1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Li F, Shen F. Metastatic pancreatic cancer with activating BRAF V600E mutations: A case report. World J Clin Cases 2025; 13:101665. [DOI: 10.12998/wjcc.v13.i16.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly malignant tumor that is resistant to chemotherapy, radiotherapy and immunotherapy. Combination chemotherapy regimens are the standard first-line regimens for metastatic disease, with a median survival < 12 months. Although recurrent genomic alterations such as the BRAF V600E mutation have been reported in PC, evidence supporting the clinical effectiveness of molecularly guided targeted therapies is limited.
CASE SUMMARY We report a case of a 33-year-old male who was referred to our department with weight loss of 5 kg in 2 months, anorexia and abdominal pain. Imaging showed extensive lesions involving the pancreas, liver, bones, muscles and lymph nodes accompanied by elevated carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA). Biopsy yielded a diagnosis of PC. Treatment with gemcitabine and nab-paclitaxel was initiated, but the disease progressed in < 2 months even though the patient’s general condition improved. Molecular testing revealed the presence of BRAF mutation. Dabrafenib/trametinib combination therapy was introduced, and the patient was treated for 2 months with a decrease in CA19-9 and CEA levels, but he died after 2 months of treatment.
CONCLUSION BRAF alterations are infrequent in PC. This case highlights the significance of molecular profiling in patients with PC, especially in patients with a high tumor burden.
Collapse
Affiliation(s)
- Fang Li
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, Fujian Province, China
- Xiamen Clinical Research Center for Cancer, Xiamen 361015, Fujian Province, China
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen 361015, Fujian Province, China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, Fujian Province, China
- Xiamen Clinical Research Center for Cancer, Xiamen 361015, Fujian Province, China
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen 361015, Fujian Province, China
| |
Collapse
|
3
|
Subbiah V, Othus M, Palma J, Cuglievan B, Kurzrock R. Designing Clinical Trials for Patients With Rare Cancers: Connecting the Zebras. Am Soc Clin Oncol Educ Book 2025; 45:e100051. [PMID: 40228175 DOI: 10.1200/edbk-25-100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The field of rare cancer research is rapidly transforming, marked by significant progress in clinical trials and treatment strategies. Rare cancers, as defined by the National Cancer Institute, occur in fewer than 150 cases per million people each year, yet they collectively represent a significant portion of all cancer diagnoses. Because of their infrequency, these cancers pose distinct challenges for clinical trials, including limited patient populations, geographical dispersion, and a general lack of awareness of treatment options. Economic limitations further complicate drug development, making initiatives such as the Orphan Drug Act essential for incentivizing research. The advent of next-generation sequencing (NGS) and precision medicine has been instrumental in identifying actionable genetic alterations in parallel with an explosion in the development of genomically targeted therapies, immunotherapies, and antibody drug conjugates. Advances in clinical NGS, precision medicine, and tumor-agnostic therapies have become central to the progress in rare cancer research. The development and approval of tumor-agnostic drugs, such as BRAF, NTRK, and RET inhibitors, and immunotherapy for mismatch repair deficient/microsatellite instability-high status cancers highlight the potential of personalized treatments across diverse cancer types and across the age spectrum. Collaborative trials from cooperative groups including SWOG DART, ASCO TAPUR, NCI-MATCH, pediatric COG-match, DRUP, IMPRESS, and innovative registrational basket and platform trials (eg, VE-Basket, ROAR, LIBRETTO-001, ARROW), along with patient advocacy group-run trials like TRACK, are enhancing access to clinical trials. In addition, artificial intelligence has the potential to improve the trial matching process. An integrated approach, combining these innovations in collaboration with multiple stakeholders, is crucial for advancing rare cancer research, offering hope for better patient outcomes and quality of life.
Collapse
Affiliation(s)
| | - Megan Othus
- SWOG Cancer Research Network Statistical Center, Seattle, WA
- Division of Public Health, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jim Palma
- TargetCancer Foundation, Rare Cancer Patient Advocacy Group, Cambridge, MA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, and Medical College of Wisconsin Cancer Center, Milwaukee, WI
- WIN Consortium, Paris, France
- University of Nebraska, Lincoln, NE
| |
Collapse
|
4
|
Glushko T, Costello J, Chima R, McGettigan M, Kim R, Jeong D, Qayyum A. Molecular signatures of intrahepatic cholangiocarcinoma: role in targeted therapy selection. Eur J Radiol 2025; 187:112056. [PMID: 40222184 DOI: 10.1016/j.ejrad.2025.112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Cholangiocarcinoma is a highly lethal disease with a 5-year overall survival rate of 7-20%. A minority of patients present with resectable disease, and relapse rates remain high. Emerging data from next generation sequencing analysis have identified various actionable mutations which drive the different disease courses opening door to precision medicine and targeted therapies. This review focuses on the clinical significance of genetic alterations as well as the role of systemic therapies, immunotherapy and targeted therapies for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Tetiana Glushko
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - James Costello
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Ranjit Chima
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Melissa McGettigan
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Richard Kim
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Daniel Jeong
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Aliya Qayyum
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
5
|
de la Fuente Villaverde I, Caso González A, Carbajales Álvarez M, Martínez Torrón A, Fernández Lastras S, García Llano JL, Lozano Blázquez A. Vemurafenib for the treatment of BRAF V600 mutated glioblastoma: A case report. FARMACIA HOSPITALARIA 2025:S1130-6343(25)00038-8. [PMID: 40340151 DOI: 10.1016/j.farma.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 05/10/2025] Open
Abstract
INTRODUCTION Glioblastoma is one of the most aggressive primary brain tumors with the worst prognosis. Few therapeutic options are currently available. Vemurafenib is a kinase inhibitor that demonstrated efficacy in clinical trials for the treatment of tumors with BRAF V600 mutation. Its experience of use in glioblastomas is very limited. We present the case of a patient diagnosed with BRAF V600 mutated glioblastoma who progressed to standard therapy. After starting treatment with vemurafenib in June 2022, the patient currently maintains a good clinical situation and the disease remains stable, with no progression observed. DISCUSSION There is little literature supporting the efficacy of vemurafenib in BRAF 600 mutated glioblastomas. Published data suggest promising results, although survival in these patients remains low. This patient's progression-free survival is one of the longest documented to date.
Collapse
Affiliation(s)
| | - Alicia Caso González
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Central de Asturias, Asturias, España
| | | | - Alba Martínez Torrón
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Central de Asturias, Asturias, España
| | - Sergio Fernández Lastras
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Central de Asturias, Asturias, España
| | - Juan Luis García Llano
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias, Asturias, España
| | - Ana Lozano Blázquez
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Central de Asturias, Asturias, España
| |
Collapse
|
6
|
Negahban H, Heidari N, Heidari A, Ghane Y, Shirkhoda M, Jalaeefar A. Evaluation of Treatment Response and Survival Outcomes in Anaplastic Thyroid Cancer Patients Following Surgery With and Without Other Treatment Modalities: A Systematic Review. Health Sci Rep 2025; 8:e70710. [PMID: 40309640 PMCID: PMC12042218 DOI: 10.1002/hsr2.70710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Background and Aims Anaplastic thyroid carcinoma (ATC) is a rare type of malignancy ranking among the most aggressive diseases globally, with an extremely poor prognosis. No optimal standardized treatment has been established yet to promote ATC's prognosis and increase the patients' median survival. We aim to assess the effectiveness of surgery alone or combined with other treatment approaches for ATC patients. Methods PubMed, Web of Science, and Scopus databases were systematically searched until June 1st, 2023. Study selection was limited to English retrospective studies. A citation search was also performed for the final articles that were included. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews and meta-analyses. Results During our search, we came to include 56 articles containing 16,246 patients suffering from ATC. We assessed the overall survival by treatment method and stage, emphasizing surgery's role. The most common efficacious treatment option in patients with resectable cancer is a combination of surgery with adjuvant chemoradiotherapy. However, surgery for stage IVC patients is controversial. Additionally, surgery and multimodality treatment can be affected by patients' characteristics, such as tumor size. Conclusions Stage IVA and IVB resectable cancers may benefit from the combination of surgery and adjuvant therapies. However, the effectiveness of invasive treatments and the selection of appropriate adjuvant therapy options for IVC-stage patients are still controversial.
Collapse
Affiliation(s)
- Hossein Negahban
- Cancer Research Center of Cancer instituteTehran University of Medical SciencesTehranIran
| | - Nazila Heidari
- School of MedicineIran University of Medical SciencesTehranIran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research InstituteTehran University of Medical SciencesTehranIran
| | - Amirhossein Heidari
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research InstituteTehran University of Medical SciencesTehranIran
- Faculty of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Yekta Ghane
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research InstituteTehran University of Medical SciencesTehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Shirkhoda
- Department of Surgical Oncology, Cancer InstituteTehran University of Medical SciencesTehranIran
| | - Amirmohsen Jalaeefar
- Department of Surgical Oncology, Cancer InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
DeLong A, Othman D. Mixed histiocytosis of Langerhans cell with Rosai-Dorfman disease. JAAD Case Rep 2025; 59:141-143. [PMID: 40330500 PMCID: PMC12051502 DOI: 10.1016/j.jdcr.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Affiliation(s)
- Avery DeLong
- University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David Othman
- Department of Dermatology, Cook County Health, Chicago, Illinois
| |
Collapse
|
8
|
Butt RN, Amina B, Sultan MU, Tanveer ZB, Gondal MN, Hussain R, Khan S, Akbar R, Nasir Z, Khalid MF, Channan-Khan AA, Faisal A, Shoaib M, Chaudhary SU. CanSeer: a translational methodology for developing personalized cancer models and therapeutics. Sci Rep 2025; 15:15080. [PMID: 40301468 PMCID: PMC12041273 DOI: 10.1038/s41598-025-99219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
Computational modeling and analysis of biomolecular network models annotated with omics data are emerging as a versatile tool for designing personalized therapies. Current endeavors aimed at employing in silico models towards personalized cancer therapeutics remain limited in providing all-in-one approach that ascertains actionable targets, re-positions FDA (Food and Drug Administration) approved drugs, furnishes quantitative cues on therapy responses such as efficacy and cytotoxic effect, and identifies novel drug combinations. Here we propose "CanSeer"-a methodology for developing personalized therapeutics. CanSeer employs patient-specific genetic alterations and RNA-seq data to annotate in silico models followed by dynamical network analyses towards assessment of treatment responses. To exemplify, three use cases involving paired samples, unpaired samples, and cancer samples only, of lung squamous cell carcinoma (LUSC) patients are provided. CanSeer reveals the effectiveness of repositioned drugs along with the identification of several novel LUSC treatment combinations including Afuresertib + Palbociclib, Dinaciclib + Trametinib, Afatinib + Oxaliplatin, Ulixertinib + Olaparib, etc.
Collapse
Affiliation(s)
- Rida Nasir Butt
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Bibi Amina
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Umer Sultan
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Zain Bin Tanveer
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mahnoor Naseer Gondal
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Risham Hussain
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
- Data Science Institute, Lancaster University, Lancaster, LA1 4YW, UK
| | - Salaar Khan
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
| | - Rida Akbar
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Zainab Nasir
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | | | - Amir Faisal
- Cancer Therapeutics Lab, Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Shoaib
- Epigenome and Genome Integrity Lab (EaGIL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Syed Babar Ali School of Science and Engineering, Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
9
|
Doi T, Ishikawa T, Moriguchi M, Itoh Y. Current status of cancer genome medicine for pancreatic ductal adenocarcinoma. Jpn J Clin Oncol 2025; 55:443-452. [PMID: 39893577 DOI: 10.1093/jjco/hyaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis; however, advancements in cancer genome profiling using next-generation sequencing have provided new perspectives. KRAS mutations are the most frequently observed genomic alterations in patients with PDAC. However, until recently, it was not considered a viable therapeutic target. Although KRAS G12C mutations for which targeted therapies are already available are infrequent in PDAC, treatments targeting KRAS G12D and pan-KRAS are still under development. Similarly, new treatment methods for KRAS, such as chimeric antigen receptor T-cell therapy, have been developed. Several other potential therapeutic targets have been identified for KRAS wild-type PDAC. For instance, immune checkpoint inhibitors have demonstrated efficacy in PDAC treatment with microsatellite instability-high/deficient mismatch repair and tumor mutation burden-high profiles. However, for other PDAC cases with low immunogenicity, combination therapies that enhance the effectiveness of immune checkpoint inhibitors are being considered. Additionally, homologous recombination repair deficiencies, including BRCA1/2 mutations, are prevalent in PDAC and serve as important biomarkers for therapies involving poly (adenosine diphosphate-ribose) polymerase inhibitors and platinum-based therapies. Currently, olaparib is available for maintenance therapy of BRCA1/2 mutation-positive PDAC. Further therapeutic developments are ongoing for genetic abnormalities involving BRAF V600E and the fusion genes RET, NTRK, NRG, ALK, FGFR2, and ROS1. Overcoming advanced PDAC remains a formidable challenge; however, this review outlines the latest therapeutic strategies that are expected to lead to significant advancements.
Collapse
Affiliation(s)
- Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Cancer Genome Medical Center, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Cancer Genome Medical Center, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Medical Oncology Unit, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
10
|
Durham BH. Molecular Pathogenesis of the Histiocytic and Dendritic Cell Neoplasms. Hematol Oncol Clin North Am 2025:S0889-8588(25)00026-7. [PMID: 40221268 DOI: 10.1016/j.hoc.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The histiocytic and dendritic cell neoplasms encompass a clinically heterogeneous group of disorders leading to tissue damage secondary to the accumulation and infiltration of pathologic cells thought to be derived from the dendritic or monocytic lineages with accompanying inflammation. The pathophysiology of these disorders is poorly understood. Studies over the past 15 y have identified a high-frequency of BRAFV600E, MAP2K1, and other kinase alterations in the histiocytic neoplasms. This review highlights the onslaught of molecular advancements and discusses the impact these insights have had on our understanding of the molecular pathophysiology and therapeutic targets of these rare, enigmatic diseases.
Collapse
Affiliation(s)
- Benjamin H Durham
- Department of Pediatrics, Division of Hematology-Oncology, Rutgers Cancer Institute, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Department of Pathology and Laboratory Medicine, Division of Hematopathology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Department of Oncological Pathology, Rutgers Cancer Institute, New Brunswick, NJ 08903, USA.
| |
Collapse
|
11
|
Okano N, Pirozzi A, Abidoye O, Hoyek C, Eslinger C, Zheng-Lin B, Jamal F, Sahwan O, Sonbol MB, Uson Junior PLS, Hayashi M, Sato T, Nishioka M, Nagashima F, Bekaii-Saab T, Borad MJ, Hironaka S. Systemic therapy for pretreated advanced biliary tract cancer: past developments and recent advances. Jpn J Clin Oncol 2025:hyaf052. [PMID: 40173029 DOI: 10.1093/jjco/hyaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Biliary tract cancer (BTC) remains among the most challenging malignancies with a poor prognosis and limited treatment options, particularly in pretreated patients. As most patients experience disease progression after first-line treatment, effective second-line and subsequent treatments are required. Although the addition of modified FOLFOX (fluorouracil, leucovorin, and oxaliplatin) to active symptom control improved the overall survival of patients with progressing advanced BTC despite gemcitabine plus cisplatin treatment, its efficacy was modest. Moreover, most clinical trials demonstrated modest efficacy of molecular-targeted agents for molecularly unselected pretreated advanced BTC. Patients with advanced BTC carry a relatively high druggable genetic alteration rate and have shown promising responses to molecular-matched therapies targeting gene alterations such as FGFR2 fusions/rearrangements, IDH1 mutation, and HER2 overexpression/amplification. Additionally, tumor-agnostic approaches, including BRAF V600E, NTRK fusion, and RET fusion, have expanded the treatment options for some patients. Immune checkpoint inhibitors have shown limited efficacy as mono- or combination therapy in patients with pretreated advanced BTC. Therefore, developmental efforts have shifted to immune checkpoint inhibitor and other combinations such as vascular endothelial growth factor receptor inhibitors or radiation. In addition to refining combination strategies to enhance the therapeutic potential of immune checkpoint inhibitor, future research should focus on elucidating the tumor microenvironment. This review delineates the evolution of systemic therapies in patients with pretreated advanced BTC. By examining past developments and recent advances through prospective trials, it highlights novel approaches that may improve outcomes in this challenging disease.
Collapse
Affiliation(s)
- Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Angelo Pirozzi
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Oluseyi Abidoye
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Celine Hoyek
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Cody Eslinger
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Binbin Zheng-Lin
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Fares Jamal
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Oudai Sahwan
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Mohamad Bassam Sonbol
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Pedro Luiz Serrano Uson Junior
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, Avenida Albert Einstein 627, São Paulo 05652900, Brazil
| | - Masato Hayashi
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Taro Sato
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- Department of Gastroenterology and Hepatology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Mariko Nishioka
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Fumio Nagashima
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Tanios Bekaii-Saab
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Mitesh J Borad
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Shuichi Hironaka
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
12
|
Feng X, Zeng R, Lyu M, Chen X, Xu Z, Hu Y, Bao Z, Sun X, Zhao J, Zhou L, Zhou J, Gao B, Dong L, Xiang Y. Clinical and molecular characteristics, therapeutic strategies, and prognosis of non-small cell lung cancer patients harboring primary and acquired BRAF mutations. Front Oncol 2025; 15:1514653. [PMID: 40242250 PMCID: PMC11999832 DOI: 10.3389/fonc.2025.1514653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Background The differences in clinical characteristics and treatment prognosis in NSCLC patients harboring primary and acquired BRAF mutations are still poorly understood. Methods From Oct 2017 to Dec 2023, 10, 211 lung cancer patients at Shanghai Ruijin Hospital were reviewed. 88 primary and 15 acquired BRAF-mutated NSCLC patients resistant to EGFR TKIs were included in the study. Results Primary BRAF-mutated patients preferentially occurred in the elderly (median age: 67 vs 61, p=0.015), males (53.4% vs 26.7%, p=0.056), former/current smokers (36.5% vs 6.7%, p=0.033), non-adenocarcinoma (11.4% vs 0%, P=0.351) compared to acquired BRAF-mutated patients. Significant differences in gender (33.3% vs 62.3%, p=0.012), smoking history (22.2% vs 43.1%, p=0.063), and adenocarcinomas (100% vs 83.6%, p=0.028) were observed between primary BRAF/EGFR co-mutated and non-co-mutated groups. While primary and acquired BRAF/EGFR co-mutated patients had similar clinical characteristics, with EGFR mutations being the most common coexisting oncogene (30.7% and 93.3%). The genotype of EGFR mutations differed, with acquired BRAF-mutated cases showing more complexity and a higher rate of dual EGFR mutations (35.7%) compared to primary cases. For primary BRAF/EGFR co-mutated patients, no matter what kinds of therapies, the EGFR 19del patients had a better prognosis than non-19del patients, and the first line mPFS was NR and 9.0 months (95% CI: 7.7-10.3 months) (p=0.0062), respectively. Dabrafenib and trametinib plus 3rd EGFR TKIs improved the prognosis of primary BRAF/EGFR non-19del co-mutated patients, achieving ORR and mPFS of 100% (3/3) and 12 months. For acquired co-mutated patients, the mPFS for 5 patients was 8.6 months (95% CI: 5.4-11.8 months). No new safety concerns and > grade 3 AEs were noted. Conclusion Together, our study demonstrates that primary and acquired BRAF-mutant patients show distinct differences in some clinical and molecular characteristics, but acquired BRAF/EGFR co-mutated and primary BRAF/EGFR non-19del co-mutated patients may both respond to triple-targeted therapy.
Collapse
Affiliation(s)
- Xiangran Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zeng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengchen Lyu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwei Xu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyao Bao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xianwen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jingya Zhao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Beili Gao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
13
|
van Karnebeek CDM, Müller AR, Benkemoun L, Boussaad I, Cornel MC, IntHout J, de Kort M, de Oliveira Martins S, Prigione A, Rigter T, Roes KCB, Sanchez A, Schipper R, Wilkinson MD, 't Hoen PAC. SIMPATHIC: Accelerating drug repurposing for rare diseases by exploiting SIMilarities in clinical and molecular PATHology. Mol Genet Metab 2025; 144:109073. [PMID: 40086177 DOI: 10.1016/j.ymgme.2025.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Rare diseases affect over 400 million people worldwide, with approved treatment available for less than 6 % of these diseases. Drug repurposing is a key strategy in the development of therapies for rare disease patients with large unmet medical needs. The process of repurposing drugs compared to novel drug development is a time-saving and cost-efficient method potentially resulting in higher success rates. To accelerate and ensure sustainability in therapy development for rare neurometabolic, neurological, and neuromuscular diseases, an international consortium SIMilarities in clinical and molecular PATHology (SIMPATHIC) has been established where we move away from the one drug one disease concept and move towards one drug targeting a pathomechanism shared between diseases, by applying parallel preclinical and clinical drug development. Here the consortium describes accelerators of drug repurposing pursued by the consortium, including 1) co-creation, 2) patient empowerment, 3) use of standardized induced pluripotent stem cell (iPSC)-derived disease models and cellular and molecular profiling, 4) high-throughput drug screening in neurons, 5) innovative clinical trial design, and 6) selection of appropriate exploitation and patient access models. In this way, a fast and effective drug repurposing pathway for several rare diseases will be established to reduce time from discovery to patient access.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Annelieke R Müller
- Departments of Pediatrics and Human Genetics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Public Health research institute, Personalized Medicine program, Boelelaan 1117, 1007 MB Amsterdam, the Netherlands
| | | | - Ibrahim Boussaad
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Av. des Hauts-Fourneaux, 4362 Esch-Belval, Esch-sur-Alzette, Luxembourg
| | - Martina C Cornel
- Amsterdam Reproduction and Development, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1007 MB Amsterdam, the Netherlands
| | - Joanna IntHout
- IQ Health science department Radboudumc, Postbus 9101, 6500 HB Nijmegen, the Netherlands
| | - Martin de Kort
- EATRIS ERIC European Infrastructure for Translational Medicine, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Sofia de Oliveira Martins
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Comprehensive Health Research Center, Evora, Portugal
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tessel Rigter
- Amsterdam Public Health research institute, Personalized Medicine program, Boelelaan 1117, 1007 MB Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1007 MB Amsterdam, the Netherlands
| | - Kit C B Roes
- IQ Health science department Radboudumc, Postbus 9101, 6500 HB Nijmegen, the Netherlands
| | - Anna Sanchez
- EATRIS ERIC European Infrastructure for Translational Medicine, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Raymond Schipper
- Department of Medical BioSciences, Radboud university medical center, Geert Grooteplein Zuid 26/28, 6525GA Nijmegen, the Netherlands
| | - Mark D Wilkinson
- FAIR Data Systems S.L., C. del Corazón de María, 9, 1'D, Chamartín, 28002 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC), Pozuelo de Alarcón (Madrid), Spain
| | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud university medical center, Geert Grooteplein Zuid 26/28, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Daniells L, Mozgunov P, Barnett H, Bedding A, Jaki T. How to add baskets to an ongoing basket trial with information borrowing. Stat Methods Med Res 2025; 34:717-734. [PMID: 40111817 DOI: 10.1177/09622802251316961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Basket trials test a single therapeutic treatment on several patient populations under one master protocol. A desirable adaptive design feature is the ability to incorporate new baskets to an ongoing trial. Limited basket sample sizes can result in reduced power and precision of treatment effect estimates, which could be amplified in added baskets due to the shorter recruitment time. While various Bayesian information borrowing techniques have been introduced to tackle the issue of small sample sizes, the impact of including new baskets into the borrowing model has yet to be investigated. We explore approaches for adding baskets to an ongoing trial under information borrowing. Basket trials have pre-defined efficacy criteria to determine whether the treatment is effective for patients in each basket. The efficacy criteria are often calibrated a-priori in order to control the basket-wise type I error rate to a nominal level. Traditionally, this is done under a null scenario in which the treatment is ineffective in all baskets, however, we show that calibrating under this scenario alone will not guarantee error control under alternative scenarios. We propose a novel calibration approach that is more robust to false decision making. Simulation studies are conducted to assess the performance of the approaches for adding a basket, which is monitored through type I error rate control and power. The results display a substantial improvement in power for a new basket, however, this comes with potential inflation of error rates. We show that this can be reduced under the proposed calibration procedure.
Collapse
Affiliation(s)
- Libby Daniells
- STOR-i Centre for Doctoral Training, Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Pavel Mozgunov
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Helen Barnett
- School of Mathematical Sciences, Lancaster University, Lancaster, UK
| | | | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Chung C, Umoru G. Prognostic and predictive biomarkers with therapeutic targets in nonsmall-cell lung cancer: A 2023 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2025; 31:438-461. [PMID: 38576390 DOI: 10.1177/10781552241242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BackgroundSince the publication of the original work in 2014, significant progress has been made in the characterization of genomic alterations that drive oncogenic addiction of nonsmall cell lung cancer (NSCLC) and how the immune system can leverage non-oncogenic pathways to modulate therapeutic outcomes. This update evaluates and validates the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in NSCLC.Data sourcesWe performed a literature search from January 2015 to October 2023 using the keywords non-small cell lung cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, circulating tumor DNA, predictive and prognostic biomarkers, and targeted therapies.Study selection and data extractionWe identified, reviewed, and evaluated relevant clinical trials, meta-analyses, seminal articles, and published clinical practice guidelines in the English language.Data synthesisRegulatory-approved targeted therapies include those somatic gene alterations of EGFR ("classic" mutations, exon 20 insertion, and rare EGFR mutations), ALK, ROS1, BRAF V600, RET, MET, NTRK, HER2, and KRAS G12C. Data for immunotherapy and circulating tumor DNA in next-generation sequencing are considered emerging, whereas the predictive role for PIK3CA gene mutation is insufficient.ConclusionsAdvances in sequencing and other genomic technologies have led to identifying novel oncogenic drivers, novel resistance mechanisms, and co-occurring mutations that characterize NSCLC, creating further therapeutic opportunities. The benefits associated with immunotherapy in the perioperative setting hold initial promise, with their long-term results awaiting.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
16
|
Chen L, Fu Y, Wang J, Lv N, Yu S, Fang Q, Xin W. Isoliquiritigenin suppresses fatty acid synthesis and cancer cell migration in anaplastic thyroid carcinoma through AMPK/SREBF1 pathway. Arch Biochem Biophys 2025; 766:110352. [PMID: 39978618 DOI: 10.1016/j.abb.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive neoplasm with poor prognosis and limited therapeutic alternatives. Isoliquiritigenin (ISL), a bioactive isoflavonoid, has exhibited an antitumor activity across multiple tumor types; however, its precise anticancer mechanisms against ATC remain unexplored. In this study, the therapeutic effects of ISL on ATC cells and the potential mechanism were investigated by RNA-seq analysis and untargeted lipidomic analysis, combined with in vitro and in vivo experimental validation. The results showed that ISL effectively hindered the proliferation of ATC cells, inhibited cancer cell migration by up-regulating the level of E-cadherin and down-regulating the level of N-cadherin, and inhibited fatty acid synthesis by down-regulating the level of Sterol regulatory element binding transcription factor 1 (SREBF1) and its downstream lipid synthesis-related enzyme expression level. The underlying mechanism appears to involve a decrease in intracellular ATP levels induced by ISL and the activation of phosphorylated AMPK, thereby downregulating the expression of SREBF1, ultimately inhibiting cell proliferation, migration, and lipid synthesis. In vivo experiments further confirmed that ISL significantly retarded the growth of tumor xenografts in mice, diminished tumor cell proliferation, and reduced SREBF1 protein levels. This study suggests that ISL modulates lipogenesis and impedes cancer cell migration in ATC through the AMPK/SREBF1 signaling pathway.
Collapse
Affiliation(s)
- Liangsheng Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Yuxuan Fu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Jia Wang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Neng Lv
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Shuwei Yu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Qilu Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China.
| | - Wenxiu Xin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China.
| |
Collapse
|
17
|
Li J, Alaoui H, Lu H, Wang D, Liang Y. Craniofacial Langerhans Cell Histiocytosis Successfully Treated Through Intralesional Injection of Triamcinolone Acetonide: A Retrospective Study. J Craniofac Surg 2025:00001665-990000000-02561. [PMID: 40162971 DOI: 10.1097/scs.0000000000011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Treatment options for single-system Langerhans cell histiocytosis (LCH) range from observation to chemotherapy. Among these options, corticosteroid injection is appealing due to the feasibility, preservation of structure and function as well as the low complication rate. Therefore, this study aimed to investigate the effectiveness of intralesional injection of triamcinolone acetonide (TA) for the treatment of craniofacial LCH and present a typical case. 11 patients diagnosed with LCH of the jaws who received intralesional injection of TA at Hospital of Stomatology, Sun Yat-sen University from April 2014 to May 2021 were involved. Clinicopathologic data were collected and analyzed. The 11 subjects included 7 males and 4 females (mean age 14.6±16.9 y). Most lesions were located in the mandible (n=9, 81.8%). The effective rate of intralesional injection of TA was 90.9%. The average initial dosage and average accumulative dosage were 33.2±21.0 and 99.5±88.7 mg, respectively. The mean time needed for complete ossification of the lesion was 12.5±8.2 months. The mean follow-up time was 20±13.4 months. Although the effective rate was similar between children and adults (100% versus 75%, P=0.364), the initial dosage, accumulative dosage, number of injections, and time needed for complete ossification of the lesion were all lower in children (P<0.05). In conclusion, intralesional injection of TA is a suitable treatment option for craniofacial LCH, especially in children. Studies that incorporate a larger patient cohort should be conducted to verify the current findings.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | | | | | | | | |
Collapse
|
18
|
Gulati N, Peckham-Gregory E, Parsons DW, Allen CE. Genomic Alterations in Langerhans Cell Histiocytosis. Hematol Oncol Clin North Am 2025:S0889-8588(25)00016-4. [PMID: 40133143 DOI: 10.1016/j.hoc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by inflammatory lesions with clonal histiocytes. LCH is driven by activating mitogen-activated protein kinase (MAPK) pathway mutations. BRAFV600E is the most common mutation and is associated with more extensive disease at presentation and risks of front-line treatment failure, liver disease, and LCH-associated neurodegeneration. Genetic ancestry influences LCH with highest incidence in Hispanic populations. MAPK inhibitors are effective, but do not achieve cure in most cases. Clinical trials prospectively testing risk-stratification based on somatic mutation and/or detectable mutation in peripheral blood may improve outcomes for LCH patients.
Collapse
Affiliation(s)
- Nitya Gulati
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Erin Peckham-Gregory
- Section of Pediatric Hematology-Oncology, Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, zip code 10065, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - D Williams Parsons
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA; Division of Pediatric Hematology-Oncology, Department of Pediatrics; Department of Genetics and Genomics, Baylor College of Medicine
| | - Carl E Allen
- Section of Pediatric Hematology-Oncology, Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, zip code 10065, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
19
|
Tak E, An HI, Lee AS, Han K, Choi J, Kim HD, Hong YS, Kim SY, Choi EK, Kim JE, Kim TW. Antitumor effects of immunotherapy combined with BRAF and MEK inhibitors in BRAF V600E metastatic colorectal cancer. Cancer Immunol Immunother 2025; 74:154. [PMID: 40105971 PMCID: PMC11923341 DOI: 10.1007/s00262-025-04005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
BRAF-mutated colorectal cancer correlates with poor prognosis and limited response to standard treatments. Combining immune checkpoint inhibitors with BRAF/MEK inhibitors shows promise against BRAF-mutant melanoma in both preclinical and clinical trials. Therefore, we hypothesized that the treatment would be effective against BRAF-mutant colorectal cancer. In this study, we assessed the efficacy of combining immune checkpoint inhibitors with BRAF and/or MEK inhibitors in BRAF-mutant colorectal cancers. We treated BRAF V600E colorectal cancer cells HT-29 and SNU-1235 with encorafenib (BRAF inhibitor) and binimetinib (MEK inhibitor) and assessed the degrees of MAPK inhibition, JAK/STAT inhibition, cell viability, apoptosis, and the expression of antigen presenting machinery. We also inoculated HT-29 cells into mice and treated them with an immune checkpoint inhibitor (durvalumab), encorafenib, and binimetinib for 4 weeks. We found that treatment with BRAF inhibitor, MEK inhibitor, or their combination led to significant tumor growth reduction, along with the MAPK and JAK/STAT pathway inhibition, antigen presenting machinery induction, and cytotoxic T cell activation. Our study demonstrates the potential effectiveness of combining immune checkpoint inhibitors with BRAF or MEK inhibitors for BRAF-mutated colorectal cancers.
Collapse
Affiliation(s)
- Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Amy Sinyoung Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyuyoung Han
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwan Choi
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyung-Don Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Yong Sang Hong
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Tae Won Kim
- Department of Oncology, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, 05505, Republic of Korea
| |
Collapse
|
20
|
Wei Y, Wu H, Guo J, Sun X. A patient with Eradheim-Chester disease presenting with progressive cystic lung lesions and confirmed pulmonary artery hypertension: a case report. BMC Pulm Med 2025; 25:110. [PMID: 40075354 PMCID: PMC11905670 DOI: 10.1186/s12890-024-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/21/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Erdheim-Chester disease (ECD), a rare type of non-Langerhans cell histiocytosis, was classified as a haematopoietic tumour by the World Health Organization (WHO) in 2016. It involves multiple systems and is challenging to diagnose due to its broad spectrum of clinical manifestations. The pulmonary manifestations of ECD lack specificity. We present a case of ECD with pronounced cystic lung abnormalities to increase awareness of the disease among pulmonologists and expedite diagnosis and treatment. CASE PRESENTATION We report the case of a 44-year-old male who presented with intermittent fever, cough, bilateral leg pain, extensive xanthomas on his face, and extensive pulmonary cystic changes noted on imaging following a pulmonary stab wound incident. Thoracoabdominal enhanced computed tomography (CT) revealed progressive cystic changes in the lungs, notably in the upper lungs and subpleural areas; thickened interlobular septa; circumferential wall thickening of the left subclavian artery; uneven thickening of the aortic wall; and soft tissue shadows in the right atrium of the heart. Bone scintigraphy revealed bilateral symmetric long-bone uptake. Despite his advanced lung abnormalities, he exhibited no hypoxia. Notably, echocardiography indicated severe pulmonary artery hypertension, and right heart catheterization confirmed increased mean pulmonary artery pressure at 37 mmHg and elevated pulmonary vascular resistance. Pathology examination of transbronchial lung biopsy and the facial xanthomas confirmed the presence of ECD-characteristic histiocytes, and genetic testing revealed a BRAF V600E mutation. Treatment with dabrafenib improved respiratory symptoms and facial xanthomas, although some symptoms persisted. Follow-up CT showed reduced interstitial lesions but more pronounced cystic changes. CONCLUSIONS This case of ECD illustrates rare pulmonary cystic changes alongside pulmonary arterial hypertension, challenging typical presentations of ECD. This is the first documented instance of pulmonary hypertension associated with ECD, broadening the understanding of its potential complications. These findings emphasize the need for considering ECD in the differential diagnosis of atypical cystic lung lesions, especially when accompanied by systemic symptoms such as xanthomas and bone pain.
Collapse
Affiliation(s)
- Yuxi Wei
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junwei Guo
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xuefeng Sun
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
21
|
Jafari P, Forrest M, Segal J, Wang P, Tjota MY. Pan-Cancer Molecular Biomarkers: Practical Considerations for the Surgical Pathologist. Mod Pathol 2025; 38:100752. [PMID: 40058460 DOI: 10.1016/j.modpat.2025.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Traditional anatomic pathologic classification of cancer is based on tissue of origin and morphologic and immunohistochemical characterization of the malignant cells. With the technological improvements of massively parallel or next-generation sequencing, oncogenic drivers that are shared across different tumor types are increasingly being identified and used as pan-cancer biomarkers. This approach is reflected in the growing list of Food and Drug Administration-approved tumor-agnostic therapies, including pembrolizumab in the setting of microsatellite instability and high tumor mutational burden, larotrectinib and entrectinib for solid tumors with NTRK fusions, and combined dabrafenib-trametinib for BRAF V600E-mutated neoplasms. Several other biomarkers are currently under investigation, including fibroblast growth factor receptor (FGFR), RET, and ROS1 fusions; ERBB2 amplification; and mutations in the AKT1/2/3, NF1, RAS pathway and (mitogen-activated protein kinase (MAPK) pathway. As molecular assays are increasingly incorporated into routine tumor workup, the emergence of additional pan-cancer biomarkers is likely to be a matter more of "when" than "if." In this review, we first explore some of the conceptual and technical considerations at the intersection of surgical and molecular pathology, followed by a brief overview of both established and emerging molecular pan-cancer biomarkers and their diagnostic and clinical applications.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Megan Forrest
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
22
|
Govande S, Slate EH. Using Subject Level Covariate Information in Bayesian Mixture Models for Basket Trials. Pharm Stat 2025; 24:e70006. [PMID: 40109164 DOI: 10.1002/pst.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Basket trials are gaining importance with advancements in precision medicine. A basket trial evaluates one or more treatments for efficacy among more than one cancer type (histology) in a single clinical trial. Compared to traditional designs, basket trials can reduce the time required for testing and, by pooling across cancer types, they also allow the drugs to be tested for rare cancers. However, the potential for heterogeneity in treatment efficacy in different cancer types poses modeling challenges. Our model aims to assist the cancer type level go/no-go decisions in the initial phases of the trial through a latent cluster structure that incorporates subject-level covariate information. We model subjects' responses using a Bayesian mixture model where the mixture weights depend on a measure of similarly among subjects' covariate values. A simulation study demonstrates that our proposed Bayesian Partition Model with Covariates (BPMx) robustly estimates basket-level mean response and can provide insight about the latent cluster structure. We further illustrate the model using response data from a published basket trial.
Collapse
Affiliation(s)
- Sneha Govande
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elizabeth H Slate
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
23
|
Napolitano S, Ciardiello D, Cioli E, Martinelli E, Troiani T, Giulia Zampino M, Fazio N, De Vita F, Ciardiello F, Martini G. BRAFV600E mutant metastatic colorectal cancer: Current advances in personalized treatment and future perspectives. Cancer Treat Rev 2025; 134:102905. [PMID: 40009904 DOI: 10.1016/j.ctrv.2025.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Detection of the BRAF V600E mutation has important genetic, prognostic, and therapeutic implications for patients with metastatic colorectal cancer (mCRC), identifying a subgroup of patients who derive modest benefit from standard treatments and have extremely poor prognosis. The evolution of molecular profiling and the implementation of next generation sequencing in the evaluation of a patient with BRAF-mutated mCRC has currently led to the discovery of actionable alterations. Targeting multiple pathways of resistance in BRAF-mutated mCRC may be the most efficacious route. Then, over a short period of time, the treatment landscape BRAF-mutated mCRC patients has shifted dramatically. Finally, novel treatment strategies are available. This review will discuss on currently approved treatments for BRAF V600E mutated mCRC and will try and portray the changing landscape in this setting in the era of targeted molecular therapy.
Collapse
Affiliation(s)
- Stefania Napolitano
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, Milan, Italy
| | - Eleonora Cioli
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erika Martinelli
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Teresa Troiani
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, Milan, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, Milan, Italy
| | - Ferdinando De Vita
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giulia Martini
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
Takeda K, Hashimoto A, Liu S, Rong A. A basket trial design based on constrained hierarchical Bayesian model for latent subgroups. J Biopharm Stat 2025; 35:271-282. [PMID: 38369872 DOI: 10.1080/10543406.2024.2311851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
It is well known a basket trial consisting of multiple cancer types has the potential of borrowing strength across the baskets defined by the cancer types, leading to an efficient design in terms of sample size and trial duration. The treatment effects in those baskets are often heterogeneous and categorized by the cancer types being sensitive or insensitive to the treatment. Hence, the assumption of exchangeability in many existing basket trials may be violated, and there is a need to design trials without this assumption. In this paper, we simplify the constrained hierarchical Bayesian model for latent subgroups (CHBM-LS) for two classifiers to deal with the potential heterogeneity of treatment effects due to the single classifier of the cancer type. Different baskets are aggregated into subgroups using a latent subgroup modeling approach. The treatment effects are similar and exchangeable to facilitate information borrowing within each latent subgroup. Applying the simplified CHBM-LS approach to the real basket trials where baskets defined by only cancer types shows better performance than other available approaches. Further simulation study also demonstrates this CHBM-LS approach outperforms other approaches with higher statistical power and better-controlled type I error rates under various scenarios.
Collapse
Affiliation(s)
- Kentaro Takeda
- Data Science, Astellas Pharma Global Development Inc, Northbrook, Illinois, USA
| | | | - Shufang Liu
- Oncology Biostatistics, Gilead Sciences Inc, Foster City, California, USA
| | - Alan Rong
- Oncology Biostatistics, Gilead Sciences Inc, Foster City, California, USA
| |
Collapse
|
25
|
Kopetz S, Yoshino T, Van Cutsem E, Eng C, Kim TW, Wasan HS, Desai J, Ciardiello F, Yaeger R, Maughan TS, Beyzarov E, Zhang X, Ferrier G, Zhang X, Tabernero J. Encorafenib, cetuximab and chemotherapy in BRAF-mutant colorectal cancer: a randomized phase 3 trial. Nat Med 2025; 31:901-908. [PMID: 39863775 PMCID: PMC11922750 DOI: 10.1038/s41591-024-03443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025]
Abstract
Encorafenib + cetuximab (EC) is approved for previously treated BRAF V600E-mutant metastatic colorectal cancer (mCRC) based on the BEACON phase 3 study. Historically, first-line treatment of BRAF V600E-mutant mCRC with chemotherapy regimens has had limited efficacy. The phase 3 BREAKWATER study investigated EC+mFOLFOX6 versus standard of care (SOC) in patients with previously untreated BRAF V600E mCRC. The dual primary endpoint of progression-free survival is event driven; data were not mature at data cutoff. BREAKWATER met the other dual primary endpoint of objective response rate, demonstrating significant and clinically relevant improvement in objective response rate (EC+mFOLFOX6: 60.9%; SOC: 40.0%; odds ratio, 2.443; 95% confidence interval (CI): 1.403-4.253; 99.8% CI: 1.019-5.855; one-sided P = 0.0008). Median duration of response was 13.9 versus 11.1 months. At this first interim analysis of overall survival, the hazard ratio was 0.47 (95% CI: 0.318-0.691; repeated CI: 0.166-1.322). Serious adverse event rates were 37.7% versus 34.6%. The safety profiles were consistent with those known for each agent. BREAKWATER demonstrated a significantly improved response rate that was durable for first-line EC+mFOLFOX6 versus SOC in patients with BRAF V600E mCRC. ClinicalTrials.gov identifier: NCT04607421 .
Collapse
Affiliation(s)
- Scott Kopetz
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Eric Van Cutsem
- University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Tae Won Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jayesh Desai
- Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, VIC, Australia
| | | | - Rona Yaeger
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | - Josep Tabernero
- Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), University of Vic - Central University of Catalonia, Barcelona, Spain
| |
Collapse
|
26
|
Eriksen M, Hansen AM, Nielsen AB, Mundt F, Mann M, Lassen U, Ahlborn LB, Højgaard M, Spanggaard I, Qvortrup C, Yde CW, Rohrberg KS. Multiomics Identifies Potential Molecular Profiles Associated With Outcomes After BRAF-Targeted Therapy in Patients With BRAF V600E-Mutated Advanced Solid Tumors. JCO Precis Oncol 2025; 9:e2400266. [PMID: 40080754 PMCID: PMC11922189 DOI: 10.1200/po.24.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 03/15/2025] Open
Abstract
PURPOSE It is a clinical challenge to select patients for BRAF-targeted therapy because of the lack of predictive biomarkers besides the BRAF V600E mutation. By analyzing the genome, transcriptome, and proteome, this study investigated the association between baseline molecular alterations and outcomes of BRAF-targeted therapy. PATIENTS AND METHODS Fresh tumor tissue from patients enrolled in the Copenhagen Prospective Personalized Oncology study was collected and underwent comprehensive molecular profiling. RESULTS TP53 comutations were most frequently detected. Patients with a TP53 wild-type tumor had a significantly longer median progression-free survival than those with TP53 comutations (hazard ratio, 2.8 [95% CI, 1.13 to 7.08]; P = .02). RNAseq revealed a distinct gene expression signature for patients with long-term disease control (LDC), including hallmarks of cell cycle arrest and proliferation in the p53 pathway. The protein analysis demonstrated that ubiquitin-conjugating enzyme EK2 was significantly downregulated in patients with LDC. CONCLUSION Using a multiomic approach, we identified molecular alterations associated with treatment outcomes. The potential of analyzing multiomic data is promising and should be prioritized in translational cancer research to uncover the full potential within precision oncology.
Collapse
Affiliation(s)
- Martina Eriksen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne M. Hansen
- Department of Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annelaura B. Nielsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lise B. Ahlborn
- Department of Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Højgaard
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Iben Spanggaard
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Camilla Qvortrup
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina W. Yde
- Department of Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kristoffer S. Rohrberg
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
27
|
Tunio MA, Hinder D, Emery B, Riaz MH, Ibraheem YA, Nayak KK, Mohamed W. Modern Therapeutic Approaches in Anaplastic Thyroid Cancer: A Meta-Analytic Review of Randomised and Single Arm Studies on Efficacy and Survival. Cancers (Basel) 2025; 17:777. [PMID: 40075624 PMCID: PMC11898454 DOI: 10.3390/cancers17050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Meta-analyses aimed to assess the effectiveness and safety of targeted and contemporary therapies utilised in locally advanced and metastatic anaplastic thyroid cancer (ATC). Methods: Employing PRISMA and MOOSE guidelines, PubMed, Scopus, Cochrane Library and Web of Science were explored from the inception of targeted therapy until December 2024. A meta-analysis was performed to evaluate the effectiveness, toxicity and survival outcomes of various mutationally directed agents, chemotherapy and radiotherapy in locally advanced/metastatic ATC cases. Results: A total of 47 studies (26 prospective phase II trials and 21 retrospective studies) involving 980 patients met the inclusion criteria. The pooled results showed an overall response rate (ORR) of 29.7% (95% CI: 25.4-34.2%; I2 = 42.4%; p < 0.0001). A total of 49.9% deaths were reported, although a significant number remained alive compared to baseline (mean difference [MD]: 2.07, 95% CI: 1.90-2.24; I2 = 88.6%; p < 0.0001). The pooled median progression-free survival (PFS) was 5.4 months (95% CI: 4.0-6.7 months; I2 = 97.9%; p < 0.0001). Dabrafenib/trametinib (DT) with and without pembrolizumab and lenvatinib plus pembrolizumab (LP) were associated with higher ORR rates and improved OS and PFS. About 51.% of studies mentioned bio-marker analysis (BRAFV600 [14.7%], PDL1 [9.2%], RAS [1.1%], PIK3CA [1.0%] and NTRK1/3 [0.7%]). Toxicity was reported in 94.7% of patients. Conclusions: This meta-analysis found that DT could be a promising first-line treatment option for BRAFV600-mutated ATC, with or without immunotherapy. Alternatively, LP shows potential in BRAFV600 wild-type and PDL1-overexpressing cases. Routine biomarker analysis remains critical for optimising ATC management strategies.
Collapse
Affiliation(s)
- Mutahar A. Tunio
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Donna Hinder
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Blaise Emery
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Muhammad H. Riaz
- Department of Medicine, Swansea Bay University Health Board, Swansea SA2 8QA, UK
| | | | - Krishnendu Kumar Nayak
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Wael Mohamed
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| |
Collapse
|
28
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
29
|
Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem 2025:d4md00881b. [PMID: 39925737 PMCID: PMC11800140 DOI: 10.1039/d4md00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial malignant tumors arising from the biliary tract, characterized by high molecular heterogeneity. It is classified into intrahepatic (iCCA) and extrahepatic CCA (eCCA) based on the location of the primary tumor. CCA accounts for approximately 15% of all primary liver cancers, with iCCA comprising 10-20% of all CCAs. iCCA is especially known for its characteristic aggressiveness and refractoriness, leading to poor prognosis. Despite the increasing global incidence and mortality rates, surgery remains the only available standard treatment approach for a subset (25%) of patients with early-stage, resectable iCCA. The paucity of effective systemic medical therapies restricts therapeutic options for patients with advanced or metastatic iCCA. In the past decade, advances in the understanding of the molecular complexity of these tumors have provided fruitful insights for the identification of promising new druggable targets and the development of feasible therapeutic strategies that may improve treatment outcomes for patients with iCCA. In this review, we aim to highlight critical up-to-date studies and medicinal chemistry aspects, focusing on novel targeted approaches utilizing promising candidates for molecular targeted therapy in iCCA. These candidates include aberrations in isocitrate dehydrogenase (IDH) 1/2, fibroblast growth factor receptor (FGFR), B-Raf proto-oncogene (BRAF), neurotrophic tyrosine receptor kinase (NTRK), human epidermal growth factor receptor 2 (HER2), and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1). Furthermore, this review provides an overview of potential inhibitors aimed at overcoming acquired drug resistance in these actionable targets for iCCA.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
| | - Jaewon Song
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
30
|
Keyl J, Keyl P, Montavon G, Hosch R, Brehmer A, Mochmann L, Jurmeister P, Dernbach G, Kim M, Koitka S, Bauer S, Bechrakis N, Forsting M, Führer-Sakel D, Glas M, Grünwald V, Hadaschik B, Haubold J, Herrmann K, Kasper S, Kimmig R, Lang S, Rassaf T, Roesch A, Schadendorf D, Siveke JT, Stuschke M, Sure U, Totzeck M, Welt A, Wiesweg M, Baba HA, Nensa F, Egger J, Müller KR, Schuler M, Klauschen F, Kleesiek J. Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence. NATURE CANCER 2025; 6:307-322. [PMID: 39885364 PMCID: PMC11864985 DOI: 10.1038/s43018-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025]
Abstract
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90% of the neural network's decision process. Moreover, xAI enabled us to uncover 1,373 prognostic interactions between markers. Our approach was validated in an independent cohort of 3,288 patients with lung cancer from a US nationwide electronic health record-derived database. These results show the potential of xAI to transform the assessment of clinical variables and enable personalized, data-driven cancer care.
Collapse
Affiliation(s)
- Julius Keyl
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
- Institute of Pathology, University Hospital Essen (AöR), Essen, Germany
| | - Philipp Keyl
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Grégoire Montavon
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Machine Learning Group, Technical University of Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - René Hosch
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Alexander Brehmer
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Liliana Mochmann
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gabriel Dernbach
- Machine Learning Group, Technical University of Berlin, Berlin, Germany
| | - Moon Kim
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Sven Koitka
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
| | - Sebastian Bauer
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Nikolaos Bechrakis
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Ophthalmology, University Hospital Essen (AöR), Essen, Germany
| | - Michael Forsting
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Dagmar Führer-Sakel
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen (AöR), Essen, Germany
| | - Martin Glas
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Urology, University Hospital Essen (AöR), Essen, Germany
| | - Boris Hadaschik
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Urology, University Hospital Essen (AöR), Essen, Germany
| | - Johannes Haubold
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Rainer Kimmig
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen (AöR), Essen, Germany
| | - Stephan Lang
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Otorhinolaryngology, University Hospital Essen (AöR), Essen, Germany
| | - Tienush Rassaf
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen (AöR), Essen, Germany
| | - Alexander Roesch
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Dermatology, University Hospital Essen (AöR), Essen, Germany
| | - Dirk Schadendorf
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Dermatology, University Hospital Essen (AöR), Essen, Germany
- Research Alliance Ruhr, Research Center One Health, University of Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Martin Stuschke
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Radiotherapy, University Hospital Essen (AöR), Essen, Germany
| | - Ulrich Sure
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen (AöR), Essen, Germany
| | - Matthias Totzeck
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen (AöR), Essen, Germany
| | - Anja Welt
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Felix Nensa
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Jan Egger
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Machine Learning Group, Technical University of Berlin, Berlin, Germany.
- Department of Artificial Intelligence, Korea University, Seoul, South Korea.
- MPI for Informatics, Saarbrücken, Germany.
| | - Martin Schuler
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany.
- Medical Faculty, University of Duisburg-Essen, Essen, Germany.
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany.
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany.
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Berlin partner site, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Munich partner site, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jens Kleesiek
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany.
- Medical Faculty, University of Duisburg-Essen, Essen, Germany.
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany.
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany.
| |
Collapse
|
31
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Borucki K, Brunner T, Caspari R, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Gebert J, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Ott J, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ringe K, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schütte K, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Trojan J, van Thiel I, Utzig M, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wenzel G, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:e82-e158. [PMID: 39919781 DOI: 10.1055/a-2460-6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Katrin Borucki
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Klinische Chemie und Pathobiochemie
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Jamila Gebert
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Julia Ott
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Digestive Diseases and Nutrition, Gastroenterology, University of Kentucky
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | - Kristina Ringe
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Kerstin Schütte
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Marienhospital Osnabrück
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Martin Utzig
- Abteilung Zertifizierung, Deutsche Krebsgesellschaft e.V., Berlin
| | - Arndt Vogel
- Institute of Medical Science, University of Toronto
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie, Infektiologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Gregor Wenzel
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
32
|
Sullivan JJ, Chandler JP, Lesniak MS, Tate MC, Sonabend AM, Kalapurakal JA, Horbinski CM, Lukas RV, Kumthekar PU, Sachdev S. Clinical outcomes for pleomorphic xanthoastrocytoma patients. Neurooncol Pract 2025; 12:45-50. [PMID: 39917756 PMCID: PMC11798600 DOI: 10.1093/nop/npae074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Background Report our institutional experience with pleomorphic xanthoastrocytoma (PXA) to contribute to limited data on optimal management. Methods Patients with pathologically confirmed PXA treated at our institution between 1990 and 2019 were identified. Demographic information, tumor grade, treatment variables, and clinical outcomes were collected from patient charts. Kaplan-Meier estimates were used to summarize 2 primary outcome measurements: progression-free survival (PFS) and overall survival (OS). Outcomes were stratified by tumor grade and extent of resection. Cox regression and log-rank testing were performed. Results We identified 17 patients with pathologically confirmed PXA. Two patients were excluded due to incomplete treatment information or <6 m of follow-up; 15 patients were analyzed (median follow-up 4.4 years). Six patients had grade 2 PXA and 9 had grade 3 anaplastic PXA. The 2- and 5-year PFS for the cohort was 57% and 33%, respectively; 2- and 5-year OS was 93% and 75%, respectively. Patients with grade 2 tumors exhibited superior PFS compared to those with grade 3 tumors (2-year PFS: 100% vs. 28%, 5-year PFS: 60% vs. 14%), hazard ratio, 5.09 (95% CI: 1.06-24.50), P = .02. Undergoing a gross total resection was associated with numerical longer survival but this was not of statistical significance (hazard ratio: 0.38, P = .15). All but one (89%) of the grade 3 patients underwent RT. Conclusions The poor survival of the cohort, especially with grade 3 tumors, suggests the need for more aggressive treatment, including maximal resection followed by intensive adjuvant therapy. Better prognostics of tumor recurrence are needed to guide the use of adjuvant therapy.
Collapse
Affiliation(s)
- Jared J Sullivan
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - James P Chandler
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - John A Kalapurakal
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Craig M Horbinski
- Department of Pathology, Division of Neuropathology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Division of Neuro-Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Priya U Kumthekar
- Department of Neurology, Division of Neuro-Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
33
|
Chaudhary R, Kumar A, Singh A, Agarwal V, Rehman M, Kaushik AS, Srivastava S, Srivastava S, Mishra V. Erdheim-Chester disease: Comprehensive insights from genetic mutations to clinical manifestations and therapeutic advances. Dis Mon 2025; 71:101845. [PMID: 39757048 DOI: 10.1016/j.disamonth.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Erdheim-Chester disease (ECD) is an extremely rare non-Langerhans cell disorder that is believed to include both inflammatory and neoplastic characteristics. It is caused due to genetic mutations in proto-oncogenes like BRAF and MEK, while immunological pathways have an essential role in the onset and progression of the disease. Despite its rarity, ECD poses significant diagnostic and therapeutic challenges due to its heterogeneous clinical presentation and limited understanding of its underlying pathophysiology. Multiple organs can be affected, with the most frequent being long bones, central nervous system and retro-orbital abnormalities, pericardial and myocardial infiltration, interstitial lung disease, retroperitoneal fibrosis, and large blood vessel aberrations. Here, in this review, we comprehensively underline the current knowledge of ECD, including its epidemiology, clinical manifestations, genetics, pathophysiology, diagnostic modalities, and treatment options. By synthesizing existing literature and highlighting areas of ongoing research, this review aims to provide clinicians and researchers with a comprehensive understanding of ECD and guide future directions for improved patient care and outcomes.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India
| | - Anand Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University, Rajasthan - 305817, India
| | - Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India
| | - Vipul Agarwal
- MIT College of Pharmacy, Ram Ganga Vihar Phase-II, Moradabad - 244001, (U.P.), India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, (U.P.), India.
| |
Collapse
|
34
|
Gilbert TM, Randle L, Quinn M, McGreevy O, O'leary L, Young R, Diaz-Neito R, Jones RP, Greenhalf B, Goldring C, Fenwick S, Malik H, Palmer DH. Molecular biology of cholangiocarcinoma and its implications for targeted therapy in patient management. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108352. [PMID: 38653586 DOI: 10.1016/j.ejso.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Cholangiocarcinoma (CCA) remains a devastating malignancy and a significant challenge to treat. The majority of CCA patients are diagnosed at an advanced stage, making the disease incurable in most cases. The advent of high-throughput genetic sequencing has significantly improved our understanding of the molecular biology underpinning cancer. The identification of 'druggable' genetic aberrations and the development of novel targeted therapies against them is opening up new treatment strategies. Currently, 3 targeted therapies are approved for use in CCA; Ivosidenib in patients with IDH1 mutations and Infigratinib/Pemigatinib in those with FGFR2 fusions. As our understanding of the biology underpinning CCA continues to improve it is highly likely that additional targeted therapies will become available in the near future. This is important, as it is thought up to 40 % of CCA patients harbour a potentially actionable mutation. In this review we provide an overview of the molecular pathogenesis of CCA and highlight currently available and potential future targeted treatments.
Collapse
Affiliation(s)
- T M Gilbert
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK.
| | - L Randle
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - M Quinn
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - O McGreevy
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - L O'leary
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R Young
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - R Diaz-Neito
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R P Jones
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - B Greenhalf
- Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| | - C Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - S Fenwick
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - H Malik
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - D H Palmer
- Clatterbridge Cancer Centre, Liverpool, UK; Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Doke R, Lokhande R, Chande K, Vinchurkar K, Prajapati BG. Recent advances in therapeutic strategies of Erdheim-Chester disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03769-2. [PMID: 39836251 DOI: 10.1007/s00210-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Erdheim-Chester disease (ECD) is a rare form of non-LCH characterized by excessive accumulation of histiocytes in various tissues, leading to significant morbidity. The estimated prevalence of ECD is low, with fewer than 1000 cases reported globally, yet it presents considerable clinical challenges due to its heterogeneous manifestations, which include bone pain, cardiovascular complications, and neurological symptoms. Traditional treatment approaches, primarily involving corticosteroids and chemotherapy, have limitations, including inconsistent responses and significant side effects. Recent advances in understanding the pathogenesis of ECD, particularly the role of the BRAF V600E mutation, have led to the exploration of novel therapeutic strategies, such as targeted BRAF inhibitors, MEK and mTOR inhibitors, and other immunotherapies, which offer promise in improving patient outcomes. The review further explores clinical manifestations, and radiographic features of Erdheim-Chester disease, and discusses treatment strategies, current clinical studies in the field of ECD. By integrating these aspects, this review aims to provide a thorough understanding of ECD and its evolving treatment landscape, ultimately contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Rohit Doke
- Jaihind College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra, 412401, India
| | - Rahul Lokhande
- Samarth Institute of Pharmacy, Belhe, Pune, Maharashtra, 412410, India
| | - Kalyani Chande
- Dr. DY Patil College of Pharmacy Akurdi, Pune, Maharashtra, 411044, India
| | - Kuldeep Vinchurkar
- Sandip Foundation's Sandip Institute of Pharmaceutical Sciences (SIPS), Nashik, Maharashtra, 422213, India.
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, 384012, Mahesana, Gujarat, India.
| |
Collapse
|
36
|
Schettini F, Sirico M, Loddo M, Williams GH, Hardisty KM, Scorer P, Thatcher R, Rivera P, Milani M, Strina C, Ferrero G, Ungari M, Bottin C, Zanconati F, de Manzini N, Aguggini S, Tancredi R, Fiorio E, Fioravanti A, Scaltriti M, Generali D. Next-generation sequencing-based evaluation of the actionable landscape of genomic alterations in solid tumors: the "MOZART" prospective observational study. Oncologist 2025; 30:oyae206. [PMID: 39177668 PMCID: PMC11783315 DOI: 10.1093/oncolo/oyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The identification of the most appropriate targeted therapies for advanced cancers is challenging. We performed a molecular profiling of metastatic solid tumors utilizing a comprehensive next-generation sequencing (NGS) assay to determine genomic alterations' type, frequency, actionability, and potential correlations with PD-L1 expression. METHODS A total of 304 adult patients with heavily pretreated metastatic cancers treated between January 2019 and March 2021 were recruited. The CLIA-/UKAS-accredit Oncofocus assay targeting 505 genes was used on newly obtained or archived biopsies. Chi-square, Kruskal-Wallis, and Wilcoxon rank-sum tests were used where appropriate. Results were significant for P < .05. RESULTS A total of 237 tumors (78%) harbored potentially actionable genomic alterations. Tumors were positive for PD-L1 in 68.9% of cases. The median number of mutant genes/tumor was 2.0 (IQR: 1.0-3.0). Only 34.5% were actionable ESCAT Tier I-II with different prevalence according to cancer type. The DNA damage repair (14%), the PI3K/AKT/mTOR (14%), and the RAS/RAF/MAPK (12%) pathways were the most frequently altered. No association was found among PD-L1, ESCAT, age, sex, and tumor mutational status. Overall, 62 patients underwent targeted treatment, with 37.1% obtaining objective responses. The same molecular-driven treatment for different cancer types could be associated with opposite clinical outcomes. CONCLUSIONS We highlight the clinical value of molecular profiling in metastatic solid tumors using comprehensive NGS-based panels to improve treatment algorithms in situations of uncertainty and facilitate clinical trial recruitment. However, interpreting genomic alterations in a tumor type-specific manner is critical.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”47014, Meldola, Italy
| | - Marco Loddo
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | | | - Paul Scorer
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | - Pablo Rivera
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Manuela Milani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Carla Strina
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Giuseppina Ferrero
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Marco Ungari
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Sergio Aguggini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Richard Tancredi
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Elena Fiorio
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, 37134, Verona, Italy
| | | | - Maurizio Scaltriti
- Neurosurgery Unit, ASST Cremona, 26100, Cremona, Italy
- AstraZeneca, Gaithersburg, MD 20876, United States
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| |
Collapse
|
37
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
38
|
Sun Z, Shi M, Xia J, Li X, Chen N, Wang H, Gao Z, Jia J, Yang P, Ji D, Gu J. HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF V600E-mutant microsatellite stable colorectal cancer. J Immunother Cancer 2025; 13:e010460. [PMID: 39800382 PMCID: PMC11749543 DOI: 10.1136/jitc-2024-010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup. METHODS We first performed a large-scale drug screening using patient-derived organoid models and cell lines to pinpoint potential therapies. Subsequently, we investigated the synergistic effects of identified effective inhibitors and probed their cooperative mechanisms. Concurrently, we explored the immune characteristics of BRAFV600E MSS CRC using RNA sequencing and multiplex immunohistochemistry. Finally, we established a CT26 BRAFV637E mouse cell line and validated the efficacy of combining these inhibitors and programmed death 1 (PD-1) blockades in immunocompetent mice. RESULTS Drug screening identified histone deacetylase (HDAC) inhibitor and mitogen-activated protein kinase kinase (MEK) inhibitor as significantly effective against BRAFV600E MSS CRC. Further research revealed that these two inhibitors have superior synergistic effects by comprehensively inhibiting the activation of the epidermal growth factor receptor, mitogen-activated protein kinase, and phosphoinositide 3-kinase-protein kinase B pathways and suppressing the key target homeobox C6 (HOXC6). HOXC6, overexpressed in BRAFV600E MSS CRC, regulates the MYC gene and contributes to treatment resistance, tumor growth, and metastasis. Moreover, the combination therapy demonstrated the ability to enhance antitumor immunity by synergistically upregulating the expression of immune activation-related genes, activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway, and diminishing the tumor cells' DNA mismatch repair capacity. Notably, BRAFV600E MSS CRC was identified to exhibit a distinct immune microenvironment with increased PD-1+ cell infiltration and potential responsiveness to immunotherapy. Echoing the above findings, in vivo, HDAC and MEK inhibitors significantly improved PD-1 blockade efficacy, accompanied by increased CD8+ T-cell infiltration. CONCLUSIONS Our findings indicate that combining HDAC inhibitor, MEK inhibitor, and PD-1 blockade is a potential strategy for treating BRAFV600E-mutant MSS CRC, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Zhuang Sun
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengyuan Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinhong Xia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanyang Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Peking University Shougang Hospital, Beijing, China
| | - Jinying Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Peng Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
39
|
Melosky B, Juergens RA, Banerji S, Sacher A, Wheatley-Price P, Snow S, Tsao MS, Leighl NB, Martins I, Cheema P, Liu G, Chu QSC. The continually evolving landscape of novel therapies in oncogene-driven advanced non-small-cell lung cancer. Ther Adv Med Oncol 2025; 17:17588359241308784. [PMID: 39776537 PMCID: PMC11705342 DOI: 10.1177/17588359241308784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a highly heterogeneous disease that is frequently associated with a host of known oncogenic alterations. Advances in molecular diagnostics and drug development have facilitated the targeting of novel alterations such that the majority of NSCLC patients have driver mutations that are now clinically actionable. The goal of this review is to gain insights into clinical research and development principles by summary, analysis, and discussion of data on agents targeting known alterations in oncogene-driven, advanced NSCLC beyond those in the epidermal growth factor receptor (EGFR) and the anaplastic lymphoma kinase (ALK). A search of published and presented literature was conducted to identify prospective trials and integrated analyses reporting outcomes for agents targeting driver gene alterations (except those in EGFR and ALK) in molecularly selected, advanced NSCLC. Clinical efficacy data were extracted from eligible reports and summarized in text and tables. Findings show that research into alteration-directed therapies in oncogene-driven, advanced NSCLC is an extremely active research field. Ongoing research focuses on the expansion of new agents targeting both previously identified targets (particularly hepatocyte growth factor receptor (MET), human epidermal growth factor receptor 2 (HER2), and Kirsten rat sarcoma viral oncogene homolog (KRAS)) as well as novel, potentially actionable targets (such as neuregulin-1 (NRG1) and phosphatidylinositol 3-kinase (PI3K)). The refinement of biomarker selection criteria and the development of more selective and potent agents are allowing for increasingly specific and effective therapies and the expansion of clinically actionable alterations. Clinical advances in this field have resulted in a large number of regulatory approvals over the last 3 years. Future developments should focus on the continued application of alteration therapy matching principles and the exploration of novel ways to target oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Barbara Melosky
- Medical Oncology, BC Cancer Agency—Vancouver, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | | | - Shantanu Banerji
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Paul Wheatley-Price
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Snow
- QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Ming-Sound Tsao
- University Health Network and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Natasha B. Leighl
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | | | - Parneet Cheema
- William Osler Health System, University of Toronto, Brampton, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Quincy S. C. Chu
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2025; 77:100014. [PMID: 39952686 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or are in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, for example, somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for >5 decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information, which derives from both the tumor and the germline genome, and taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular tumor boards, in which cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. SIGNIFICANCE STATEMENT: The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, the full potential of targeted therapy remains untapped owing to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Innovation and Service Unit for Bioinformatics and Precision Medicine, DKFZ, Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany; DKTK, DKFZ, Partner Site Tuebingen, Tuebingen, Germany; NCT SouthWest, a partnership between DKFZ and University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
41
|
Swalduz A, Beau-Faller M, Planchard D, Mazieres J, Bayle-Bleuez S, Debieuvre D, Fallet V, Geier M, Cortot A, Couraud S, Daniel C, Domblides C, Pichon E, Fabre E, Larivé S, Lerolle U, Tomasini P, Wislez M, Missy P, Morin F, Westeel V, Auliac JB. Real-world efficacy of the dabrafenib-trametinib (D-T) combination in BRAF V600E-mutated metastatic non-small cell lung cancer (NSCLC): Results from the IFCT-2004 BLaDE cohort. Lung Cancer 2025; 199:108038. [PMID: 39616778 DOI: 10.1016/j.lungcan.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND BRAF V600E mutations occur in 2-5 % of advanced non-small cell lung cancer (NSCLC) patients. The dabrafenib-trametinib (D-T) combination was associated with improved and durable OS in patients in phase II. This study (IFCT-2004 BLaDE study) reported the efficacy of D-T combination in a large retrospective French real-world multicenter cohort of patients with advanced BRAF V600E-mutated NSCLC. METHOD Patients with advanced BRAF V600E-mutated NSCLC diagnosed between 01.01.2016 and 31.12.2019 and treated with D-T in combination, regardless of the treatment line, were included. The primary endpoint was the 12-month OS rate (%) in patients receiving D-T as a second-line therapy or beyond. RESULTS A total of 163 patients were included: 50.3 % were female, 30.2 % were never smokers, 95.1 % had adenocarcinoma, and 78.2 % had a PDL1 ≥ 1 %. The median age was 68.3 years. At D-T initiation, 80.8 % of patients had a PS of 0/1, 78.6 % had stage IV disease, and 20.9 % had brain metastasis. At the cutoff, the median follow-up was 27.4 months. The 12-month OS rate in patients receiving D + T as a second-line therapy or beyond (n = 119) was 67.4 %, with a median progression-free survival (mPFS) of 10.4 months. Among the 44 patients who received D + T as a first-line therapy, the 12-month OS rate was 67.4 %, with an mPFS of 18.2 months. D-T discontinuation for toxicity was reported in 10.3 % of patients. CONCLUSIONS To our knowledge, this is the largest retrospective cohort of BRAF-mutated patients reported. The findings confirmed the significant efficacy of D-T in combination with BRAF V600E-mutated metastatic NSCLC in pretreated and untreated patients. These results under real-world conditions are consistent with those of other registered studies.
Collapse
Affiliation(s)
- Aurélie Swalduz
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France.
| | - Michèle Beau-Faller
- Centre Hospitalier Universitaire Strasbourg, Laboratoire d'Onco-Biologie & Oncologie Thoracique Hôpital de Hautepierre & Nouvel Hôpital Civil, INSERM UMR 1260 - Nanomédecine Régénérative, Université de Strasbourg - CRBS, Strasbourg, France
| | - David Planchard
- Gustave Roussy, Cancer Medicine Department, Villejuif, France
| | | | | | - Didier Debieuvre
- Groupe Hospitalier de la Région Mulhouse Sud-Alsace, Hôpital Emile Muller, GHRMSA - Mulhouse, Mulhouse, France
| | - Vincent Fallet
- Tenon Hospital, Assistance Publique Hôpitaux de Paris, Department of Pneumology and Thoracic Oncology and GRC4, Theranoscan, Sorbonne Université, Paris, France
| | - Margaux Geier
- University Hospital of Brest, Department of Medical Oncology France
| | - Alexis Cortot
- Department of Thoracic Oncology, CHU de Lille, CNRS, Inserm, Institut Pasteur de Lille, UMR9020-U1277-CANTHER, Lille, France
| | - Sébastien Couraud
- Acute Respiratory Medicine and Thoracic Oncology Department, & CIRCAN Program Coordinator, Cancer Institute of Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Bénite, France
| | | | - Charlotte Domblides
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Eric Pichon
- Centre Hospitalier Universitaire, Tours, France
| | - Elizabeth Fabre
- Department of Thoracic Oncology, Hôpital européen Georges Pompidou, APHP-Centre, Carpem Cancer Institute, Paris, France
| | | | - Ulrike Lerolle
- Clinique Saint-Joseph, Service de Pneumologie, Trélazé, France
| | - Pascale Tomasini
- APHM, Hôpital Nord, Service d'Oncologie Multidisciplinaire & Innovations Thérapeutiques, Marseille, France
| | - Marie Wislez
- APHP, Hôpital Cochin, Service de Pneumologie, Unité d'Oncologie Thoracique, Paris, France
| | - Pascale Missy
- Intergroupe Francophone de Cancérologie Thoracique, Paris, France
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique, Paris, France
| | | | | |
Collapse
|
42
|
Qi P, Sun Y, Pang Y, Liu J, Cai X, Huang S, Xu Q, Wang Q, Zhou X. Diagnostic Utility of a 90-Gene Expression Assay (Canhelp-Origin) for Patients with Metastatic Cancer with an Unclear or Unknown Diagnosis. Mol Diagn Ther 2025; 29:81-89. [PMID: 39333459 DOI: 10.1007/s40291-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Metastatic cancers with unclear or unknown origins pose significant challenges in diagnosis and management, frequently leading to suboptimal outcomes. Studies have demonstrated that a 90-gene expression assay is effective in predicting the primary origin and guiding the site-specific therapy to improve prognosis. This study aimed to evaluate the clinical effectiveness of a 90-gene expression assay in patients with unclear or unknown diagnoses. METHODS The study encompassed patients for whom a 90-gene expression assay was requested as part of standard care. Data on patient demographics, tumor characteristics, and clinical history were collected. The assay's performance was evaluated by comparing its predicted tumor type with the final histopathological diagnosis. RESULTS Among 303 cases analyzed, a 90-gene expression assay successfully identified a molecular-based tumor type for 295 (97.4%) patients. Comparison with histopathological diagnosis revealed an overall agreement of 88.5% (170/192). In patients with a single suspected primary site (n = 140), the assay confirmed the suspected diagnosis in 90.7% of cases. For those with a differential diagnosis (n = 52), the assay narrowed down the possibilities in 82.7% of cases. Moreover, in cases where the histopathology report indicated cancer of unknown primary (n = 103), the assay offered a molecular tumor type prediction with potential clinical significance. CONCLUSIONS This study demonstrates the significant impact of a 90-gene expression assay on diagnosis and potential treatment selection for difficult-to-diagnose patients, highlighting its clinical value as a standardized molecular approach to streamline further diagnostic testing for patients with metastatic cancer of unclear or unknown origin. Further prospective study is required to assess whether employing molecular diagnostic classifiers enhances clinical outcomes in these patients.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Yifeng Sun
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Canhelp Genomics Research Center, Canhelp Genomics Co., Ltd., No.22 Xinyan Road, Hangzhou, 310000, People's Republic of China
| | - Yue Pang
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Jing Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qinghua Xu
- Canhelp Genomics Research Center, Canhelp Genomics Co., Ltd., No.22 Xinyan Road, Hangzhou, 310000, People's Republic of China.
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China.
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
43
|
Dankner M, Rousselle E, Petrecca S, Fabi F, Nowakowski A, Lazaratos AM, Rajadurai CV, Stein AJ, Bian D, Tai P, Belaiche A, Li M, Quaiattini A, Normanno N, Arcila M, Elkrief A, Johnson DB, Ladanyi M, Rose AA. Clinical Activity of Mitogen-Activated Protein Kinase Inhibitors in Patients With MAP2K1 (MEK1)-Mutated Metastatic Cancers. JCO Precis Oncol 2025; 9:e2400199. [PMID: 39869838 PMCID: PMC11784909 DOI: 10.1200/po.24.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/11/2024] [Accepted: 10/31/2024] [Indexed: 01/29/2025] Open
Abstract
PURPOSE MAP2K1/MEK1 mutations are potentially actionable drivers in cancer. MAP2K1 mutations have been functionally classified into three groups according to their dependency on upstream RAS/RAF signaling. However, the clinical efficacy of mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKi) for MAP2K1-mutant tumors is not well defined. We sought to characterize the genomic and clinical landscape of MAP2K1 mutant tumors to evaluate the relationship between MAP2K1 mutation class and clinical activity of MAPKi. METHODS We interrogated American Association for Cancer Research (AACR) GENIE (v13) to analyze solid tumors with MAP2K1 mutations. We performed a systematic review and meta-analysis of published reports of patients with MAP2K1-mutant cancers treated with MAPKi according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The primary end point was progression-free survival (PFS), and secondary end points were overall treatment response rate (ORR), duration of response (DOR), and overall survival. RESULTS In the AACR GENIE data set, class 2 MAP2K1 mutations (63%) were more prevalent than class 1 (24%) and class 3 (13%) mutations (P < .0001). Co-occurring MAPK pathway-activating mutations were more likely to occur in class 1 versus class 2 or 3 MAP2K1-mutant tumors (P < .0001). Our systematic meta-analysis of the literature identified 46 patients with MAP2K1-mutant tumors who received MAPKi. In these patients, ORR was 28% and median PFS was 3.9 months. ORR did not differ according to MAP2K1 mutation class or cancer type. However, patients with class 2 mutations experienced longer PFS (5.0 months) and DOR (23.8 months) compared with patients with class 1, 3, or unclassified MAP2K1 mutations (PFS 3.5 months, P = .04; DOR 4.2 months, P = .02). CONCLUSION Patients with class 2 MAP2K1 mutations represent a novel subgroup that may derive benefit from MAPKi. Prospective clinical studies with novel MAPKi regimens are warranted in these patients.
Collapse
Affiliation(s)
- Matthew Dankner
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute, Montréal, QC, Canada
| | - Emmanuelle Rousselle
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Sarah Petrecca
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | - François Fabi
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | - Alexander Nowakowski
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute, Montréal, QC, Canada
| | | | - Charles Vincent Rajadurai
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
| | | | - David Bian
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | - Peter Tai
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | | | - Meredith Li
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
| | - Andrea Quaiattini
- Schulich Library of Physical Sciences, Life Sciences, and Engineering, McGill University, Montréal, QC, Canada
| | - Nicola Normanno
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola (FC), Italy
| | - Maria Arcila
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arielle Elkrief
- Memorial Sloan Kettering Cancer Center, New York, NY
- Centre hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | | | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - April A.N. Rose
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
44
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
45
|
Bortolot M, Torresan S, De Carlo E, Bertoli E, Stanzione B, Del Conte A, Spina M, Bearz A. Navigating Therapeutic Challenges in BRAF-Mutated NSCLC: Non-V600 Mutations, Immunotherapy, and Overcoming Resistance. Int J Mol Sci 2024; 25:12972. [PMID: 39684685 DOI: 10.3390/ijms252312972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Although rare in non-small cell lung cancer (NSCLC), BRAF mutations present considerable therapeutic challenges. While the use of BRAF and MEK inhibitor combinations has significantly improved survival outcomes in patients with BRAF V600E mutations, no targeted therapies are currently available for class II and III mutations, leaving the optimal treatment strategy and prognosis for these patients uncertain. Additionally, despite immunotherapy typically showing limited benefit in patients with other activating genomic alterations, it appears to deliver comparable efficacy in BRAF-mutated NSCLC, emerging as a potentially viable treatment option, particularly in patients with a history of smoking. However, resistance to BRAF pathway inhibitors is inevitable, leading to disease progression, and a well-defined strategy to overcome these resistance mechanisms is lacking. This review aims to explore the critical challenges in the management of BRAF-mutated NSCLC, providing a comprehensive summary of the current evidence and highlighting ongoing clinical trials that aim to address these critical gaps.
Collapse
Affiliation(s)
- Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
46
|
Chou J, Robinson TM, Egusa EA, Lodha R, Zhang M, Badura M, Mikayelyan M, Delavan H, Swinderman J, Wilson C, Zhu J, Das R, Nguyen M, Loehr A, Golsorkhi T, Simmons A, Abida W, Chinnaiyan AM, Arkin MR, Small EJ, Quigley DA, Yang L, Kim M, Ashworth A, Feng FY. Synthetic Lethal Targeting of CDK12-Deficient Prostate Cancer with PARP Inhibitors. Clin Cancer Res 2024; 30:5445-5458. [PMID: 39321214 PMCID: PMC11611633 DOI: 10.1158/1078-0432.ccr-23-3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE The cyclin-dependent kinase (CDK), CDK12, is mutated or amplified in multiple cancers. We previously described a subtype of prostate cancer characterized predominantly by frameshift, loss-of-function mutations in CDK12. This subtype exhibits aggressive clinical features. EXPERIMENTAL DESIGN Using isogenic prostate cancer models generated by CRISPR/Cas9-mediated inactivation of CDK12, we conducted a chemical library screen of ∼1,800 FDA-approved drugs. We inhibited cyclin K and CDK13 and evaluated the effects on PARP inhibitor (PARPi) sensitivity. CDK12 truncation and kinase domain mutations were expressed in cell lines to determine the effects on PARPi sensitivity. Mice bearing control and CDK12-mutant prostate tumors were treated with rucaparib. Finally, we evaluated PSA responses in patients with CDK12 mutations treated with rucaparib on the TRITON2 trial. RESULTS Cancer cells lacking CDK12 are more sensitive to PARPi than isogenic wild-type cells, and sensitivity depends on the degree of CDK12 inhibition. Inhibiting cyclin K, but not CDK13, also led to PARPi sensitivity and suppressed homologous recombination. CDK12 truncation mutants remained sensitive to PARPi, whereas kinase domain mutants exhibited intermediate sensitivity. The PARPi rucaparib suppressed tumor growth in mice bearing CDK12-mutated tumors. Finally, 6 of 11 (55%) patients with prostate cancer with biallelic CDK12 mutations had reductions in serum PSA levels when treated with rucaparib on the TRITON2 clinical trial. CONCLUSIONS In prostate cancer, sensitivity to PARPi is dependent on the specific type and zygosity of the CDK12 mutation. PARPi monotherapy may have some activity in patients with prostate cancer with biallelic inactivating CDK12 alterations.
Collapse
Affiliation(s)
- Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Troy M. Robinson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Emily A. Egusa
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Roshan Lodha
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Badura
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Mane Mikayelyan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Henry Delavan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jason Swinderman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris Wilson
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Jun Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Rajdeep Das
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Wassim Abida
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor MI, USA 12
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor MI, USA 12
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Minkyu Kim
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Li Y, Yu J, Zhang Y, Peng C, Song Y, Liu S. Advances in targeted therapy of cholangiocarcinoma. Ann Med 2024; 56:2310196. [PMID: 38359439 PMCID: PMC10877652 DOI: 10.1080/07853890.2024.2310196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating in the bile duct and its branching epithelium. Due to its high heterogeneity, there are no specific clinical indications at the early stage, the diagnosis is often in advanced CCA. With surgical resection, the 5-year postoperative survival rate (long-term survival rate) is very poor. The regimen of gemcitabine combined with platinum has been used as the first-line chemotherapy for advanced patients. In recent years, targeted therapy for a variety of malignant tumors has made great progress, showing good efficacy and safety in advanced CCA. However, the current targeted therapy of CCA still has many challenges, such as adverse reactions, drug resistance, and individual differences. Therefore, the researches need to further explore the targeted therapy mechanism of CCA malignancies in depth, develop more effective and safe drugs, and accurately formulate plans based on patient characteristics to further improve patient prognosis in the future. This article reviews the recent progress of targeted therapy for CCA, aiming to provide a strategy for the research and clinical work of targeted therapy for CCA.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Jianfeng Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Yujing Zhang
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| |
Collapse
|
48
|
Moen FM, Youssef MM, Shukla M, Nierodzik ML, Mayerhoefer ME, Park C. BRAF V600E mutation and high expression of PD-L1 in Rosai-Dorfman disease: case report and review of the literature. J Hematop 2024; 17:183-189. [PMID: 39592527 PMCID: PMC11635026 DOI: 10.1007/s12308-024-00611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BRAF V600E mutations are frequently found in histiocytic/dendritic cell neoplasms such as Erdheim-Chester disease (ECD) and Langerhans cell histiocytosis (LCH), but few reports have also described BRAF mutations in Rosai-Dorfman disease (RDD), and even these cases may predominantly represent mixed histiocytosis. BRAF mutations have been studied in histiocytic/dendritic cell neoplasms and described to be associated with increased risk of relapse and long-term consequences, but few studies have examined BRAF V600E mutation in RDD, which is recognized as a neoplasm given the high frequency of MAPK pathway alterations. Here, we report a case of BRAF V600E-mutated RDD in a patient who presented with generalized lymphadenopathy. During our evaluation of this patient, we also found expression of PD-L1 in neoplastic histiocytes. During our review period, only few cases of RDD reported to harbor BRAF mutation or were evaluated for the expression of PDL1 by neoplastic cells. Given the potential challenges in distinguishing RDD from other histiocytic/dendritic cell neoplasms, including mixed histiocytosis with similar clinicopathological manifestations, we will discuss the current state of knowledge regarding the frequency and clinical impact of BRAF V600E in RDD, as well as the role of BRAF mutations in RDD pathogenesis. Distinction of BRAF V600E mutated histiocytic/dendritic cell neoplasms requires consideration of distinctive histopathological and immunophenotypic findings in appropriate clinical and radiologic setting. Given the increasing use of BRAF inhibitors as well as checkpoint blockade inhibitors to treat a number of cancers, we will discuss the clinical implications of the presence of BRAF V600E mutation and PD-L1 expression in RDD.
Collapse
Affiliation(s)
- Farnoush M Moen
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, UC Davis, Davis, CA, USA.
| | - Mariam M Youssef
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mihir Shukla
- Department of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mary Lynn Nierodzik
- Department of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Marius E Mayerhoefer
- Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher Park
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
49
|
Son A, Park J, Kim W, Yoon Y, Lee S, Ji J, Kim H. Recent Advances in Omics, Computational Models, and Advanced Screening Methods for Drug Safety and Efficacy. TOXICS 2024; 12:822. [PMID: 39591001 PMCID: PMC11598288 DOI: 10.3390/toxics12110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
It is imperative to comprehend the mechanisms that underlie drug toxicity in order to enhance the efficacy and safety of novel therapeutic agents. The capacity to identify molecular pathways that contribute to drug-induced toxicity has been significantly enhanced by recent developments in omics technologies, such as transcriptomics, proteomics, and metabolomics. This has enabled the early identification of potential adverse effects. These insights are further enhanced by computational tools, including quantitative structure-activity relationship (QSAR) analyses and machine learning models, which accurately predict toxicity endpoints. Additionally, technologies such as physiologically based pharmacokinetic (PBPK) modeling and micro-physiological systems (MPS) provide more precise preclinical-to-clinical translation, thereby improving drug safety assessments. This review emphasizes the synergy between sophisticated screening technologies, in silico modeling, and omics data, emphasizing their roles in reducing late-stage drug development failures. Challenges persist in the integration of a variety of data types and the interpretation of intricate biological interactions, despite the progress that has been made. The development of standardized methodologies that further enhance predictive toxicology is contingent upon the ongoing collaboration between researchers, clinicians, and regulatory bodies. This collaboration ensures the development of therapeutic pharmaceuticals that are more effective and safer.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, Prove Beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
50
|
Goldberg D, Reese PP, Kaplan DA, Zarnegarnia Y, Gaddipati N, Gaddipati S, John B, Blandon C. Predicting long-term survival among patients with HCC. Hepatol Commun 2024; 8:e0581. [PMID: 39495142 PMCID: PMC11537595 DOI: 10.1097/hc9.0000000000000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Prognosticating survival among patients with HCC and cirrhosis must account for both the tumor burden/stage, as well as the severity of the underlying liver disease. Although there are many staging systems used to guide therapy, they have not been widely adopted to predict patient-level survival after the diagnosis of HCC. We sought to develop a score to predict long-term survival among patients with early- to intermediate-stage HCC using purely objective criteria. METHODS Retrospective cohort study among patients with HCC confined to the liver, without major medical comorbidities within the Veterans Health Administration from 2014 to 2023. Tumor data were manually abstracted and combined with clinical and laboratory data to predict 5-year survival from HCC diagnosis using accelerated failure time models. The data were randomly split using a 75:25 ratio for training and validation. Model discrimination and calibration were assessed and compared to other HCC staging systems. RESULTS The cohort included 1325 patients with confirmed HCC. A risk score using baseline clinical, laboratory, and HCC-related survival had excellent discrimination (integrated AUC: 0.71 in the validation set) and calibration (based on calibration plots and Brier scores). Models had superior performance to the BCLC and ALBI scores and similar performance to the combined BCLC-ALBI score. CONCLUSIONS We developed a risk score using purely objective data to accurately predict long-term survival for patients with HCC. This score, if validated, can be used to prognosticate survival for patients with HCC, and, in the setting of liver transplantation, can be incorporated to consider the net survival benefit of liver transplantation versus other curative options.
Collapse
Affiliation(s)
- David Goldberg
- Department of Medicine, Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Peter P. Reese
- Department of Medicine, Renal-Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David A. Kaplan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Yalda Zarnegarnia
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Neelima Gaddipati
- Department of Medicine, Jackson Memorial Hospital, Miami, Florida, USA
| | - Sirisha Gaddipati
- Department of Medicine, Jackson Memorial Hospital, Miami, Florida, USA
| | - Binu John
- Department of Medicine, Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, Bruce Carter VA Medical Center, Miami, Florida, USA
| | - Catherine Blandon
- Department of Medicine, Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|