1
|
Mertens J, Roosens L, Braspenning R, Vandebeeck J, Francque S, De Block C. The 13C Glucose Breath Test Accurately Identifies Insulin Resistance in People With Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:e432-e442. [PMID: 38487831 DOI: 10.1210/clinem/dgae175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 01/22/2025]
Abstract
OBJECTIVE This study investigated whether the delta-over-baseline of exhaled 13CO2 (Δ13CO2), generated from a 13C glucose breath test (13C-GBT), measured insulin resistance (IR) in people with type 1 diabetes, using the hyperinsulinemic-euglycemic clamp (HEC) as a reference method. The secondary objective was to compare the 13C-GBT with the estimated glucose disposal rate (eGDR). METHODS A 40 mU/m2/min HEC and 2 separate 13C-GBTs (euglycemic with insulin bolus and hyperglycemic without bolus) were consecutively performed in 44 adults with type 1 diabetes with varying body compositions. eGDR was calculated based on hemoglobin A1c (HbA1c), presence of hypertension, and waist circumference. RESULTS The mean glucose disposal rate (M-value) was 5.9 ± 3.1 mg/kg/min and mean euglycemic Δ13CO2 was 6.4 ± 2.1 δ‰, while median eGDR was 5.9 [4.3-9.8] mg/kg/min. The hyperglycemic Δ13CO2 did not correlate with the M-value, while the euglycemic Δ13CO2 and the M-value correlated strongly (r = 0.74, P < .001). The correlation between M-value and eGDR was more moderate (Spearman's rho = 0.63, P < .001). Linear regression showed an association between Δ13CO2 and M-value, adjusted for age, sex, and HbA1c ]adjusted R² = 0.52, B = 1.16, 95% confidence interval (CI) .80-1.52, P < .001]. The area under the receiver-operator characteristics curve for Δ13CO2 to identify subjects with IR (M-value < 4.9 mg/kg/min) was 0.81 (95% CI .68-.94, P < .001). The optimal cut-off for Δ13CO2 to identify subjects with IR was ≤ 5.8 δ‰. CONCLUSION Under euglycemic conditions, the 13C-GBT accurately identified individuals with type 1 diabetes and concurrent IR, suggesting its potential as a valuable noninvasive index. Clinical Trial Identifier: NCT04623320.
Collapse
Affiliation(s)
- Jonathan Mertens
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem, Belgium
- Department of Gastroenterology & Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | - Laurence Roosens
- Laboratory of Clinical Chemistry, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Rie Braspenning
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Joeri Vandebeeck
- Laboratory of Clinical Chemistry, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sven Francque
- Department of Gastroenterology & Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Cobelli C, Kovatchev B. Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility. J Diabetes Sci Technol 2023; 17:1493-1505. [PMID: 37743740 PMCID: PMC10658679 DOI: 10.1177/19322968231195081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Arguably, diabetes mellitus is one of the best quantified human conditions. In the past 50 years, the metabolic monitoring technologies progressed from occasional assessment of average glycemia via HbA1c, through episodic blood glucose readings, to continuous glucose monitoring (CGM) producing data points every few minutes. The high-temporal resolution of CGM data enabled increasingly intensive treatments, from decision support assisting insulin injection or oral medication, to automated closed-loop control, known as the "artificial pancreas." Throughout this progress, mathematical models and computer simulation of the human metabolic system became indispensable for the technological progress of diabetes treatment, enabling every step, from assessment of insulin sensitivity via the now classic Minimal Model of Glucose Kinetics, to in silico trials replacing animal experiments, to automated insulin delivery algorithms. In this review, we follow these developments, beginning with the Minimal Model, which evolved through the years to become large and comprehensive and trigger a paradigm change in the design of diabetes optimization strategies: in 2007, we introduced a sophisticated model of glucose-insulin dynamics and a computer simulator equipped with a "population" of N = 300 in silico "subjects" with type 1 diabetes. In January 2008, in an unprecedented decision, the Food and Drug Administration (FDA) accepted this simulator as a substitute to animal trials for the pre-clinical testing of insulin treatment strategies. This opened the field for rapid and cost-effective development and pre-clinical testing of new treatment approaches, which continues today. Meanwhile, animal experiments for the purpose of designing new insulin treatment algorithms have been abandoned.
Collapse
Affiliation(s)
| | - Boris Kovatchev
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Elghobashy M, Gama R, Sulaiman RA. Investigation and Causes of Spontaneous (Non-Diabetic) Hypoglycaemia in Adults: Pitfalls to Avoid. Diagnostics (Basel) 2023; 13:3275. [PMID: 37892096 PMCID: PMC10606153 DOI: 10.3390/diagnostics13203275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Although adult spontaneous (non-diabetic) hypoglycaemia is rare, its recognition is important for the preventative or curative treatment of the underlying cause. Establishing Whipple's triad-low blood glucose, neuroglycopaenia and resolution of neuroglycopaenia on increasing blood glucose levels to normal or above-is essential to verify hypoglycaemia. Awareness that hypoglycaemia may occur in severely ill patients is important for its prevention. Further investigation in such cases is unnecessary unless another cause of hypoglycaemia is suspected. Patients are often asymptomatic and normoglycaemic at review. Their history of medication, self-medication, access to hypoglycaemic drugs, alcohol use and comorbidity may provide aetiological clues. The investigation involves obtaining blood samples during symptoms for laboratory glucose measurement or provoking fasting or postprandial hypoglycaemia as directed by symptoms. If confirmed, insulin, c-peptide, proinsulin and beta-hydroxybutyrate are analysed in hypoglycaemic samples. These will classify hypoglycaemia due to non-ketotic hyperinsulinaemia, non-ketotic hypoinsulinaemia and ketotic hypoinsulinaemia, and direct investigations to identify the underlying cause. There are, however, many pitfalls that may mislabel healthy individuals as "hypoglycaemic" or misdiagnose treatable or preventable causes of spontaneous hypoglycaemia. Clinical acumen and appropriate investigations will mostly identify hypoglycaemia and its cause.
Collapse
Affiliation(s)
- Maiar Elghobashy
- Clinical Chemistry, Black Country Pathology Services, Royal Wolverhampton Trust, Wolverhampton WV10 0QP, UK; (M.E.); (R.G.)
| | - Rousseau Gama
- Clinical Chemistry, Black Country Pathology Services, Royal Wolverhampton Trust, Wolverhampton WV10 0QP, UK; (M.E.); (R.G.)
- School of Medicine and Clinical Practice, Wolverhampton University, Wolverhampton WV1 1LY, UK
| | - Raashda Ainuddin Sulaiman
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
4
|
Schuit F, Campbell JE. GPCR Promiscuity Reshapes Islet Physiology. Diabetes 2023; 72:1180-1183. [PMID: 37603722 DOI: 10.2337/dbi23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 08/23/2023]
Abstract
The family of proglucagon peptides Includes glucagon and glucagon-like peptide 1 (GLP-1), two unique peptides derived from the same prohormone. Despite numerous similarities between the peptides, these have long been viewed as having opposing actions on metabolism. GLP-1 is described as a postprandial hormone that stimulates anabolic actions via insulin, while glucagon is viewed as a fasting hormone that drives catabolic actions to maintain euglycemia. Here, we revisit a classic article in Diabetes that first established that glucagon and GLP-1 have more in common than previously appreciated, including actions at the same receptor. Furthermore, we discuss how the impact of this observation has guided research decades later that has reshaped the view of how proglucagon hormones regulate metabolism.
Collapse
Affiliation(s)
- Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
5
|
Schwartz MW, Krinsley JS, Faber CL, Hirsch IB, Brownlee M. Brain Glucose Sensing and the Problem of Relative Hypoglycemia. Diabetes Care 2023; 46:237-244. [PMID: 36701597 PMCID: PMC9887623 DOI: 10.2337/dc22-1445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023]
Abstract
"Relative hypoglycemia" is an often-overlooked complication of diabetes characterized by an increase in the glycemic threshold for detecting and responding to hypoglycemia. The clinical relevance of this problem is linked to growing evidence that among patients with critical illness, higher blood glucose in the intensive care unit is associated with higher mortality among patients without diabetes but lower mortality in patients with preexisting diabetes and an elevated prehospitalization HbA1c. Although additional studies are needed, the cardiovascular stress associated with hypoglycemia perception, which can occur at normal or even elevated glucose levels in patients with diabetes, offers a plausible explanation for this difference in outcomes. Little is known, however, regarding how hypoglycemia is normally detected by the brain, much less how relative hypoglycemia develops in patients with diabetes. In this article, we explore the role in hypoglycemia detection played by glucose-responsive sensory neurons supplying peripheral vascular beds and/or circumventricular organs. These observations support a model wherein relative hypoglycemia results from diabetes-associated impairment of this neuronal glucose-sensing process. By raising the glycemic threshold for hypoglycemia perception, this impairment may contribute to the increased mortality risk associated with standard glycemic management of critically ill patients with diabetes.
Collapse
Affiliation(s)
- Michael W. Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA
| | - James S. Krinsley
- Stamford Hospital, Stamford, CT
- Columbia Vagelos College of Physicians and Surgeons, New York, NY
| | - Chelsea L. Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ
| | - Irl B. Hirsch
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA
| | - Michael Brownlee
- Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
6
|
Scheen AJ, Lefèbvre PJ. Glucagon, from past to present: a century of intensive research and controversies. Lancet Diabetes Endocrinol 2023; 11:129-138. [PMID: 36566754 DOI: 10.1016/s2213-8587(22)00349-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
2022 corresponds to the 100th anniversary of the discovery of glucagon. This TimeCapsule aims to recall the main steps leading to the discovery, characterisation, and clinical importance of the so-called second pancreatic hormone. We describe the early historical findings in basic research (ie, discovery, purification, structure, α-cell origin, radioimmunoassay, glucagon gene [GCG], and glucagon receptor [GLR]), in which three future Nobel Prize laureates were actively involved. Considered as an anti-insulin hormone, glucagon was rapidly used to treat insulin-induced hypoglycaemic coma episodes in people with type 1 diabetes. A key step in the story of glucagon was the discovery of its role and the role of α cells in the physiology and pathophysiology (ie, paracrinopathy) of type 2 diabetes. This concept led to the design of different strategies targeting glucagon, among which GLP-1 receptor (GLP1R) agonists were a major breakthrough, and combination of inhibition of glucagon secretion with stimulation of insulin secretion (both in a glucose-dependent manner). Taking advantage of the glucagon-induced increase in energy metabolism, biased coagonists were developed. Besides the GLP-1 receptor, these coagonists also target the glucagon receptor to further promote weight loss. Thus, the 100-year story of glucagon has most probably not come to an end.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium.
| | - Pierre J Lefèbvre
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium
| |
Collapse
|
7
|
Papazoglou I, Lee JH, Cui Z, Li C, Fulgenzi G, Bahn YJ, Staniszewska-Goraczniak HM, Piñol RA, Hogue IB, Enquist LW, Krashes MJ, Rane SG. A distinct hypothalamus-to-β cell circuit modulates insulin secretion. Cell Metab 2022; 34:285-298.e7. [PMID: 35108515 PMCID: PMC8935365 DOI: 10.1016/j.cmet.2021.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/01/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic β cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to β cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate β cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in β cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with β cells in mice to regulate insulin secretion, and their function is necessary for the β cell response to hypoglycemia.
Collapse
Affiliation(s)
- Ioannis Papazoglou
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA.
| | - Ji-Hyeon Lee
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Zhenzhong Cui
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Gianluca Fulgenzi
- Neural Development Section, MCGP, CCR, NCI, NIH, Frederick, MD, USA; Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Young Jae Bahn
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | | | - Ramón A Piñol
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Ian B Hogue
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Sushil G Rane
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Dugalić S, Todorović J, Macura M, Gutić B, Milinčić M, Božić D, Stojiljković M, Pantić I, Perović M, Gojnić M. Theoretical basis of perinatology therapy in pregnant women with diabetes mellitus. SANAMED 2022. [DOI: 10.5937/sanamed0-40167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder that can occur before pregnancy, be detected during pregnancy, or develop during pregnancy. Therapeutic modalities available today significantly facilitate glycoregulation during pregnancy and childbirth. This review presents different insulin regimens, as well as the advantages and disadvantages of oral antidiabetic agents use with a special focus on hypoglycemia. The importance of maintaining optimal glycemic levels and educating patients in blood glucose self-measurement is explained.
Collapse
|
9
|
Mika K, Szafarz M, Bednarski M, Kuder K, Szczepańska K, Pociecha K, Pomierny B, Kieć-Kononowicz K, Sapa J, Kotańska M. Metabolic benefits of novel histamine H 3 receptor ligands in the model of excessive eating: The importance of intrinsic activity and pharmacokinetic properties. Biomed Pharmacother 2021; 142:111952. [PMID: 34325303 DOI: 10.1016/j.biopha.2021.111952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS One of the therapeutic approaches in the treatment of obesity is the use of histamine H3 receptor ligands. Histamine plays a significant role in eating behavior because it causes a loss of appetite and is considered to be a satiety signal released during food intake. MATERIAL AND METHODS Histamine ligands were selected based on the preliminary studies which included determination of intrinsic activity and selected pharmacokinetic parameters. Female Wistar rats were fed palatable feed for 28 days and simultaneously the tested compounds were administered intraperitoneally at a dose of 10 mg/kg b.w./day. Rats' weight was evaluated daily and calories intake was evaluated once per week. At the end of experiment insulin and glucose tolerance tests was performed. Plasma levels of cholesterol, triglycerides, leptin, insulin, glucose, C-peptide and CRP were also determined. In order to rule out false-positive results the influence of tested compounds on spontaneous activity of rats was monitored. RESULTS Animals fed palatable feed and treated with KSK-61 or KSK-63 compounds showed the slowest weight gain which was comparable to the one observed in control animals. Both compounds with the highest pharmacological activity have also similar pharmacokinetic properties with quite long half-life and high volume of distribution indicating that they can freely cross most biological barriers. Some compounds, especially KSK-63, compensated for metabolic disorders. CONCLUSION The presented study proves that search among the active histamine H3 receptor ligands for the new therapeutic agents to treat obesity is justified. Compounds KSK-61 and KSK-63 can be considered as the leading structures.
Collapse
Affiliation(s)
- Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Cracow, Poland.
| |
Collapse
|
10
|
El-Ouady F, Lahrach N, Ajebli M, Haidani AE, Eddouks M. Antihyperglycemic Effect of the Aqueous Extract of Foeniculum vulgare in Normal and Streptozotocin-induced Diabetic Rats. Cardiovasc Hematol Disord Drug Targets 2021; 20:54-63. [PMID: 31195951 DOI: 10.2174/1871525717666190612121516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is associated with high blood glucose levels due to insulin shortcoming (insulinopenia) or defective insulin action. The objective of the study was to investigate the antidiabetic and antioxidant effects of Foeniculum vulgare in streptozotocin-induced diabetic rat. METHODS The effects of the leaves aqueous extract (LAE) of Foeniculum vulgare (F. vulgare) at a dose of 10 mg/kg on blood glucose levels were evaluated in normal and streptozotocin (STZ)- induced diabetic rats. Histopathological changes were also evaluated in liver in STZ-induced rats. RESULTS Single oral administration of F. vulgare LAE reduced blood glucose levels 6 h after administration in STZ diabetic rats (p<0.0001). Furthermore, blood glucose levels were decreased in both normal (p<0.05) and STZ diabetic rats (p<0.0001) after the fifteenth day of treatment. During this test, both groups did not show any significant change in their body weight. Moreover, this aqueous extract improved oral glucose tolerance in diabetic rats and revealed a positive effect on liver histology. On the other hand, the extract used in this experiment showed an inhibitory concentration (IC50) of 50% of free radicals with a concentration of 43±1.19 µg/ml. While the synthetic antioxidant (BHT) had an IC50 equal to 22.67±2.17µg /ml. CONCLUSION This study demonstrates the antihyperglycemic, hypoglycemic and antioxidant effects of the leaves of F. vulgare in normal and diabetic rats.
Collapse
Affiliation(s)
- Fadwa El-Ouady
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Nadia Lahrach
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohammed Ajebli
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Ahmed E Haidani
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| |
Collapse
|
11
|
Akhan O, Ardahanli I. Hypoglycemia in the emergency, is there any effect on endothelial and diastolic functions? Echocardiography 2021; 38:450-459. [PMID: 33539572 DOI: 10.1111/echo.14988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Several homeostatic changes like an increase in sympathoadrenal response and oxidative stress occur in hypoglycemia. As a result of these findings, an increase in inflammation and preatherogenic factors is observed, and these changes may lead to endothelial dysfunction. AIM Our study aims to reveal possible cardiac risks (systolic-diastolic functions and endothelial dysfunctions) in patients who have applied to the emergency department with hypoglycemia. METHODS This cross-sectional, case-control study included 46 hypoglycemia patients who admitted to the emergency with symptoms compatible with hypoglycemia and diagnosed with hypoglycemia and 30 healthy volunteers. All patients were evaluated with baseline echocardiography, tissue-Doppler imaging (carotid and brachial artery). Also, the fasting blood tests of the patients referred to the internal medicine department were examined. RESULTS There were no differences between the groups regarding age, weight, body mass index, and systolic blood pressure. Total cholesterol, LDL, HDL, Vitamin B12, TSH, and fasting blood glucose levels were similar in the groups' blood tests (all P values > .05). We observed a statistically significant decrease in diastolic dysfunction parameters: E/A and E/e' ratios (respectively, P = .020 and 0.026). It was shown that insulin resistance was influential in forming these considerable differences. The patient group observed that the carotid intima-media thickness was more remarkable (P = .001), and the brachial flow-mediated dilatation value was smaller (P = .003), giving an idea about endothelial functions. CONCLUSION As a message, we can say that hypoglycemia may affect diastolic functions in addition to endothelial dysfunction. Therefore, even young individuals without any chronic diseases may need follow-up in terms of possible risks.
Collapse
Affiliation(s)
- Onur Akhan
- Cardiology, Bilecik Training and Research Hospital, Bilecik, Turkey
| | - Isa Ardahanli
- Cardiology, Bilecik Training and Research Hospital, Bilecik, Turkey
| |
Collapse
|
12
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. A Look into Liver Mitochondrial Dysfunction as a Hallmark in Progression of Brain Energy Crisis and Development of Neurologic Symptoms in Hepatic Encephalopathy. J Clin Med 2020; 9:E2259. [PMID: 32708652 PMCID: PMC7408643 DOI: 10.3390/jcm9072259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The relationship between liver disease and neuropathology in hepatic encephalopathy is well known, but the genesis of encephalopathy in liver failure is yet to be elucidated. Conceptually, the main cause of hepatic encephalopathy is the accumulation of brain ammonia due to impaired liver detoxification function or occurrence of portosystemic shunt. Yet, as well as taking up toxic ammonia, the liver also produces vital metabolites that ensure normal cerebral function. Given this, for insight into how perturbations in the metabolic capacity of the liver may be related to brain pathology, it is crucial to understand the extent of ammonia-related changes in the hepatic metabolism that provides respiratory fuel for the brain, a deficiency of which can give rise to encephalopathy. METHODS Hepatic encephalopathy was induced in starved rats by injection of ammonium acetate. Ammonia-induced toxicity was evaluated by plasma and freeze-clamped liver and brain energy metabolites, and mitochondrial, cytoplasmic, and microsomal gluconeogenic enzymes, including mitochondrial ketogenic enzymes. Parameters of oxidative phosphorylation were recorded polarographically with a Clark-type electrode, while other measures were determined with standard fluorometric enzymatic methods. RESULTS Progressive impairment of liver mitochondrial respiration in the initial stage of ammonia-induced hepatotoxicity and the subsequent energy crisis due to decreased ATP synthesis lead to cessation of gluconeogenesis and ketogenesis. Reduction in glucose and ketone body supply to the brain is a terminal event in liver toxicity, preceding the development of coma. CONCLUSIONS Our study provides a framework to further explore the relationship between hepatic dysfunction and progression of brain energy crisis in hepatic encephalopathy.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia; (L.T.); (G.A.)
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia; (L.T.); (G.A.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain;
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
13
|
Fabris C, Kovatchev B. The closed‐loop artificial pancreas in 2020. Artif Organs 2020; 44:671-679. [DOI: 10.1111/aor.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chiara Fabris
- Center for Diabetes Technology University of Virginia Charlottesville VA USA
| | - Boris Kovatchev
- Center for Diabetes Technology University of Virginia Charlottesville VA USA
| |
Collapse
|
14
|
Abstract
Glycemic variability (GV) a well-established risk factor for hypoglycemia and a suspected risk factor for diabetes complications. GV is also a marker of the instability of a person's metabolic system, expressed as frequent high and low glucose excursions and overall volatile glycemic control. In this review, the author discusses topics related to the assessment, quantification, and optimal control of diabetes, including (1) the notion that optimal control of diabetes, that is, lowering of HbA1c-the commonly accepted gold-standard outcome-can be achieved only if accompanied by simultaneous reduction of GV; (2) assessment and visualization of the two principal dimensions of GV, amplitude and time, which is now possible via continuous glucose monitoring (CGM) and various metrics quantifying GV and the risks associated with hypo- and hyperglycemic excursions; and (3) the evolution of diabetes science and technology beyond quantifying GV and into the realm of GV control via pharmacological agents, for example, GLP-1 receptor agonists and DPP-4 inhibitors, which have pronounced variability-reducing effect, or real-time automated closed-loop systems commonly referred to as the "artificial pancreas." The author concludes that CGM allows close tracking over time, and therefore precise quantification, of glycemic variability in diabetes. The next step-optimal control of glucose fluctuations-is also taken by medications with pronounced GV-lowering effect primarily in type 2 diabetes, and by automated insulin delivery in type 1 diabetes. Contemporary CGM-based artificial pancreas systems use specific GV representations as input signals, and thus their main objective is to minimize GV and, from there, optimize glycemic control.
Collapse
Affiliation(s)
- Boris Kovatchev
- University of Virginia School of
Medicine and School of Engineering and Applied Sciences, UVA Center for Diabetes
Technology, Charlottesville, VA, USA
| |
Collapse
|
15
|
Kovatchev B. A Century of Diabetes Technology: Signals, Models, and Artificial Pancreas Control. Trends Endocrinol Metab 2019; 30:432-444. [PMID: 31151733 DOI: 10.1016/j.tem.2019.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Arguably, diabetes mellitus is one of the best-quantified human conditions: elaborate in silico models describe the action of the human metabolic system; real-time signals such as continuous glucose monitoring are readily available; insulin delivery is being automated; and control algorithms are capable of optimizing blood glucose fluctuation in patients' natural environments. The transition of the artificial pancreas (AP) to everyday clinical use is happening now, and is contingent upon seamless concerted work of devices encompassing the patient in a digital treatment ecosystem. This review recounts briefly the story of diabetes technology, which began a century ago with the discovery of insulin, progressed through glucose monitoring and subcutaneous insulin delivery, and is now rapidly advancing towards fully automated clinically viable AP systems.
Collapse
Affiliation(s)
- Boris Kovatchev
- University of Virginia School of Medicine, UVA Center for Diabetes Technology, Ivy Translational Research Building, 560 Ray C. Hunt Drive, Charlottesville, VA 22903-2981, USA.
| |
Collapse
|
16
|
Abstract
Over the past 50 years, the diabetes technology field progressed remarkably through self-monitoring of blood glucose (SMBG), continuous subcutaneous insulin infusion (CSII), risk and variability analysis, mathematical models and computer simulation of the human metabolic system, real-time continuous glucose monitoring (CGM), and control algorithms driving closed-loop control systems known as the "artificial pancreas" (AP). This review follows these developments, beginning with an overview of the functioning of the human metabolic system in health and in diabetes and of its detailed quantitative network modeling. The review continues with a brief account of the first AP studies that used intravenous glucose monitoring and insulin infusion, and with notes about CSII and CGM-the technologies that made possible the development of contemporary AP systems. In conclusion, engineering lessons learned from AP research, and the clinical need for AP systems to prove their safety and efficacy in large-scale clinical trials, are outlined.
Collapse
Affiliation(s)
- Boris Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
17
|
Johnson ML, Martens TW, Criego AB, Carlson AL, Simonson GD, Bergenstal RM. Utilizing the Ambulatory Glucose Profile to Standardize and Implement Continuous Glucose Monitoring in Clinical Practice. Diabetes Technol Ther 2019; 21:S217-S225. [PMID: 31169432 DOI: 10.1089/dia.2019.0034] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Use of continuous glucose monitoring (CGM) is recognized as a valuable component of diabetes self-management and is increasingly considered a standard of care for individuals with diabetes who are treated with intensive insulin therapy. As the clinical use of CGM technology expands, consistent and standardized glycemic metrics and glucose profile visualization have become increasingly important. A common set of CGM metrics has been proposed by an international expert panel in 2017, including standard definitions of time in ranges, glucose variability, and adequacy of data collection. We describe the core CGM metrics, as well as the standardized glucose profile format consolidating 2 weeks of CGM measurements, referred to as the ambulatory glucose profile (AGP), which was also recommended by the CGM expert panel. We present an updated AGP report featuring the core CGM metrics and a visualization of glucose patterns that need clinical attention. New tools for use by clinicians and patients to interpret AGP data are reviewed. Strategies based on the authors' experience in implementing CGM technology across the clinical care spectrum are highlighted.
Collapse
Affiliation(s)
- Mary L Johnson
- 1 International Diabetes Center at Park Nicollet, Minneapolis, Minnesota
| | - Thomas W Martens
- 2 Park Nicollet Clinic, International Diabetes Center at Park Nicollet, Minneapolis, Minnesota
| | - Amy B Criego
- 3 Department of Pediatric Endocrinology, Park Nicollet Clinic, International Diabetes Center at Park Nicollet, Minneapolis, Minnesota
| | - Anders L Carlson
- 4 Health Partners, International Diabetes Center at Park Nicollet, Minneapolis, Minnesota
| | - Gregg D Simonson
- 1 International Diabetes Center at Park Nicollet, Minneapolis, Minnesota
| | | |
Collapse
|
18
|
Vasconcelos Silva EDL, Oliveira ACDJ, Patriota YBG, Ribeiro AJ, Veiga F, Hallwass F, Silva-Filho EC, da Silva DA, Soares MFDLR, Wanderley AG, Soares-Sobrinho JL. Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydr Polym 2018; 207:601-608. [PMID: 30600045 DOI: 10.1016/j.carbpol.2018.11.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022]
Abstract
Cashew gum (CG) is a biopolymer that presents a favorable chemical environment for structural modifications, which leads to more stable and resistant colloidal systems. The gum was subjected to an acetylation reaction using a fast, simple, solvent-free and low cost methodology. The derivative was characterized by infrared and NMR spectroscopy, elemental analysis, coefficient of solubility and zeta potential. The modified biopolymer was used as a platform for drug delivery systems using insulin as a model drug. Nanoparticles were developed through the technique of polyelectrolytic complexation and were characterized by size, surface charge, entrapment efficiency and gastrointestinal release profile. The nanoparticles presented size of 460 nm with a 52.5% efficiency of entrapment of insulin and the electrostatic stabilization was suggested by the zeta potential of + 30.6 mV. Sustained release of insulin was observed for up to 24 h. The results showed that acetylated cashew gum (ACG) presented potential as a vehicle for sustained oral insulin release.
Collapse
Affiliation(s)
| | | | | | - António José Ribeiro
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Fernando Hallwass
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, Federal University of Piauí, Parnaíba, PI, Brazil
| | | | | | | |
Collapse
|
19
|
Kovatchev B. Automated closed-loop control of diabetes: the artificial pancreas. Bioelectron Med 2018; 4:14. [PMID: 32232090 PMCID: PMC7098217 DOI: 10.1186/s42234-018-0015-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
The incidence of Diabetes Mellitus is on the rise worldwide, which exerts enormous health toll on the population and enormous pressure on the healthcare systems. Now, almost hundred years after the discovery of insulin in 1921, the optimization problem of diabetes is well formulated as maintenance of strict glycemic control without increasing the risk for hypoglycemia. External insulin administration is mandatory for people with type 1 diabetes; various medications, as well as basal and prandial insulin, are included in the daily treatment of type 2 diabetes. This review follows the development of the Diabetes Technology field which, since the 1970s, progressed remarkably through continuous subcutaneous insulin infusion (CSII), mathematical models and computer simulation of the human metabolic system, real-time continuous glucose monitoring (CGM), and control algorithms driving closed-loop control systems known as the "artificial pancreas" (AP). All of these developments included significant engineering advances and substantial bioelectronics progress in the sensing of blood glucose levels, insulin delivery, and control design. The key technologies that enabled contemporary AP systems are CSII and CGM, both of which became available and sufficiently portable in the beginning of this century. This powered the quest for wearable home-use AP, which is now under way with prototypes tested in outpatient studies during the past 6 years. Pivotal trials of new AP technologies are ongoing, and the first hybrid closed-loop system has been approved by the FDA for clinical use. Thus, the closed-loop AP is well on its way to become the digital-age treatment of diabetes.
Collapse
Affiliation(s)
- Boris Kovatchev
- Center for Diabetes Technology, University of Virginia, P.O. Box 400888, Charlottesville, VA 22908 USA
| |
Collapse
|
20
|
Fredheim S, Foli-Andersen P, Laerkholm G, Svensson J, Juhl CB, Olsen B, Pilgaard K, Johannesen J. Adrenaline and cortisol levels are lower during nighttime than daytime hypoglycaemia in children with type 1 diabetes. Acta Paediatr 2018. [PMID: 29520851 DOI: 10.1111/apa.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM We investigated children's counter regulatory hormone profiles during a hyperinsulinaemic hypoglycaemic clamp procedure at day and night. METHODS In 2013, we assessed the counter regulatory response to hypoglycaemia in eight outpatients with type 1 diabetes, recruited from the Herlev Hospital, Denmark, at a mean age of 9.6 ± 2.3 years. Hyperinsulinaemic 80 mU/m2 /min clamps were performed with a stepwise reduction in plasma glucose from euglycaemia (7-9 mmol/L) to hypoglycaemia (<3.5 mmol/L) and the glucose nadir (≤2.2 mmol/L) during the day and night. Adrenaline, cortisol, glucagon and growth hormone levels were assessed. RESULTS Adrenaline and growth hormone levels were higher during the day versus the night (p = 0.04 and p = 0.01, respectively). However, at the glucose nadir, the level of adrenaline was lower during the night than the day (0.6 ± 0.2 versus 1.9 ± 0.5 nmol/L, p = 0.016) and cortisol was lower during the day than the night (42 ± 15 versus 319 ± 81 nmol/L, p = 0.016). No differences were demonstrated for glucagon and growth hormone levels based on the same criteria. CONCLUSION The adrenaline response was blunted during nocturnal iatrogenic hypoglycaemia in our study cohort, and no increase in cortisol levels was demonstrated.
Collapse
Affiliation(s)
- S Fredheim
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
| | - P Foli-Andersen
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
| | - G Laerkholm
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
| | - J Svensson
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - CB Juhl
- HypoSafe A/S; Lyngby Denmark
| | - B Olsen
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
| | - K Pilgaard
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
| | - J Johannesen
- Department of Paediatrics; CPH-Direct; Copenhagen University Hospital, Herlev and Gentofte; Herlev Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
21
|
Fabris C, Farhy LS, Anderson SM, Nass RM, Kovatchev BP, Breton MD. Recent Exposure to Hypoglycemia Increases Glucose Variability Following a Hyper/Hypoglycemic Metabolic Challenge in T1D. J Diabetes Sci Technol 2018; 12:311-317. [PMID: 28942668 PMCID: PMC5851215 DOI: 10.1177/1932296817729392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS In type 1 diabetes (T1D), repeated hypoglycemic episodes may reduce hormonal defenses and increase the risk for severe hypoglycemia. In this work, we investigate the effect of a structured hyper/hypoglycemic metabolic challenge on the postintervention glucose variability in T1D subjects studied at home. METHODS Thirty T1D subjects using insulin pump were monitored with blood glucose meters (SMBG) during a 1-month observation period. After 2 weeks of monitoring, participants were admitted at the University of Virginia Clinical Research Unit to undergo an 8-hour metabolic challenge. The intervention was designed to create hyperglycemia shortly followed by hypoglycemia, mimicking a real-life scenario of underbolused meal followed by overcorrection. After the intervention, subjects were monitored for 2 more weeks. Glycemic variability was assessed before and after the challenge using the low blood glucose index (LBGI). Glucagon counterregulation (GCR) response to induced hypoglycemia was also measured. LBGI variation and GCR were linked to prior exposure to hypoglycemia. RESULTS Subjects significantly exposed to hypoglycemia in the 2 weeks before the intervention had a significant increase of postchallenge LBGI ( P < .001) and lower GCR response ( P < .05). Recent occurrence of hypoglycemia and number of years not using an insulin pump were identified as significant predictors of postchallenge LBGI ( P < .001). CONCLUSION Glycemic swings, a common result of suboptimal insulin treatment, have a significant impact on future (days) glycemic control in T1D subjects with a recent history of hypoglycemia, as measured in the field. Choice of past insulin therapy may also mediate this effect.
Collapse
Affiliation(s)
- Chiara Fabris
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Leon S. Farhy
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Stacey M. Anderson
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Ralf M. Nass
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Boris P. Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
- Marc D. Breton, PhD, Center for Diabetes Technology, University of Virginia, Fontaine Research Park, 560 Ray C Hunt Dr, Charlottesville, VA 22903, USA.
| |
Collapse
|
22
|
Cryer PE, Arbelaez AM. Hypoglycemia-Associated Autonomic Failure in Diabetes. CONTEMPORARY ENDOCRINOLOGY 2018:183-199. [DOI: 10.1007/978-3-319-77048-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Kittah NE, Vella A. MANAGEMENT OF ENDOCRINE DISEASE: Pathogenesis and management of hypoglycemia. Eur J Endocrinol 2017; 177:R37-R47. [PMID: 28381450 DOI: 10.1530/eje-16-1062] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
Glucose is the main substrate utilized by the brain and as such multiple regulatory mechanisms exist to maintain glucose concentrations. When these mechanisms fail or are defective, hypoglycemia ensues. Due to these robust mechanisms, hypoglycemia is uncommon and usually occurs in the setting of the treatment of diabetes using glucose-lowering agents such as sulfonylureas or insulin. The symptoms of hypoglycemia are non-specific and as such it is important to confirm hypoglycemia by establishing the presence of Whipple's triad before embarking on an evaluation for hypoglycemia. When possible, evaluation of hypoglycemia should be carried out at the time of spontaneous occurrence of symptoms. If this is not possible then one would want to create the circumstances under which symptoms occur. In cases where symptoms occur in the post absorptive state, a 72-h fast should be performed. Likewise, if symptoms occur after a meal then a mixed meal study may be the test of choice. The causes of endogenous hyperinsulinemic hypoglycemia include insulinoma, post-bariatric hypoglycemia and noninsulinoma pancreatogenous hypoglycemia syndrome. Autoimmune hypoglycemia syndrome is clinically and biochemically similar to insulinoma but associated with high levels of insulin antibodies and plasma insulin. Other important causes of hypoglycemia include medications, non-islet cell tumors, hormonal deficiencies, critical illness and factitious hypoglycemia. We provide an overview of the pathogenesis and management of hypoglycemia in these situations.
Collapse
Affiliation(s)
- Nana Esi Kittah
- Division of EndocrinologyDiabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Adrian Vella
- Division of EndocrinologyDiabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Abstract
As intensive treatment to lower levels of HbA1c characteristically results in an increased risk of hypoglycaemia, patients with diabetes mellitus face a life-long optimization problem to reduce average levels of glycaemia and postprandial hyperglycaemia while simultaneously avoiding hypoglycaemia. This optimization can only be achieved in the context of lowering glucose variability. In this Review, I discuss topics that are related to the assessment, quantification and optimal control of glucose fluctuations in diabetes mellitus. I focus on markers of average glycaemia and the utility and/or shortcomings of HbA1c as a 'gold-standard' metric of glycaemic control; the notion that glucose variability is characterized by two principal dimensions, amplitude and time; measures of glucose variability that are based on either self-monitoring of blood glucose data or continuous glucose monitoring (CGM); and the control of average glycaemia and glucose variability through the use of pharmacological agents or closed-loop control systems commonly referred to as the 'artificial pancreas'. I conclude that HbA1c and the various available metrics of glucose variability reflect the management of diabetes mellitus on different timescales, ranging from months (for HbA1c) to minutes (for CGM). Comprehensive assessment of the dynamics of glycaemic fluctuations is therefore crucial for providing accurate and complete information to the patient, physician, automated decision-support or artificial-pancreas system.
Collapse
Affiliation(s)
- Boris P Kovatchev
- University of Virginia School of Medicine, 1215 Lee Street, Charlottesvile, Virginia 22908, USA
- The School of Engineering and Applied Sciences, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, Virginia 22904-4259, USA
- Center for Diabetes Technology, University of Virginia School of Medicine, Ivy Translational Research Building, 560 Ray C. Hunt Drive, Charlottesville, Virginia 22903-2981, USA
| |
Collapse
|
25
|
Hebi M, Farid O, Ajebli M, Eddouks M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 87:230-239. [PMID: 28061406 DOI: 10.1016/j.biopha.2016.12.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to investigate the effect of a single dose and daily oral administration for seven days of the aerial part aqueous extract (A.P.A.E) of Tamarix articulata Vahl. (T. articulata) (5mg/kg) on blood glucose levels in both normal and streptozotocin-induced diabetic rats (STZ). Single oral administration of T. articulata A.P.A.E reduced blood glucose levels 6h after administration in normal rats (p<0.0001) and STZ diabetic rats (p<0.001). Furthermore, blood glucose levels were decreased in both normal (p<0.05) and STZ diabetic rats (p<0.0001) after seven days of treatment. Moreover, no significant changes in body weight in normal and STZ rats were shown. According to the oral glucose tolerance test, the aqueous extract of T. articulata (5mg/kg) was shown to prevent significantly the increase on blood glucose levels in both normal and diabetic treated rats 30min, 60min and 120min after glucose administration when compared to the control group. Additionally, histopathological analysis revealed the beneficial effect of T. articulata on pancreas and liver. Finally, the antioxydant activity of the aqueous extract of Tamarix articulata was evaluated by the method of trapping of free radical 2,2-diphenyl-1 picrylhydrazyl (DPPH). Tamarix articulata revealed inhibitory concentrations of 50% of free radicals (IC50) of 203.15μg/ml. In contrast, the synthetic antioxidant butylhydroxytoluene (BHT) has showed an IC50 equal to 13.71μg/ml. In conclusion, this study demonstrates antihyperglycemic, hypoglycemic and antioxidant effects of T. articulata in severe diabetic state thus warrants further investigation on its major compounds as well as mechanistic studies.
Collapse
Affiliation(s)
- Morad Hebi
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Omra Farid
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohammed Ajebli
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco.
| |
Collapse
|
26
|
Alsahli M, Gerich JE. Hypoglycemia in Diabetes Mellitus. PRINCIPLES OF DIABETES MELLITUS 2017:367-383. [DOI: 10.1007/978-3-319-18741-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Abstract
Hypoglycemia is diagnosed convincingly when typical symptoms are associated with a low plasma glucose concentration and are relieved by glucose administration. It requires urgent treatment (usually with intravenous glucose in the hospital setting), diagnostic explanation, and long-term prevention. The latter is based upon an understanding of the pathogenesis of hypoglycemia in the affected patient. Postabsorptive (fasting) hypoglycemia is often caused by drugs (especially insulin, a sulfonylurea, or alcohol); it can also result from endogenous hyperinsulinism (insulinoma, autoimmune hypoglycemia), a non-β-cell tumor, hormonal deficiencies, or a variety of clinical syndromes including sepsis, cardiac, renal, and hepatic failure, and even inanition per se. Hypoglycemia is a treatable cause of acute morbidity. It is sometimes a cause of chronic morbidity and even mortality that could have been prevented.
Collapse
Affiliation(s)
- Stephen B. Liggett
- Metabolism and Pulmonary Divisions of the Department of Medicine, and the General Clinical Research Center and Diabetes Research and Training Center, Washington University School of Medicine, St. Louis, MO
| | - Philip E. Cryer
- Metabolism and Pulmonary Divisions of the Department of Medicine, and the General Clinical Research Center and Diabetes Research and Training Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
28
|
Kovatchev B, Cobelli C. Glucose Variability: Timing, Risk Analysis, and Relationship to Hypoglycemia in Diabetes. Diabetes Care 2016; 39:502-10. [PMID: 27208366 PMCID: PMC4806774 DOI: 10.2337/dc15-2035] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/21/2016] [Indexed: 02/03/2023]
Abstract
Glucose control, glucose variability (GV), and risk for hypoglycemia are intimately related, and it is now evident that GV is important in both the physiology and pathophysiology of diabetes. However, its quantitative assessment is complex because blood glucose (BG) fluctuations are characterized by both amplitude and timing. Additional numerical complications arise from the asymmetry of the BG scale. In this Perspective, we focus on the acute manifestations of GV, particularly on hypoglycemia, and review measures assessing the amplitude of GV from routine self-monitored BG data, as well as its timing from continuous glucose monitoring (CGM) data. With availability of CGM, the latter is not only possible but also a requirement-we can now assess rapid glucose fluctuations in real time and relate their speed and magnitude to clinically relevant outcomes. Our primary message is that diabetes control is all about optimization and balance between two key markers-frequency of hypoglycemia and HbA1c reflecting average BG and primarily driven by the extent of hyperglycemia. GV is a primary barrier to this optimization, including to automated technologies such as the "artificial pancreas." Thus, it is time to standardize GV measurement and thereby streamline the assessment of its two most important components-amplitude and timing.
Collapse
Affiliation(s)
- Boris Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
29
|
Pound LD, Patrick C, Eberhard CE, Mottawea W, Wang GS, Abujamel T, Vandenbeek R, Stintzi A, Scott FW. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria. Diabetes 2015; 64:4135-47. [PMID: 26370175 DOI: 10.2337/db15-0788] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022]
Abstract
Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota.
Collapse
Affiliation(s)
- Lynley D Pound
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Walid Mottawea
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Turki Abujamel
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roxanne Vandenbeek
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fraser W Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Affiliation(s)
- Boris P Kovatchev
- University of Virginia Center for Diabetes Technology , Charlottesville, Virginia
| |
Collapse
|
31
|
Mukherjee G, Chaparro RJ, Schloss J, Smith C, Bando CD, DiLorenzo TP. Glucagon-reactive islet-infiltrating CD8 T cells in NOD mice. Immunology 2015; 144:631-40. [PMID: 25333865 DOI: 10.1111/imm.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated destruction of the insulin-producing β cells in pancreatic islets. A number of islet antigens recognized by CD8 T cells that contribute to disease pathogenesis in non-obese diabetic (NOD) mice have been identified; however, the antigenic specificities of the majority of the islet-infiltrating cells have yet to be determined. The primary goal of the current study was to identify candidate antigens based on the level and specificity of expression of their genes in mouse islets and in the mouse β cell line MIN6. Peptides derived from the candidates were selected based on their predicted ability to bind H-2K(d) and were examined for recognition by islet-infiltrating T cells from NOD mice. Several proteins, including those encoded by Abcc8, Atp2a2, Pcsk2, Peg3 and Scg2, were validated as antigens in this way. Interestingly, islet-infiltrating T cells were also found to recognize peptides derived from proglucagon, whose expression in pancreatic islets is associated with α cells, which are not usually implicated in type 1 diabetes pathogenesis. However, type 1 diabetes patients have been reported to have serum autoantibodies to glucagon, and NOD mouse studies have shown a decrease in α cell mass during disease pathogenesis. Our finding of islet-infiltrating glucagon-specific T cells is consistent with these reports and suggests the possibility of α cell involvement in development and progression of disease.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
32
|
Andreani T, Miziara L, Lorenzón EN, de Souza ALR, Kiill CP, Fangueiro JF, Garcia ML, Gremião PD, Silva AM, Souto EB. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models. Eur J Pharm Biopharm 2015; 93:118-26. [PMID: 25843239 DOI: 10.1016/j.ejpb.2015.03.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/26/2023]
Abstract
The present paper focuses on the development and characterization of silica nanoparticles (SiNP) coated with hydrophilic polymers as mucoadhesive carriers for oral administration of insulin. SiNP were prepared by sol-gel technology under mild conditions and coated with different hydrophilic polymers, namely, chitosan, sodium alginate or poly(ethylene glycol) (PEG) with low and high molecular weight (PEG 6000 and PEG 20000) to increase the residence time at intestinal mucosa. The mean size and size distribution, association efficiency, insulin structure and insulin thermal denaturation have been determined. The mean nanoparticle diameter ranged from 289 nm to 625 nm with a PI between 0.251 and 0.580. The insulin association efficiency in SiNP was recorded above 70%. After coating, the association efficiency of insulin increased up to 90%, showing the high affinity of the protein to the hydrophilic polymer chains. Circular dichroism (CD) indicated that no conformation changes of insulin structure occurred after loading the peptide into SiNP. Nano-differential scanning calorimetry (nDSC) showed that SiNP shifted the insulin endothermic peak to higher temperatures. The influence of coating on the interaction of nanoparticles with dipalmitoylphosphatidylcholine (DPPC) biomembrane models was also evaluated by nDSC. The increase of ΔH values suggested a strong association of non-coated SiNP and those PEGylated nanoparticles coated with DPPC polar heads by forming hydrogen bonds and/or by electrostatic interaction. The mucoadhesive properties of nanoparticles were examined by studying the interaction with mucin in aqueous solution. SiNP coated with alginate or chitosan showed high contact with mucin. On the other hand, non-coated SiNP and PEGylated SiNP showed lower interaction with mucin, indicating that these nanoparticles can interdiffuse across mucus network. The results of the present work provide valuable data in assessing the in vitro performance of insulin-loaded SiNP coated with mucoadhesive polymers.
Collapse
Affiliation(s)
- Tatiana Andreani
- Department of Biology and Environment, University of Tras-os Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Leonardo Miziara
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Esteban N Lorenzón
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP, Araraquara, São Paulo, Brazil
| | - Ana Luiza R de Souza
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Charlene P Kiill
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Joana F Fangueiro
- Research Centre for Biomedicine (CEBIMED), Fernando Pessoa University (UFP), Praça 9 de Abril, 349, P-4249-004 Porto, Portugal
| | - Maria L Garcia
- Department of Physical Chemistry, Faculty of Pharmacy, Barcelona University, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Palmira D Gremião
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Amélia M Silva
- Department of Biology and Environment, University of Tras-os Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
33
|
Álvarez Gaviria M, Herazo Bustos C, Mora G. Enfoque semiológico de las palpitaciones. REVISTA DE LA FACULTAD DE MEDICINA 2014. [DOI: 10.15446/revfacmed.v62n1.43779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
34
|
Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: role of individual free fatty acids. Endocrinology 2014; 155:923-31. [PMID: 24424035 PMCID: PMC3929730 DOI: 10.1210/en.2013-1700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously showed that a fall in the plasma free fatty acid (FFA) level increases plasma corticosterone levels in rats by activating the hypothalamic-pituitary-adrenal axis. In the present study, we tested whether this regulation is mediated by specific or all species of FFAs. Nicotinic acid (NA) (30 μmol/h) was infused in rats to decrease plasma FFAs and increase plasma ACTH and corticosterone. The NA infusion was combined with an infusion of lipids with different FFA compositions to selectively prevent falls in individual FFA levels; coconut, olive, and safflower oils (n = 7 for each), which are predominantly (>70%) composed of saturated, monounsaturated (oleic acid), and polyunsaturated (linoleic acid) FFAs, respectively, were used. At an infusion rate (0.1 g/h) that only partially prevented a fall in the total FFA level, coconut oil, but not olive or safflower oil, completely prevented NA-induced increases in plasma ACTH or corticosterone, suggesting that these responses are mainly mediated by saturated FFAs. In addition, quantification of individual FFA species in the blood using FFA-specific fluorescent probes revealed that plasma corticosterone and ACTH correlated significantly with plasma palmitate but not with other FFAs, such as oleate, linoleate, or arachidonate. Taken together, our data suggest that the regulation of the hypothalamic-pituitary-adrenal axis by FFAs is mainly mediated by the saturated fatty acid palmitate, but not by unsaturated fatty acids, such as oleate and linoleate.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics (Y.T.O., J.K., J.H.Y.), University of Southern California, Keck School of Medicine, Los Angeles, California 90089; and Department of Biochemistry and Molecular Biology (I.K., J.H.Y.), Kyung Hee University, School of Medicine, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
35
|
Szepietowska B, Horvath TL, Sherwin RS. Role of synaptic plasticity and EphA5-ephrinA5 interaction within the ventromedial hypothalamus in response to recurrent hypoglycemia. Diabetes 2014; 63:1140-7. [PMID: 24222347 PMCID: PMC3931406 DOI: 10.2337/db13-1259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoglycemia stimulates counterregulatory hormone release to restore euglycemia. This protective response is diminished by recurrent hypoglycemia, limiting the benefits of intensive insulin treatment in patients with diabetes. We previously reported that EphA5 receptor-ephrinA5 interactions within the ventromedial hypothalamus (VMH) influence counterregulatory hormone responses during acute hypoglycemia in nondiabetic rats. In this study, we examined whether recurrent hypoglycemia alters the capacity of the ephrinA5 ligand to activate VMH EphA5 receptors, and if so, whether these changes could contribute to pathogenesis of defective glucose counterregulation in response to a standard hypoglycemic stimulus. The expression of ephrinA5, but not EphA5 receptors within the VMH, was reduced by antecedent recurrent hypoglycemia. In addition, the number of synaptic connections was increased and astroglial synaptic coverage was reduced. Activation of VMH EphA5 receptors via targeted microinjection of ephrinA5-Fc before a hyperinsulinemic hypoglycemic clamp study caused a reduction in the glucose infusion rate in nondiabetic rats exposed to recurrent hypoglycemia. The increase in the counterregulatory response to insulin-induced hypoglycemia was associated with a 150% increase in glucagon release (P < 0.001). These data suggest that changes in ephrinA5/EphA5 interactions and synaptic plasticity within the VMH, a key glucose-sensing region in the brain, may contribute to the impairment in glucagon secretion and counterregulatory responses caused by recurrent hypoglycemia.
Collapse
Affiliation(s)
- Barbara Szepietowska
- Yale University School of Medicine, Department of Internal Medicine and Endocrinology, New Haven, CT
| | - Tamas L. Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Robert S. Sherwin
- Yale University School of Medicine, Department of Internal Medicine and Endocrinology, New Haven, CT
- Corresponding author: Robert S. Sherwin,
| |
Collapse
|
36
|
Abstract
Hypoglycemia remains a common problem for patients with diabetes and is associated with substantial morbidity and mortality. This article summarizes our current knowledge of the epidemiology, pathogenesis, risk factors, and complications of hypoglycemia in patients with diabetes and discusses prevention and treatment strategies.
Collapse
Affiliation(s)
- Mazen Alsahli
- Division of Endocrinology, Department of Medicine, Southlake Regional Health Center, 309-531 Davis Drive, Newmarket, Ontario L3Y 6P5, Canada; Faculty of Medicine, Department of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
37
|
Go Y, Kitaoka H, Hanafusa T. Effects of diabetes and diabetes control on susceptibility to learned helplessness in streptozotocin-induced diabetic rats. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Affiliation(s)
- Philip E Cryer
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Kovatchev BP. Diabetes technology: markers, monitoring, assessment, and control of blood glucose fluctuations in diabetes. SCIENTIFICA 2012; 2012:283821. [PMID: 24278682 PMCID: PMC3820631 DOI: 10.6064/2012/283821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/02/2012] [Indexed: 06/02/2023]
Abstract
People with diabetes face a life-long optimization problem: to maintain strict glycemic control without increasing their risk for hypoglycemia. Since the discovery of insulin in 1921, the external regulation of diabetes by engineering means has became a hallmark of this optimization. Diabetes technology has progressed remarkably over the past 50 years-a progress that includes the development of markers for diabetes control, sophisticated monitoring techniques, mathematical models, assessment procedures, and control algorithms. Continuous glucose monitoring (CGM) was introduced in 1999 and has evolved from means for retroactive review of blood glucose profiles to versatile reliable devices, which monitor the course of glucose fluctuations in real time and provide interactive feedback to the patient. Technology integrating CGM with insulin pumps is now available, opening the field for automated closed-loop control, known as the artificial pancreas. Following a number of in-clinic trials, the quest for a wearable ambulatory artificial pancreas is under way, with a first prototype tested in outpatient setting during the past year. This paper discusses key milestones of diabetes technology development, focusing on the progress in the past 10 years and on the artificial pancreas-still not a cure, but arguably the most promising treatment of diabetes to date.
Collapse
Affiliation(s)
- Boris P. Kovatchev
- Department of Psychiatry and Neurobehavioral Sciences, Department of Systems and Information Engineering, Center for Diabetes Technology, and University of Virginia Health System, University of Virginia, P.O. Box 400888, Charlottesville, VA 22908, USA
| |
Collapse
|
40
|
Oh YT, Oh KS, Kang I, Youn JH. A Fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: evidence for brain sensing of circulating FFA. Endocrinology 2012; 153:3587-92. [PMID: 22669895 PMCID: PMC3404348 DOI: 10.1210/en.2012-1330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain responds to a fall in blood glucose by activating neuroendocrine mechanisms for its restoration. It is unclear whether the brain also responds to a fall in plasma free fatty acids (FFA) to activate mechanisms for its restoration. We examined whether lowering plasma FFA increases plasma corticosterone or catecholamine levels and, if so, whether the brain is involved in these responses. Plasma FFA levels were lowered in rats with three independent antilipolytic agents: nicotinic acid (NA), insulin, and the A1 adenosine receptor agonist SDZ WAG 994 with plasma glucose clamped at basal levels. Lowering plasma FFA with these agents all increased plasma corticosterone, but not catecholamine, within 1 h, accompanied by increases in plasma ACTH. These increases in ACTH or corticosterone were abolished when falls in plasma FFA were prevented by Intralipid during NA or insulin infusion. In addition, the NA-induced increases in plasma ACTH were completely prevented by administration of SSR149415, an arginine vasopressin receptor antagonist, demonstrating that the hypothalamus is involved in these responses. Taken together, the present data suggest that the brain may sense a fall in plasma FFA levels and activate the hypothalamic-pituitary-adrenal axis to increase plasma ACTH and corticosterone, which would help restore FFA levels. Thus, the brain may be involved in the sensing and control of circulating FFA levels.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, 1333 San Pablo Street, Mudd Memorial Research Building 626, Los Angeles, California 90089-9142, USA
| | | | | | | |
Collapse
|
41
|
Siafarikas A, Johnston RJ, Bulsara MK, O'Leary P, Jones TW, Davis EA. Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes. Diabetes Care 2012; 35:1757-62. [PMID: 22699295 PMCID: PMC3402257 DOI: 10.2337/dc11-2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the glucagon response to hypoglycemia and identify influencing factors in patients with type 1 diabetes compared with nondiabetic control subjects. RESEARCH DESIGN AND METHODS Hyperinsulinemic hypoglycemic clamp studies were performed in all participants. The glucagon response to both hypoglycemia and arginine was measured, as well as epinephrine, cortisol, and growth hormone responses to hypoglycemia. Residual β-cell function was assessed using fasting and stimulated C-peptide. RESULTS Twenty-eight nonobese adolescents with type 1 diabetes (14 female, mean age 14.9 years [range 11.2-19.8]) and 12 healthy control subjects (6 female, 15.3 years [12.8-18.7]) participated in the study. Median duration of type 1 diabetes was 0.66 years (range 0.01-9.9). The glucagon peak to arginine stimulation was similar between groups (P = 0.27). In contrast, the glucagon peak to hypoglycemia was reduced in the group with diabetes (95% CI): 68 (62-74) vs. 96 (87-115) pg/mL (P < 0.001). This response was greater than 3 SDs from baseline for only 7% of subjects with type 1 diabetes in comparison with 83% of control subjects and was lost at a median duration of diabetes of 8 months and as early as 1 month after diagnosis (R = -0.41, P < 0.01). There was no correlation in response with height, weight, BMI, and HbA(1c). Epinephrine, cortisol, and growth hormone responses to hypoglycemia were present in both groups. CONCLUSIONS The glucagon response to hypoglycemia in adolescents with type 1 diabetes is influenced by the duration of diabetes and can be lost early in the course of the disease.
Collapse
Affiliation(s)
- Aris Siafarikas
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Sherr J, Tamborlane WV, Xing D, Tsalikian E, Mauras N, Buckingham B, White NH, Arbelaez AM, Beck RW, Kollman C, Ruedy K. Achievement of target A1C levels with negligible hypoglycemia and low glucose variability in youth with short-term type 1 diabetes and residual β-cell function. Diabetes Care 2012; 35:817-20. [PMID: 22323414 PMCID: PMC3308298 DOI: 10.2337/dc11-2190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine exposure to hyper- and hypoglycemia using blinded continuous glucose monitoring (CGM) profiles in youth with type 1 diabetes (T1D) with residual β-cell function during the first year of insulin treatment. RESEARCH DESIGN AND METHODS Blinded, 3-7 day CGM profiles were obtained in 16 short-term T1D patients (age 8-18 years, T1D duration 6-52 weeks) who had peak C-peptide levels ranging from 0.46 to 1.96 nmol/L during a mixed-meal tolerance test. Results in this short-term group were compared with those in 34 patients with well-controlled, longer-term T1D (duration ≥5 years), matched for age and A1C with the short-term T1D group, and with those in 26 age-matched nondiabetic individuals. RESULTS Despite matching for A1C, and therefore similar mean sensor glucose levels in the two T1D groups, short-term T1D participants had a lower frequency of hypoglycemia (0.3 vs. 7.6%, P < 0.001), a trend toward less hyperglycemia (17 vs. 32%, P = 0.15), and a greater percentage in the target range (median 77 vs. 60%, P = 0.02). Indeed, the percentage of sensor glucose levels ≤70 mg/dL in the short-term T1D group (0.3%) did not differ from those in the nondiabetic group (1.7%, P = 0.73). The coefficient of variation of sensor glucose levels (an index of glucose variability) was lower in short-term vs. longer-term T1D participants (27 vs. 42%, respectively, P < 0.001). CONCLUSIONS In youth with short-term T1D who retain residual β-cell function, there is negligible exposure to hypoglycemia and lower glucose variability than in youth with well-controlled T1D of longer duration.
Collapse
Affiliation(s)
- Jennifer Sherr
- Pediatric Endocrinology, Yale University, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Glucagon is a primary regulator of hepatic glucose production (HGP) in vivo during fasting, exercise and hypoglycaemia. Glucagon also plays a role in limiting hepatic glucose uptake and producing the hyperglycaemic phenotype associated with insulin deficiency and insulin resistance. In response to a physiological rise in glucagon, HGP is rapidly stimulated. This increase in HGP is entirely attributable to an enhancement of glycogenolysis, with little to no acute effect on gluconeogenesis. This dramatic rise in glycogenolysis in response to hyperglucagonemia wanes with time. A component of this waning effect is known to be independent of hyperglycemia, though the molecular basis for this tachyphylaxis is not fully understood. In the overnight fasted state, the presence of basal glucagon secretion is essential in countering the suppressive effects of basal insulin, resulting in the maintenance of appropriate levels of glycogenolysis, fasting HGP and blood glucose. The enhancement of glycogenolysis in response to elevated glucagon is critical in the life-preserving counterregulatory response to hypoglycaemia, as well as a key factor in providing adequate circulating glucose for working muscle during exercise. Finally, glucagon has a key role in promoting the catabolic consequences associated with states of deficient insulin action, which supports the therapeutic potential in developing glucagon receptor antagonists or inhibitors of glucagon secretion.
Collapse
Affiliation(s)
- C J Ramnanan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | |
Collapse
|
44
|
Raviele A, Giada F, Bergfeldt L, Blanc JJ, Blomstrom-Lundqvist C, Mont L, Morgan JM, Raatikainen MJP, Steinbeck G, Viskin S, Kirchhof P, Braunschweig F, Borggrefe M, Hocini M, Bella PD, Shah DC. Management of patients with palpitations: a position paper from the European Heart Rhythm Association. Europace 2011; 13:920-34. [DOI: 10.1093/europace/eur130] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
45
|
Hofman MS, Hicks RJ. White fat, factitious hyperglycemia, and the role of FDG PET to enhance understanding of adipocyte metabolism. EJNMMI Res 2011; 1:2. [PMID: 22214514 DOI: 10.1186/2191-219x-1-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/07/2011] [Indexed: 11/10/2022] Open
Abstract
The development of a hybrid PET/CT led to the recognition of the enhanced glycolysis in brown fat. We report a previously unrecognized mechanism for altered fluorodeoxyglucose (FDG) biodistribution with diffuse white adipose tissue uptake. This occurred during a restaging scan for cervical cancer following administration of insulin in the setting of measured hyperglycemia. The patient's blood sugar normalized, but she experienced symptoms and signs of hypoglycemia. A subsequent history indicated that the patient received intravenous high-dose vitamin C just prior to arrival. Ascorbic acid is a strong reducing agent and can cause erroneous false positive portable glucometer readings. Accordingly, it is likely the patient was euglycemic on arrival and was administered FDG during a period of insulin-induced hypoglycemia. Prominent diffuse white adipose tissue, gastric mucosal, myocardial, and very low hepatic and muscle activity were observed. The case provides insight into the metabolic changes that occur during hypoglycemia and the potential danger of relying on portable glucometer readings. We discuss the potential biological basis of this finding and provide recommendations on the avoidance of this complication.
Collapse
Affiliation(s)
- Michael S Hofman
- Center for Cancer Imaging, Peter MacCallum Cancer Centre, St, Andrews Place, East Melbourne, VIC 3002 Australia.
| | | |
Collapse
|
46
|
Brown L, Edelman ER. Optimal control of blood glucose: the diabetic patient or the machine? Sci Transl Med 2010; 2:27ps18. [PMID: 20393187 DOI: 10.1126/scitranslmed.3001083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this issue of Science Translational Medicine, El-Khatib et al. describe a "closed-loop" bihormonal artificial pancreas, designed to avert episodes of low blood sugar in patients with insulin-dependent diabetes. We discuss the benefits and challenges of therapy directed at tight control of blood glucose and ask whether this and similar technological breakthroughs can address as yet unanswered questions in the biology of diabetes.
Collapse
Affiliation(s)
- Larry Brown
- Harvard MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, E25-438, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
47
|
Breton MD, Kovatchev BP. Impact of blood glucose self-monitoring errors on glucose variability, risk for hypoglycemia, and average glucose control in type 1 diabetes: an in silico study. J Diabetes Sci Technol 2010; 4:562-70. [PMID: 20513321 PMCID: PMC2901032 DOI: 10.1177/193229681000400309] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Clinical trials assessing the impact of errors in self-monitoring of blood glucose (SMBG) on the quality of glycemic control in diabetes are inherently difficult to execute. Consequently, the objectives of this study were to employ realistic computer simulation based on a validated model of the human metabolic system and to provide potentially valuable information about the relationships among SMBG errors, risk for hypoglycemia, glucose variability, and long-term glycemic control. METHODS Sixteen thousand computer simulation trials were conducted using 100 simulated adults with type 1 diabetes. Each simulated subject was used in four simulation experiments aiming to assess the impact of SMBG errors on detection of hypoglycemia (experiment 1), risk for hypoglycemia (experiment 2), glucose variability (experiment 3), and long-term average glucose control, i.e., estimated hemoglobin A1c (HbA1c)(experiment 4). Each experiment was repeated 10 times at each of four increasing levels of SMBG errors: 5, 10, 15, and 20% deviation from the true blood glucose value. RESULTS When the permitted SMBG error increased from 0 to 5-10% to 15-20%-the current level allowed by International Organization for Standardization 15197-(1) the probability for missing blood glucose readings of 60 mg/dl increased from 0 to 0-1% to 3.5-10%; (2) the incidence of hypoglycemia, defined as reference blood glucose <or=70 mg/dl, changed from 0 to 0-0% to 0.1-5.5%; (3) glucose variability increased as well, as indicated by control variability grid analysis; and (4) the incidence of hypoglycemia increased from 15.0 to 15.2-18.8% to 22-25.6%. When compensating for this increase, glycemic control deteriorated with HbA1c increasing gradually from 7.00 to 7.01-7.12% to 7.26-7.40%. CONCLUSIONS A number of parameters of glycemic control deteriorated substantially with the increase of permitted SMBG errors, as revealed by a series of computer simulations (e.g., in silico) experiments. A threshold effect apparent between 10 and 15% permitted SMBG error for most parameters, except for HbA1c, which appeared to be increasing relatively linearly with increasing SMBG error above 10%.
Collapse
Affiliation(s)
- Marc D Breton
- University of Virginia, Charlottesville, Virginia 22908-4888 , USA.
| | | |
Collapse
|
48
|
Lemhadri A, Zeggwagh NA, Maghrani M, Jouad H, Michel JB, Eddouks M. Hypoglycaemic effect of Calamintha officinalis Moench. in normal and streptozotocin-induced diabetic rats. J Pharm Pharmacol 2010; 56:795-9. [PMID: 15231045 DOI: 10.1211/0022357023510] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The purpose of this study was to investigate the effects of a water extract from the aerial parts of Calamintha officinalis Moench., after either a single dose or daily oral administration for 15 days, on plasma blood glucose concentrations and basal insulin levels in normal and streptozotocin-induced diabetic rats (STZ diabetic rats). The results clearly demonstrated the hypoglycaemic effect of this plant extract in both normal and STZ diabetic rats. In addition, no changes were observed in basal plasma insulin concentrations after treatment with this plant in normal or STZ diabetic rats, indicating that the underlying mechanism of the plant's pharmacological action seems to be independent of insulin secretion. We conclude that the aqueous C. officinalis extract exhibits a significant hypoglycaemic effect in normal and STZ diabetic rats without affecting basal plasma insulin concentrations, and supports, therefore, its traditional use by the Moroccan population.
Collapse
Affiliation(s)
- A Lemhadri
- UFR PNPE BP 21, Errachidia, 52000, Morocco
| | | | | | | | | | | |
Collapse
|
49
|
Jouad H, Maghrani M, Eddouks M. Hypoglycemic Effect of Aqueous Extract of Ammi visnaga in Normal and Streptozotocin-Induced Diabetic Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/j157v02n04_03] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Parker DR, Braatvedt GD, Bargiota A, Newrick PG, Brown S, Gamble G, Corrall RJM. Glucagon is absorbed from the rectum but does not hasten recovery from hypoglycaemia in patients with type 1 diabetes. Br J Clin Pharmacol 2008; 66:43-9. [PMID: 18507661 DOI: 10.1111/j.1365-2125.2008.03173.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS A failure to secrete glucagon during hypoglycaemia is near universal in patients with type 1 diabetes 5 years after disease onset and may contribute to delayed counter-regulation during hypoglycaemia. Rectal glucagon delivery may assist glucose recovery following insulin-induced hypoglycaemia in such patients and has not been previously studied. METHODS Six male patients (age 21-38 years) with type 1 diabetes (median duration 10 years) without microvascular complications, were studied supine after an overnight fast on two separate occasions at least 14 days apart. After omission of their usual morning insulin and 45 min rest, hypoglycaemia was induced by an intravenous insulin infusion which was terminated when capillary glucose concentration reached 2.5 mmol l(-1). Subjects were randomized to insert a rectal suppository containing 100 mg indomethacin alone (placebo) or 100 mg indomethacin plus 1 mg glucagon at the hypoglycaemic reaction. Serial measurements were made for 120 min. RESULTS In the two groups, mean (SD) plasma glucose concentrations fell to a similar nadir of 1.8 (0.7) mmol l(-1) (placebo) and 2.1 (1.2) mmol l(-1) (glucagon). Peak plasma glucagon following hypoglycaemia was higher in the glucagon group; 176 (32) ng l(-1)vs. 99 (22) ng l(-1) after placebo (P = 0.006). However, the glucose recovery rate over 120 min after hypoglycaemia did not differ significantly. CONCLUSIONS Our results provide evidence for the absorption of glucagon from the rectum. They also indicate that 1 mg does not constitute a useful mode of therapy to hasten recovery from hypoglycaemia in patients with type 1 diabetes.
Collapse
Affiliation(s)
- David R Parker
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|