particular those with advanced disease treated with ICI.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1–3, 08243 Manresa, Spain;
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (C.T.); (L.A.); (N.C.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martín
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Europa Azucena González-Navarro
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (C.T.); (L.A.); (N.C.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
| | - Natalia Castrejon
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (C.T.); (L.A.); (N.C.)
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
19
|
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Brochez L, Del Marmol V, Dréno B, Eggermont AMM, Fargnoli MC, Forsea AM, Höller C, Kaufmann R, Kelleners-Smeets N, Lallas A, Lebbé C, Leiter U, Longo C, Malvehy J, Moreno-Ramirez D, Nathan P, Pellacani G, Saiag P, Stockfleth E, Stratigos AJ, Van Akkooi ACJ, Vieira R, Zalaudek I, Lorigan P, Mandala M. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2024. Eur J Cancer 2025; 215:115153. [PMID: 39709737 DOI: 10.1016/j.ejca.2024.115153] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
A unique collaboration of multi-disciplinary experts from the European Association of Dermato-Oncology (EADO), the European Dermatology Forum (EDF), and the European Organization of Research and Treatment of Cancer (EORTC) was formed to make recommendations on cutaneous melanoma diagnosis and treatment, based on systematic literature reviews and the experts' experience. Cutaneous melanomas are excised with one to two-centimeter safety margins. For a correct stage classification and treatment decision, a sentinel lymph node biopsy shall be offered in patients with tumor thickness ≥ 1.0 mm or ≥ 0.8 mm with additional histological risk factors, although there is as yet no clear survival benefit for this approach. Therapeutic decisions should be primarily made by an interdisciplinary oncology team ("Tumor Board"). Adjuvant therapies can be proposed in completely resected stage IIB-IV. In stage II only PD-1 inhibitors are approved. In stage III anti-PD-1 therapy or dabrafenib plus trametinib for patients with BRAFV600 mutated melanoma can be discussed. In resected stage IV, nivolumab can be offered, as well as ipilimumab and nivolumab, in selected, high-risk patients. In patients with clinically detected macroscopic, resectable disease, neoadjuvant therapy with ipilimumab plus nivolumab followed complete surgical resection and adjuvant therapy according to pathological response and BRAF status can be offered. Neoadjuvant therapy with pembrolizumab followed by complete surgical resection and adjuvant pembrolizumab is also recommended. For patients with disease recurrence after (neo) adjuvant therapy, further treatment should consider the type of (neo) adjuvant therapy received as well as the time of recurrence, i.e., on or off therapy. In patients with irresectable stage III/IV disease systemic treatment is always indicated. For first line treatment PD-1 antibodies alone or in combination with CTLA-4 or LAG-3 antibodies shall be considered. In stage IV melanoma with a BRAFV600 mutation, first-line therapy with BRAF/MEK inhibitors can be offered as an alternative to immunotherapy, in selected cases. In patients with primary resistance to immunotherapy and harboring a BRAFV600 mutation, this therapy shall be offered as second line. Other second line therapies include therapy with tumor infiltrating lymphocytes and combinations of immune checkpoint inhibitors not used in first line. This guideline is valid until the end of 2026.
Collapse
Affiliation(s)
- Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Ketty Peris
- Institute of Dermatology, Università Cattolica, Rome, and Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicole Basset-Seguin
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis, Paris, France
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Denmark
| | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London SE1 7EH, UK
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Brigitte Dréno
- Nantes Université, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes F-44000, France
| | - Alexander M M Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximilians University, Munich, Germany
| | | | - Ana-Maria Forsea
- Dermatology Department, Elias University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Austria
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | | | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbé
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis, Paris, France
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, and Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Skin Cancer Centre, Reggio Emilia, Italy
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, Hospital Clinic; IDIBAPS, Barcelona, Spain, University of Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - David Moreno-Ramirez
- Medical-&-Surgical Dermatology Service. Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | | | - Philippe Saiag
- University Department of Dermatology, Université de Versailles-Saint Quentin en Yvelines, APHP, Boulogne, France
| | - Eggert Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum 44791, Germany
| | - Alexander J Stratigos
- 1st Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Alexander C J Van Akkooi
- Melanoma Institute Australia, The University of Sydney, and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ricardo Vieira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Mario Mandala
- University of Perugia, Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
20
|
Schmitt AM, Larkin J, Patel SP. Dual Immune Checkpoint Inhibition in Melanoma and PD-L1 Expression: The Jury Is Still Out. J Clin Oncol 2025; 43:122-124. [PMID: 39374477 DOI: 10.1200/jco-24-01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
This comment discusses the use of PD-L1 as a biomarker to guide treatment decisions for metastatic melanoma.
Collapse
Affiliation(s)
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Sapna P Patel
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO
| |
Collapse
|
21
|
Aygün MİŞ, Yalçın Ö. LAG-3 and TIM-3 expression in melanoma and histopathological correlation: a single-center study. Clin Transl Oncol 2025:10.1007/s12094-024-03836-3. [PMID: 39752003 DOI: 10.1007/s12094-024-03836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Melanomas originate from melanocytes and can be fatal. Surgical excision is primary, but due to potential rapid metastases, additional therapies are crucial. Our study aimed to assess Lymphocyte-activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin domain 3 (TIM-3) expression in melanoma, exploring their relationships with survival and clinicopathological data. METHODS The study included 64 melanoma skin excision samples examined at the Pathology Department of Saglik Bilimleri University Prof. Dr. Cemil Tascioglu City Hospital between 2017-2023. LAG-3 and TIM-3 immunohistochemical studies were conducted by two pathologists to assess their expression rates and intensities. The study investigated correlations between these markers and epidemiological, clinical, and histopathological features of the cases. Statistical analysis was performed using SPSS 27, with significance levels set at p<0.05. RESULTS There was a significant association between LAG-3 and TIM-3 expressions (p: 0.001). LAG-3 expression correlated significantly with progression free survival (PFS) and overall survival (OS) rates (p: 0.020; p: 0.023). However, TIM-3 expression did not show significant correlations with PFS and OS times (p: 0.726; p: 0.903). Both LAG-3 and TIM-3 expressions were elevated in deceased patients (p: 0.001; p: 0.042). LAG-3 positivity was identified as an independent risk factor for OS, regardless of disease stage (p: 0.008). CONCLUSIONS Research on immune checkpoint inhibitors has intensified in recent years. The expression of LAG-3 and TIM-3 is associated with poor prognosis in melanomas. Combined treatments targeting these markers may be beneficial in the treatment of this disease.
Collapse
Affiliation(s)
- Mine İlayda Şengör Aygün
- Department of Pathology, University of Health Sciences Bagcilar Traning and Research Hospital, İstanbul, Turkey.
| | - Özben Yalçın
- Department of Pathology, University of Health Sciences Prof. Dr. Cemil Taşcıoğlu City Hospital, İstanbul, Turkey
| |
Collapse
|
22
|
Tang CY, Lin YT, Yeh YC, Chung SY, Chang YC, Hung YP, Chen SC, Chen MH, Chiang NJ. The correlation between LAG-3 expression and the efficacy of chemoimmunotherapy in advanced biliary tract cancer. Cancer Immunol Immunother 2025; 74:41. [PMID: 39751894 PMCID: PMC11699023 DOI: 10.1007/s00262-024-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
In our previous phase II T1219 trial for advanced biliary tract cancer (ABTC), the combination of nivolumab with modified gemcitabine and S-1 exhibited promising efficacy, while the programmed-death-ligand-1 (PD-L1) expression did not predict chemoimmunotherapy efficacy. Lymphocyte-activation-gene-3 (LAG-3), a negative immune checkpoint, is frequently co-expressed with PD-L1. This study assessed the predictive value of LAG-3 expression in ABTC patients who received chemoimmunotherapy. We analyzed 44 formalin-fixed ABTC samples using immunohistochemical staining for PD-L1 and LAG-3 and correlated them with the clinical efficacy of chemoimmunotherapy. Digital spatial profiling was conducted in selected regions of interest to examine immune cell infiltration and checkpoint expression in six cases. Three public BTC datasets were used for analysis: TCGA-CHOL, GSE32225, and GSE132305. LAG-3 positivity was observed in 38.6% of the ABTC samples and was significantly correlated with PD-L1 positivity (P < 0.001). The objective response rate (ORR) was significantly higher in LAG-3-positive tumors than in LAG-3-negative tumors (70.6% vs. 33.3%, P = 0.029). The LAG-3 expression level was associated with an increased ORR (33%, 58%, and 100% for LAG-3 < 1%, 1-9%, and ≥ 10%, respectively; P = 0.018) and a deeper therapeutic response (20.1%, 38.6%, and 57.6% for the same respective groups; P = 0.04). LAG-3 expression is positively correlated with the expression of numerous immune checkpoints. Enrichment of CD8+ T cells was observed in LAG-3-positive BTC, indicating that LAG-3 expression may serve as a biomarker for identifying immune-inflamed tumors and predicting the therapeutic response to chemoimmunotherapy in ABTC.
Collapse
Affiliation(s)
- Cheng-Yu Tang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ting Lin
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Yi Chung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - San-Chi Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Jung Chiang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
23
|
Amaral T, Ottaviano M, Arance A, Blank C, Chiarion-Sileni V, Donia M, Dummer R, Garbe C, Gershenwald JE, Gogas H, Guckenberger M, Haanen J, Hamid O, Hauschild A, Höller C, Lebbé C, Lee RJ, Long GV, Lorigan P, Muñoz Couselo E, Nathan P, Robert C, Romano E, Schadendorf D, Sondak V, Suijkerbuijk KPM, van Akkooi ACJ, Michielin O, Ascierto PA. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2025; 36:10-30. [PMID: 39550033 DOI: 10.1016/j.annonc.2024.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- T Amaral
- Skin Cancer Clinical Trials Center-University of Tuebingen, Tuebingen, Germany
| | - M Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - A Arance
- Department of Medical Oncology and IDIBAPS, Hospital Clinic y Provincial de Barcelona, Barcelona, Spain
| | - C Blank
- Department of Medical Oncology and Division of Immunology, The Netherlands Cancer Institute Antoni van Leeuwenhoek Ziekenhuis (NKI), Amsterdam; Leiden University Medical Center (LUMC), Leiden, The Netherlands; University Clinic Regensburg, Regensburg, Germany
| | - V Chiarion-Sileni
- Department of Oncology, Melanoma Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - M Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - R Dummer
- Department of Dermatology, Skin Cancer Center, USZ-University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - C Garbe
- Department of Dermatology, Center for DermatoOncology, University Hospital Tuebingen, Tuebingen, Germany
| | - J E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
| | - H Gogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens-School of Medicine, Athens, Greece
| | - M Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - J Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Oncology Service, Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - O Hamid
- Medical Oncology, Cutaneous Malignancies, The Angeles Clinic and Research Institute, A Cedars Sinai Affiliate, Los Angeles, USA
| | - A Hauschild
- Department of Dermatology, UKSH-Universitätsklinikum Schleswig-Holstein-Campus Kiel, Kiel, Germany
| | - C Höller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Lebbé
- Université Paris Cite, AP-HP Dermato-oncology and CIC, Cancer Institute APHP, Nord Paris Cité, INSERM U976, Saint Louis Hospital, Paris, France
| | - R J Lee
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - G V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Department Medical Oncology, Royal North Shore Hospital, Sydney, Australia; Mater Hospital, Sydney, Australia
| | - P Lorigan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - E Muñoz Couselo
- Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P Nathan
- Mount Vernon Cancer Centre, Northwood, UK
| | - C Robert
- Department of Oncology, Institut Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - E Romano
- Department of Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - D Schadendorf
- Department of Dermatology, WTZ-Westdeutsches Tumorzentrum Essen, National Center for Tumor Diseases (NCT-West), Campus Essen, Essen, Germany; University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - V Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, USA
| | - K P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A C J van Akkooi
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - O Michielin
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - P A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| |
Collapse
|
24
|
Mao C, Xiong A, Qian J, Wang W, Liu Y, Zhang T, Wu Z, Ni H, Lu J, Long S, Zhao L, Chen Y, Zhou C, Xu N. Dual inhibition of LAG-3 and PD-1 with IBI110 and sintilimab in advanced solid tumors: the first-in-human phase Ia/Ib study. J Hematol Oncol 2024; 17:132. [PMID: 39736787 PMCID: PMC11687176 DOI: 10.1186/s13045-024-01651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Co-inhibition of immune checkpoints lymphocyte-activation gene 3 (LAG-3) and PD-1 is believed to enhance cancer immunotherapy through synergistic effects. Herein, we evaluate the safety and efficacy of IBI110 (anti-LAG-3 antibody) with sintilimab (an anti-PD-1 antibody) in Chinese patients with advanced solid tumors. METHODS In this open-label phase I study, phase Ia dose escalation of IBI110 monotherapy and phase Ib combination dose escalation of IBI110 plus sintilimab were conducted in patients with advanced solid tumors. Additionally, phase Ib combination dose expansion of IBI110 plus sintilimab and chemotherapy was conducted in previously untreated, advanced squamous non-small cell lung cancer (sqNSCLC) and HER-2 negative gastric cancer (GC). In phase Ia dose escalation, patients received IBI110 monotherapy at 0.01/0.1/0.3/1/3/10/20 mg/kg Q3W. In phase Ib dose escalation, patients received IBI110 at 0.3/0.7/1.5/3/5/8/10 mg/kg Q3W plus sintilimab 200 mg Q3W. In phase Ib combination dose expansion, patients received IBI110 at recommended phase 2 dose (RP2D) plus sintilimab 200 mg Q3W and chemotherapy. The primary endpoints were safety, tolerability and efficacy including objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression-free survival (PFS) assessed by RECIST v1.1 and overall survival (OS). The secondary endpoints included pharmacokinetics, pharmacodynamics and immunogenicity. RESULTS In phase Ia dose escalation (n = 28), treatment-related adverse events (TRAEs) occurred in 67.9% patients and grade ≥ 3 TRAEs occurred in 21.4% patients. In phase Ib combination dose escalation (n = 45), TRAEs occurred in 75.6% patients and grade ≥ 3 TRAEs occurred in 22.2% patients. No dose-limiting toxicity (DLT) was observed. The most common TRAE was anemia (17.9%, including 3.6% ≥ G3) in phase Ia dose escalation of IBI110 monotherapy (n = 28), aspartate aminotransferase increased (28.9%, all G1-G2) in phase Ib dose escalation of IBI110 plus sintilimab (n = 45), anemia (70.0%, all G1-G2) in phase Ib dose expansion in sqNSCLC (n = 20), and neutrophil count decreased (64.7%, including 17.6%≥ G3) in phase Ib dose expansion in GC (n = 17). The RP2D of IBI110 was determined at 200 mg (3 mg/kg) Q3W. ORR in phase Ia/Ib dose escalation was 3.6% with IBI110 monotherapy and 14% with IBI110 plus sintilimab. In phase Ib combination dose expansion of IBI110 plus sintilimab and chemotherapy, unconfirmed and confirmed ORR in sqNSCLC (n = 20) was 80.0% (95% CI, 56.3-94.3) and 75.0% (95% CI, 50.9-91.3), respectively and in GC (n = 17) was 88.2% (95% CI, 63.6-98.5) and 70.6% (95% CI, 44.0-89.7), respectively. CONCLUSIONS IBI110 monotherapy and in combination with sintilimab were well-tolerated in Chinese patients with advanced solid tumors. Encouraging efficacy of IBI110 in combination with sintilimab and chemotherapies was observed in sqNSCLC and GC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04085185.
Collapse
Affiliation(s)
- Chenyu Mao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Xiong
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiong Qian
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Ying Liu
- Henan Cancer Hospital, Zhengzhou, China
| | - Tao Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihai Wu
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Haiqing Ni
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jia Lu
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Sixiang Long
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Li Zhao
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Yuling Chen
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Caicun Zhou
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nong Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
Zhang H, Lu B, Lu X, Saeed A, Chen L. Current transcriptome database and biomarker discovery for immunotherapy by immune checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627506. [PMID: 39713380 PMCID: PMC11661151 DOI: 10.1101/2024.12.09.627506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized the current immuno-oncology and significantly improved clinical outcome for cancer treatment. Despite the advancement in clinics, only a small subset of patients derives immune response to the ICB therapy. Therefore, a robust predictive biomarker that identifies potential candidate becomes increasingly crucial in delivering this technology to the public. In this review, we first discuss the biomarkers that focus on tumor genome, tumor microenvironment and tumor-host interaction. Then, we compare existing databases for biomarker discovery for ICB response. We also present IOhub - an interactive web portal that incorporates 36 bulk and 10 single-cell transcriptome datasets for benchmark analysis of the current biomarkers. Finally, we highlight the trending interest in antibody drug conjugate and combination treatment and their use in precision immuno-oncology.
Collapse
|
26
|
Thakker S, Belzberg M, Jang S, Al-Mondhiry J. Real-world treatment patterns and outcomes of patients with advanced melanoma treated with nivolumab plus relatlimab. Oncologist 2024; 29:e1783-e1785. [PMID: 39293068 PMCID: PMC11630778 DOI: 10.1093/oncolo/oyae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/01/2024] [Indexed: 09/20/2024] Open
Abstract
The use of programmed death-1 (PD-1) inhibitors has been a pivotal advancement in treating advanced melanoma, yet their efficacy is limited. The approval of relatlimab (RELA), a lymphocyte activation gene 3 protein (LAG-3) antibody, in combination with nivolumab (NIVO), a PD-1 inhibitor, marked a significant stride toward enhancing treatment efficacy for metastatic and unresectable stage 3 and 4 melanoma. This combination has been shown to synergistically improve antitumor activity and effector T-cell activity in the tumor microenvironment, despite limited data on real-world outcomes. Our retrospective review at a tertiary cancer center of patients with stage 3 and 4 melanoma treated with NIVO-RELA revealed an overall response rate (ORR) of 39%, with notable improvements in median PFS and ORR, especially in first-line treated patients. Our study highlights the superior efficacy of NIVO-RELA over previous reports, demonstrating its significant potential in the treatment landscape of advanced melanoma.
Collapse
Affiliation(s)
- Sach Thakker
- Georgetown University School of Medicine, Washington, DC, United States
| | - Micah Belzberg
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sekwon Jang
- Inova Schar Cancer Institute, Fairfax, VA, United States
| | | |
Collapse
|
27
|
Pelosi E, Castelli G, Testa U. Braf-Mutant Melanomas: Biology and Therapy. Curr Oncol 2024; 31:7711-7737. [PMID: 39727691 PMCID: PMC11674697 DOI: 10.3390/curroncol31120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
The incidence of melanoma, the most lethal form of skin cancer, has increased mainly due to ultraviolet exposure. The molecular characterization of melanomas has shown a high mutational burden led to the identification of some recurrent genetic alterations. BRAF gene is mutated in 40-50% of melanomas and its role in melanoma development is paramount. BRAF mutations confer constitutive activation of MAPK signalling. The large majority (about 90%) of BRAF mutations occur at amino acid 600; the majority are BRAFV600E mutations and less frequently BRAFv600K, V600D and V600M. The introduction of drugs that directly target BRAF-mutant protein (BRAF inhibitors) and of agents that stimulate immune response through targeting of immune check inhibitor consistently improved the survival of melanoma BRAFV600-mutant patients with unresectable/metastatic disease. In parallel, studies in melanoma stage II-III patients with resectable disease have shown that adjuvant therapy with ICIs and/or targeted therapy improves PFS and RFS, but not OS compared to placebo; however, neoadjuvant therapy plus adjuvant therapy improved therapeutic response compared to adjuvant therapy alone.
Collapse
Affiliation(s)
| | | | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (G.C.)
| |
Collapse
|
28
|
Long GV, Carlino MS, McNeil C, Ribas A, Gaudy-Marqueste C, Schachter J, Nyakas M, Kee D, Petrella TM, Blaustein A, Lotem M, Arance AM, Daud AI, Hamid O, Larkin J, Yao L, Singh R, Lal R, Robert C. Pembrolizumab versus ipilimumab for advanced melanoma: 10-year follow-up of the phase III KEYNOTE-006 study. Ann Oncol 2024; 35:1191-1199. [PMID: 39306585 DOI: 10.1016/j.annonc.2024.08.2330] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Pembrolizumab significantly improved overall survival (OS) versus ipilimumab for unresectable advanced melanoma in KEYNOTE-006 (NCT01866319); 10-year follow-up data are presented. PATIENTS AND METHODS Patients with unresectable stage III or IV melanoma were randomly assigned (1:1:1) to pembrolizumab 10 mg/kg i.v. every 2 weeks or every 3 weeks for ≤2 years (pooled), or ipilimumab 3 mg/kg i.v. every 3 weeks for four cycles. After KEYNOTE-006, patients could transition to KEYNOTE-587 (NCT03486873) for long-term follow-up. Eligible patients could receive second-course pembrolizumab. The primary endpoint was OS; modified progression-free survival (PFS; censored at date last known alive), modified PFS on second-course pembrolizumab, and melanoma-specific survival were exploratory. RESULTS Of 834 patients randomly assigned in KEYNOTE-006 (pembrolizumab, n = 556; ipilimumab, n = 278), 333 (39.9%) were eligible for KEYNOTE-587; 211/333 patients (25.3%) transitioned to KEYNOTE-587 (pembrolizumab, n = 159; ipilimumab, n = 52) and 122 (14.6%) did not. For patients who transitioned to KEYNOTE-587 (n = 211), median time from randomization in KEYNOTE-006 to data cut-off for KEYNOTE-587 (1 May 2024) was 123.7 months (range, 122.0-127.3 months). Median OS was 32.7 months [95% confidence interval (CI) 24.5-41.6 months] for pembrolizumab and 15.9 months (95% CI 13.3-22.0 months) for ipilimumab [hazard ratio (HR), 0.71 (95% CI 0.60-0.85)]; 10-year OS was 34.0% and 23.6%, respectively. Among patients who completed ≥94 weeks of pembrolizumab, median OS from week 94 was not reached (NR; 95% CI NR-NR); 8-year OS rate was 80.8%. Median modified PFS was 9.4 months (95% CI 6.7-11.6 months) for pembrolizumab and 3.8 months (2.9-4.3 months) for ipilimumab [HR, 0.64 (95% CI 0.54-0.75)]. Among patients who received second-course pembrolizumab, median modified PFS from start of second course was 51.8 months (95% CI 11.0 months-NR); 6-year modified PFS was 49.2%. Median melanoma-specific survival was 51.9 months (95% CI 30.0-114.7 months) for pembrolizumab and 17.2 months (13.9-25.9 months) for ipilimumab [HR, 0.66 (95% CI 0.55-0.81)]. CONCLUSIONS These results confirm that pembrolizumab provides long-term survival benefits in advanced melanoma, supporting it as a standard of care in this setting.
Collapse
Affiliation(s)
- G V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine & Health, The University of Sydney, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia.
| | - M S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine & Health, The University of Sydney, Sydney, Australia; Westmead and Blacktown Hospitals, Sydney, Australia
| | - C McNeil
- Chris O'Brien Lifehouse, Camperdown, Australia
| | - A Ribas
- Jonsson Comprehensive Cancer Center at The University of California Los Angeles (UCLA), Los Angeles, USA
| | - C Gaudy-Marqueste
- Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, CRCM La Timone Hospital, Dermatology and Skin Cancer Department, Marseille, France
| | - J Schachter
- Sheba Medical Center-Tel HaShomer, Ramat Gan, Israel
| | - M Nyakas
- Oslo University Hospital, Oslo, Norway
| | - D Kee
- Austin Health, Heidelberg, Australia
| | - T M Petrella
- Sunnybrook Health Sciences Centre, Toronto, Canada
| | - A Blaustein
- Mount Sinai Medical Center Comprehensive Cancer Center, Miami Beach, USA
| | - M Lotem
- Sharett Institute of Oncology, Hadassah University Hospital Ein Kerem, Jerusalem, Israel
| | - A M Arance
- Hospital Clinic Barcelona and IDIBAPS, Barcelona, Spain
| | - A I Daud
- Melanoma & Skin Cancer Center, University of California San Francisco, San Francisco
| | - O Hamid
- The Angeles Clinic and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, USA
| | - J Larkin
- The Royal Marsden NHS Foundation Trust, London, UK
| | - L Yao
- Merck & Co., Inc., Rahway, USA
| | - R Singh
- Merck & Co., Inc., Rahway, USA
| | - R Lal
- Merck & Co., Inc., Rahway, USA
| | - C Robert
- Gustave Roussy and Paris-Saclay University, Villejuif, France.
| |
Collapse
|
29
|
Justice J, Kankaria RA, Johnson DB. Immune checkpoint inhibition of metastatic melanoma: achieving high efficacy in the face of high toxicity. Expert Rev Clin Pharmacol 2024; 17:1115-1125. [PMID: 39570086 DOI: 10.1080/17512433.2024.2431513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have advanced the treatment of metastatic melanoma by blocking immune system down-regulators enhancing T-cell-mediated anti-tumor responses. However, many ICIs induce immune-related adverse effects (irAEs) that can impact many organ systems. AREAS COVERED Strategies used to manage irAEs include corticosteroids, anti-tumor necrosis factor alpha (TNF-α) agents, other biological therapies, fecal microbiota transplantation (FMT), and emerging regimens. In this review, we describe current evidence for the efficacy of ICIs, acute and chronic immune toxicities, and strategies to manage toxicities for patients treated with ICIs. EXPERT OPINION IrAE management will likely evolve by developing more tailored approaches to prevent toxicities, improving non-steroidal management strategies and tailoring the dose of steroids, and identifying biomarkers of severe toxicities.
Collapse
Affiliation(s)
- Joy Justice
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roma A Kankaria
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
30
|
Jo Y, Jin HS, Park Y. No more LAGging behind PD-1: uncovering the unique role of LAG-3 in T-cell exhaustion. Cell Mol Immunol 2024; 21:1351-1353. [PMID: 39433966 PMCID: PMC11607349 DOI: 10.1038/s41423-024-01227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| |
Collapse
|
31
|
Mantilla Rosa C, Vancheswaran A, Ariyan CE. T-cell immunotherapy for melanoma. Surg Oncol 2024; 57:102160. [PMID: 39579510 DOI: 10.1016/j.suronc.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
This review explores T-cell immunotherapy for melanoma, highlighting immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, anti-LAG-3), tumor-infiltrating lymphocytes (TILs), and emerging therapies that engineer T cells with specific receptors or T-cell receptors, such as CAR-T and TCR cells, and RNA vaccines. We discuss the history of T-cell immunotherapy, mechanisms of action, and future directions for improving patient outcomes.
Collapse
Affiliation(s)
- Cristian Mantilla Rosa
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Aparna Vancheswaran
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Charlotte E Ariyan
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
32
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Long GV, Lipson EJ, Hodi FS, Ascierto PA, Larkin J, Lao C, Grob JJ, Ejzykowicz F, Moshyk A, Garcia-Horton V, Zhou ZY, Xin Y, Palaia J, McDonald L, Keidel S, Salvatore A, Patel D, Sakkal LA, Tawbi H, Schadendorf D. First-Line Nivolumab Plus Relatlimab Versus Nivolumab Plus Ipilimumab in Advanced Melanoma: An Indirect Treatment Comparison Using RELATIVITY-047 and CheckMate 067 Trial Data. J Clin Oncol 2024; 42:3926-3934. [PMID: 39137386 PMCID: PMC11575907 DOI: 10.1200/jco.24.01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Nivolumab plus relatlimab and nivolumab plus ipilimumab have been approved for advanced melanoma on the basis of the phase II/III RELATIVITY-047 and phase III CheckMate 067 trials, respectively. As no head-to-head trial comparing these regimens exists, an indirect treatment comparison was conducted using patient-level data from each trial. METHODS Inverse probability of treatment weighting (IPTW) adjusted for baseline characteristic differences. Minimum follow-ups (RELATIVITY-047, 33 months; CheckMate 067, 36 months) were selected to best align assessments. Outcomes included progression-free survival (PFS), confirmed objective response rate (cORR), and melanoma-specific survival (MSS) per investigator; overall survival (OS); and treatment-related adverse events (TRAEs). A Cox regression model compared PFS, OS, and MSS. A logistic regression model compared cORRs. Subgroup analyses were exploratory. RESULTS After IPTW, key baseline characteristics were balanced for nivolumab plus relatlimab (n = 339) and nivolumab plus ipilimumab (n = 297). Nivolumab plus relatlimab demonstrated similar PFS (hazard ratio [HR], 1.08 [95% CI, 0.88 to 1.33]), cORR (odds ratio, 0.91 [95% CI, 0.73 to 1.14]), OS (HR, 0.94 [95% CI, 0.75 to 1.19]), and MSS (HR, 0.86 [95% CI, 0.67 to 1.12]) to nivolumab plus ipilimumab. Subgroup comparisons showed larger numerical differences favoring nivolumab plus ipilimumab with acral melanoma, BRAF-mutant melanoma, and lactate dehydrogenase >2 × upper limit of normal, but were limited by small samples. Nivolumab plus relatlimab was associated with fewer grade 3-4 TRAEs (23% v 61%) and any-grade TRAEs leading to discontinuation (17% v 41%). CONCLUSION Nivolumab plus relatlimab demonstrated similar efficacy to nivolumab plus ipilimumab in the overall population, including most-but not all-subgroups, and improved safety in patients with untreated advanced melanoma. Results should be interpreted with caution.
Collapse
Affiliation(s)
- Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Evan J. Lipson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD
| | | | | | - James Larkin
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hussein Tawbi
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dirk Schadendorf
- University of Essen and the German Cancer Consortium, Partner Site, Essen, Germany
- National Center for Tumor Diseases (NCT-West), Campus Essen, Essen, Germany
- University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Martineau R, Susini S, Marabelle A. Fc Effector Function of Immune Checkpoint Blocking Antibodies in Oncology. Immunol Rev 2024; 328:334-349. [PMID: 39663733 PMCID: PMC11659940 DOI: 10.1111/imr.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Antagonistic monoclonal antibodies (mAbs) targeting inhibitory immune checkpoints have revolutionized the field of oncology. CTLA-4, PD-1, and LAG3 are three co-inhibitory receptors, which can be expressed by subsets of T cells and which play a role in the regulation of adaptive immune responses. Blocking these immune checkpoints receptors (or their ligands) with antagonistic antibodies can lead to tumor regressions and lasting remissions in some patients with cancer. Two anti-CTLA4, six anti-PD1, three anti-PD-L1, and one anti-LAG3 antibodies are currently approved by the FDA and EMA. Their mechanism of action, safety, and efficacy are linked to their affinity with Fc gamma receptors (FcγR) (so called "effector functions"). The anti-CTLA-4 antibodies ipilimumab (IgG1) and tremilimumab (IgG2a), and the anti-PD-L1 avelumab (IgG1) have isotypes with high affinity for activating FcγR and thereby can induce ADCC/ADCP. The effector function is required for the in vivo efficacy of anti-CTLA4 antibodies. For anti-PD(L)1 antibodies, where a pure antagonistic function ("checkpoint blockade") is sufficient, some mAbs are IgG1 but have been mutated in their Fc sequence (e.g., durvalumab and atezolizumab) or are IgG4 (e.g., nivolumab and pembrolizumab) to have low affinity for FcγR. Here, we review the impact of FcγR effector function on immune checkpoint blockers safety and efficacy in oncology.
Collapse
Affiliation(s)
- Romane Martineau
- Université Paris SaclayLe Kremlin‐BicetreFrance
- Centre d'Investigation Clinique BIOTHERIS, CIC 1428Institut National de la Santé et de la Recherche Médicale (INSERM)VillejuifFrance
| | - Sandrine Susini
- Centre d'Investigation Clinique BIOTHERIS, CIC 1428Institut National de la Santé et de la Recherche Médicale (INSERM)VillejuifFrance
- Translational Immunotherapy Research LaboratoryGustave RoussyVillejuifFrance
| | - Aurelien Marabelle
- Université Paris SaclayLe Kremlin‐BicetreFrance
- Centre d'Investigation Clinique BIOTHERIS, CIC 1428Institut National de la Santé et de la Recherche Médicale (INSERM)VillejuifFrance
- Translational Immunotherapy Research LaboratoryGustave RoussyVillejuifFrance
| |
Collapse
|
35
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
36
|
Márquez-Rodas I, Muñoz Couselo E, Rodríguez Moreno JF, Arance Fernández AM, Berciano Guerrero MÁ, Campos Balea B, de la Cruz Merino L, Espinosa Arranz E, García Castaño A, Berrocal Jaime A. SEOM-GEM clinical guidelines for cutaneous melanoma (2023). Clin Transl Oncol 2024; 26:2841-2855. [PMID: 38748192 PMCID: PMC11467041 DOI: 10.1007/s12094-024-03497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 10/11/2024]
Abstract
Cutaneous melanoma incidence is rising. Early diagnosis and treatment administration are key for increasing the chances of survival. For patients with locoregional advanced melanoma that can be treated with complete resection, adjuvant-and more recently neoadjuvant-with targeted therapy-BRAF and MEK inhibitors-and immunotherapy-anti-PD-1-based therapies-offer opportunities to reduce the risk of relapse and distant metastases. For patients with advanced disease not amenable to radical treatment, these treatments offer an unprecedented increase in overall survival. A group of medical oncologists from the Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines, based on a thorough review of the best evidence available. The following guidelines try to cover all the aspects from the diagnosis-clinical, pathological, and molecular-staging, risk stratification, adjuvant therapy, advanced disease therapy, and survivor follow-up, including special situations, such as brain metastases, refractory disease, and treatment sequencing. We aim help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | - Eva Muñoz Couselo
- Hospital Vall d'Hebron & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | | | - Luis de la Cruz Merino
- Cancer Immunotherapy, Biomedicine Institute of Seville (IBIS)/CSIC, Clinical Oncology Department, University Hospital Virgen Macarena and School of Medicine, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
37
|
de Gooyer PGM, Verschoor YL, van den Dungen LDW, Balduzzi S, Marsman HA, Geukes Foppen MH, Grootscholten C, Dokter S, den Hartog AG, Verbeek WHM, Woensdregt K, van den Broek JJ, Oosterling SJ, Schumacher TN, Kuhlmann KFD, Beets-Tan RGH, Haanen JBAG, van Leerdam ME, van den Berg JG, Chalabi M. Neoadjuvant nivolumab and relatlimab in locally advanced MMR-deficient colon cancer: a phase 2 trial. Nat Med 2024; 30:3284-3290. [PMID: 39278994 PMCID: PMC11564102 DOI: 10.1038/s41591-024-03250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
Mismatch repair deficiency (dMMR) is found in approximately 15% of non-metastatic colon cancers (CCs) and is characterized by a defective DNA mismatch repair system, resulting in hypermutated and highly immunogenic tumors. Although patients with dMMR CC have limited benefit from chemotherapy, these tumors have been shown to respond exceptionally well to neoadjuvant anti-PD-1 plus anti-CTLA-4, with high rates of pathologic responses. Here, based on data from melanoma studies, we postulated a high efficacy and favorable toxicity profile of anti-PD-1 plus anti-LAG-3. In the NICHE-3 study, a total of 59 patients with locally advanced dMMR CC were treated with two 4-weekly cycles of nivolumab (480 mg) plus relatlimab (480 mg) before surgery. Pathologic response was observed in 57 of 59 (97%; 95% confidence interval (CI): 88-100%) patients, meeting the primary endpoint. Responses included 54 (92%; 95% CI: 81-97%) major pathologic responses (≤10% residual viable tumor) and 40 (68%; 95% CI: 54-79%) pathologic complete responses. With a median follow-up of 8 months (range, 2-19), one patient had recurrence of disease. The treatment displayed an acceptable safety profile, with all-grade and grade 3-4 immune-related adverse events (irAEs) occurring in 80% and 10% of patients, respectively. The most common irAEs were infusion-related reactions (29%), thyroid dysfunction (22%) and fatigue (20%). In conclusion, our results show that neoadjuvant nivolumab/relatlimab induces high rates of pathologic responses and that further investigation of this treatment in larger studies is warranted. These data add to the body of evidence in support of neoadjuvant immunotherapy regimens in dMMR CC. ClinicalTrials.gov identifier: NCT03026140 .
Collapse
Affiliation(s)
- Peter G M de Gooyer
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yara L Verschoor
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Sara Balduzzi
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marnix H Geukes Foppen
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cecile Grootscholten
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simone Dokter
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne G den Hartog
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wieke H M Verbeek
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Steven J Oosterling
- Department of Surgical Oncology, Spaarne Gasthuis, Haarlem and Hoofddorp, The Netherlands
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Koert F D Kuhlmann
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monique E van Leerdam
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Myriam Chalabi
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Chick RC, Pawlik TM. Updates in Immunotherapy for Pancreatic Cancer. J Clin Med 2024; 13:6419. [PMID: 39518557 PMCID: PMC11546190 DOI: 10.3390/jcm13216419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with limited effective therapeutic options. Due to a variety of cancer cell-intrinsic factors, including KRAS mutations, chemokine production, and other mechanisms that elicit a dysregulated host immune response, PDAC is often characterized by poor immune infiltration and an immune-privileged fibrotic stroma. As understanding of the tumor microenvironment (TME) evolves, novel therapies are being developed to target immunosuppressive mechanisms. Immune checkpoint inhibitors have limited efficacy when used alone or with radiation. Combinations of immune therapies, along with chemotherapy or chemoradiation, have demonstrated promise in preclinical and early clinical trials. Despite dismal response rates for immunotherapy for metastatic PDAC, response rates with neoadjuvant immunotherapy are somewhat encouraging, suggesting that incorporation of immunotherapy in the treatment of PDAC should be earlier in the disease course. Precision therapy for PDAC may be informed by advances in transcriptomic sequencing that can identify immunophenotypes, allowing for more appropriate treatment selection for each individual patient. Personalized and antigen-specific therapies are an increasing topic of interest, including adjuvant immunotherapy using personalized mRNA vaccines to prevent recurrence. Further development of personalized immune therapies will need to balance precision with generalizability and cost.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
39
|
Gunderson AJ. LAGging behind no more: PD-1 has a new immunotherapy partner. Immunity 2024; 57:2266-2268. [PMID: 39383843 DOI: 10.1016/j.immuni.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
PD-1 blockade partially reverses T cell exhaustion in cancer patients, but broad responses are still limited. Three studies recently published in Cell illuminate how abrogating LAG-3 and PD-1 synergize to further push effector T cell functionality via distinct molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Gunderson
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Compagno S, Casadio C, Galvani L, Rosellini M, Marchetti A, Tassinari E, Piazza P, Mottaran A, Santoni M, Schiavina R, Massari F, Mollica V. Novel Immune Checkpoint Inhibitor Targets in Advanced or Metastatic Renal Cell Carcinoma: State of the Art and Future Perspectives. J Clin Med 2024; 13:5738. [PMID: 39407796 PMCID: PMC11476392 DOI: 10.3390/jcm13195738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have become the cornerstone of treatment in renal cell carcinoma (RCC), for both metastatic disease and in an adjuvant setting. However, an adaptive resistance from cancer cells may arise during ICI treatment, therefore many studies are focusing on additional immune checkpoint inhibitor pathways. Promising targets of immunotherapeutic agents under investigation include T cell immunoglobulin and ITIM domain (TIGIT), immunoglobulin-like transcript 4 (ILT4), lymphocyte activation gene-3 (LAG-3), vaccines, T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and chimeric antigen receptor (CAR) T cells. In this review of the literature, we recollect the current knowledge of the novel treatment strategies in the field of immunotherapy that are being investigated in RCC and analyze their mechanism of action, their activity and the clinical studies that are currently underway.
Collapse
Affiliation(s)
- Samuele Compagno
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Chiara Casadio
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Linda Galvani
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Matteo Rosellini
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Andrea Marchetti
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Elisa Tassinari
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Pietro Piazza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
- Division of Urology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Angelo Mottaran
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
- Division of Urology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Riccardo Schiavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
- Division of Urology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Veronica Mollica
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
| |
Collapse
|
41
|
Attrash M, Badran O, Shapira Y, Bar-Sela G. Case report: Conjunctival melanoma treated with relatlimab and nivolumab showing remarkable response. Front Oncol 2024; 14:1428152. [PMID: 39386188 PMCID: PMC11461447 DOI: 10.3389/fonc.2024.1428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Conjunctival melanoma, an uncommon form of ocular melanoma, shares some molecular characteristics with cutaneous melanoma and some with mucosal melanoma. Treatment of cases where it becomes advanced or metastatic raises unique treatment challenges. Nivolumab/relatlimab (Opdualag) recently received FDA approval for metastatic melanoma based on the phase 2/3 RELATIVITY-047 trial, which showed better median progression-free survival (PFS) in the first-line setting without new safety signals. The efficacy of this drug in conjunctival melanoma has not been reported yet. Case presentation An 87-year-old woman with a history of mild dementia was admitted to the oncology department with a large, exophytic tumor protruding from her left eye, diagnosed as conjunctival melanoma two years previously. This tumor was secreting a whitish fluid and obstructing her vision. Immunotherapy with Opdualag was started, with a near clinical complete response after the 1st cycle. The patient was treated with only four cycles due to worsening of her dementia. Conclusion Nivolumab/relatlimab (Opdualag) is a promising treatment alternative in conjunctival melanoma when surgery is not viable.
Collapse
Affiliation(s)
- Mirona Attrash
- Department of Oncology, Emek Medical Center, Afula, Israel
| | - Omar Badran
- Department of Oncology, Emek Medical Center, Afula, Israel
| | - Yinon Shapira
- Faculty of Medicine, Technion, Haifa, Israel
- Department of Ophthalmology, Carmel Medical Center, Haifa, Israel
| | - Gil Bar-Sela
- Department of Oncology, Emek Medical Center, Afula, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
42
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
43
|
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
44
|
Mueller C, Davis JB, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research: a 2024 update. Expert Rev Proteomics 2024; 21:401-416. [PMID: 39474929 DOI: 10.1080/14789450.2024.2423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Breast cancer subtyping is used clinically for diagnosis, prognosis, and treatment decisions. Subtypes are categorized by cell of origin, histomorphology, gene expression signatures, hormone receptor status, and/or protein levels. Categorizing breast cancer based on gene expression signatures aids in assessing a patient's recurrence risk. Protein biomarkers, on the other hand, provide functional data for selecting therapies for primary and recurrent tumors. We provide an update on protein biomarkers in breast cancer subtypes and their application in prognosis and therapy selection. AREAS COVERED Protein pathways in breast cancer subtypes are reviewed in the context of current protein-targeted treatment options. PubMed, Science Direct, Scopus, and Cochrane Library were searched for relevant studies between 2017 and 17 August 2024. EXPERT OPINION Post-translationally modified proteins and their unmodified counterparts have become clinically useful biomarkers for defining breast cancer subtypes from a therapy perspective. Tissue heterogeneity influences treatment outcomes and disease recurrence. Spatial profiling has revealed complex cellular subpopulations within the breast tumor microenvironment. Deciphering the functional relationships between and within tumor clonal cell populations will further aid in defining breast cancer subtypes and create new treatment paradigms for recurrent, drug resistant, and metastatic disease.
Collapse
Affiliation(s)
- Claudius Mueller
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Justin B Davis
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
45
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
46
|
Hamid O, Lewis KD, Weise A, McKean M, Papadopoulos KP, Crown J, Kim TM, Lee DH, Thomas SS, Mehnert J, Kaczmar J, Lakhani NJ, Kim KB, Middleton MR, Rabinowits G, Spira AI, Yushak M, Mehmi I, Fang F, Chen S, Mani J, Jankovic V, Wang F, Fiaschi N, Brennan L, Paccaly A, Masinde S, Salvati M, Fury MG, Kroog G, Lowy I, Gullo G. Phase I Study of Fianlimab, a Human Lymphocyte Activation Gene-3 (LAG-3) Monoclonal Antibody, in Combination With Cemiplimab in Advanced Melanoma. J Clin Oncol 2024; 42:2928-2938. [PMID: 38900987 PMCID: PMC11328921 DOI: 10.1200/jco.23.02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE Coblockade of lymphocyte activation gene-3 (LAG-3) and PD-1 receptors could provide significant clinical benefit for patients with advanced melanoma. Fianlimab and cemiplimab are high-affinity, human, hinge-stabilized IgG4 monoclonal antibodies, targeting LAG-3 and PD-1, respectively. We report results from a first-in-human phase-I study of fianlimab and cemiplimab safety and efficacy in various malignancies including advanced melanoma. METHODS Patients with advanced melanoma were eligible for enrollment into four cohorts: three for patients without and one for patients with previous anti-PD-1 therapy in the advanced disease setting. Patients were treated with fianlimab 1,600 mg and cemiplimab 350 mg intravenously once every 3 weeks for up to 51 weeks, with an optional additional 51 weeks if clinically indicated. The primary end point was objective response rate (ORR) per RECIST 1.1 criteria. RESULTS ORRs were 63% for patients with anti-PD-1-naïve melanoma (cohort-6; n = 40; median follow-up 20.8 months), 63% for patients with systemic treatment-naïve melanoma (cohort-15; n = 40; 11.5 months), and 56% for patients with previous neo/adjuvant treatment melanoma (cohort-16; n = 18, 9.7 months). At a median follow-up of 12.6 months for the combined cohorts (6 + 15 + 16), the ORR was 61.2% and the median progression-free survival (mPFS) 13.3 months (95% CI, 7.5 to not estimated [NE]). In patients (n = 13) with previous anti-PD-1 adjuvant therapy, ORR was 61.5% and mPFS 12 months (95% CI, 1.4 to NE). ORR in patients with previous anti-PD-1 therapy for advanced disease (n = 15) was 13.3% and mPFS 1.5 months (95% CI, 1.3 to 7.7). Treatment-emergent and treatment-related adverse events ≥grade 3 (G3) were observed in 44% and 22% of patients, respectively. Except for increased incidence of adrenal insufficiency (12%-G1-4, 4%-G3-4), no new safety signals were recorded. CONCLUSION The current results show a promising benefit-risk profile of fianlimab/cemiplimab combination for patients with advanced melanoma, including those with previous anti-PD-1 therapy in the adjuvant, but not advanced, setting.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Karl D. Lewis
- University of Colorado Denver Cancer Center, Aurora, CO
| | | | - Meredith McKean
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN
| | | | - John Crown
- St Vincent's University Hospital, Dublin, Ireland
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Sajeve S. Thomas
- University of Florida Health Cancer Center at Orlando Health, Orlando, FL
| | - Janice Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Kevin B. Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mark R. Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | | - Melinda Yushak
- Department of Hematology and Medical Oncology at Emory University School of Medicine, Atlanta, GA
| | - Inderjit Mehmi
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Fang Fang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | - Fang Wang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | | | | | - Glenn Kroog
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Israel Lowy
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | |
Collapse
|
47
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
48
|
Kureshi CT, Dougan M, Dougan SK. Anti-LAG-3 boosts CD8 T cell effector function. Cell 2024; 187:4144-4146. [PMID: 39121844 DOI: 10.1016/j.cell.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
LAG-3 is the third immune checkpoint pathway successfully targeted for cancer therapy. Although ineffective as a monotherapy, combination of LAG-3 and PD-1 blockade improves survival from advanced melanoma. In this issue of Cell, two studies in mice and a human clinical trial provide insights on LAG-3 in immune regulation.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Michael Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Kennedy LB, Salama AKS. Multiple Options: How to Choose Therapy in Frontline Metastatic Melanoma. Curr Oncol Rep 2024; 26:915-923. [PMID: 38837107 DOI: 10.1007/s11912-024-01547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Given the rapid development of multiple targeted and immune therapies for patients with advanced melanoma, it can be challenging to select a therapy based on currently available data. This review aims to provide an overview of frontline options for metastatic melanoma, with practical guidance for selecting a treatment regimen. RECENT FINDINGS Recently reported data from randomized trials suggests that the majority of patients with unresectable melanoma should receive a PD-1 checkpoint inhibitor as part of their first line therapy, irrespective of BRAF mutation status. Additional data also suggests that combination immunotherapies result in improved outcomes compared to single agent, albeit at the cost of increased toxicity, though to date no biomarker exists to help guide treatment selection. As the number therapeutic options continue to grow for patients with advanced melanoma, there is likely to be a continued focus on combination strategies. Defining the optimal treatment approach in order to maximize efficacy while minimizing toxicity remains an area of active investigation.
Collapse
Affiliation(s)
- Lucy Boyce Kennedy
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, 44195, USA
| | - April K S Salama
- Division of Medical Oncology, Duke University Hospital, Durham, NC, 27710, USA.
| |
Collapse
|
50
|
Varma S, Sullivan K, DiCarlo J, Coromilas A, Staller K, Dougan M. The Development of Persistent Gastrointestinal Symptoms in Patients With Melanoma Who Have Had an Immune Checkpoint Inhibitor-Related Gastrointestinal Toxicity. Clin Transl Gastroenterol 2024; 15:e00746. [PMID: 38995215 PMCID: PMC11346846 DOI: 10.14309/ctg.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Immune-related adverse events (irAE) secondary to immune checkpoint inhibitors (ICI) have gastrointestinal (GI) manifestations, including gastritis, enteritis, and/or colitis. The long-term sequelae of ICI-associated GI toxicities (GI-irAE), particularly the development of disorders of gut-brain interaction, are not well known. We characterized the incidence of persistent GI symptoms after GI-irAE. METHODS This is a retrospective study of adults with melanoma treated with ICI and diagnosed with GI-irAE at our institution from 2013 to 2021. All patients had endoscopic and histologic evidence of GI-irAE. The primary outcome was incidence of persistent GI symptoms (diarrhea, abdominal pain, bloating, constipation, fecal incontinence, nausea, vomiting) after resolution of GI-irAE. Hazard ratios evaluated the association between parameters and time to persistent GI symptoms. RESULTS One hundred four patients with melanoma (90% stage IV disease) and GI-irAE met inclusion criteria. Thirty-four percent received anti-cytotoxic T lymphocyte-associated protein-4 therapy, 33% anti-programmed death-1, and 34% dual therapy. Patients were treated for GI-irAE for an average of 9 ± 6 weeks. Twenty-eight (27%) patients developed persistent GI symptoms 1.6 ± 0.8 years after GI-irAE. The most common symptom was constipation (17%), followed by bloating (8%) and diarrhea (5%). Over 453 person-years, the incident rate was 6.2% per 100 person-years. Use of cytotoxic T lymphocyte-associated protein-4 single or dual therapy was associated with a 3.51× risk of persistent GI symptoms (95% confidence interval 1.20-10.23). DISCUSSION In this cohort of melanoma patients who experienced GI-irAE, 26% developed persistent GI symptoms, most frequently constipation. Future studies should characterize the GI sequelae after GI-irAE, which may shed light on disorders of gut-brain interaction pathogenesis and improve the lives of cancer survivors.
Collapse
Affiliation(s)
- Sanskriti Varma
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Center for Neurointestinal Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Keri Sullivan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie DiCarlo
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Coromilas
- Department of Dermatology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, New York, USA
| | - Kyle Staller
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Center for Neurointestinal Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|