1
|
Lorenz-Ochoa KA, Cho M, Parekh SH, Baiz CR. Interaction-Dependent Secondary Structure of Peptides in Biomolecular Condensates. J Am Chem Soc 2024; 146:33616-33625. [PMID: 39591652 DOI: 10.1021/jacs.4c11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Biomolecular condensates provide a mechanism for compartmentalization of biomolecules in eukaryotic cells. These liquid-like condensates are formed via liquid-liquid phase separation, by a plethora of interactions, and can mediate several biological processes in healthy cells. Expansions of dipeptide repeat proteins, DPRs, in which arginine rich DPRs like poly-proline-arginine (PR), and poly-glycine-arginine (GR), partition RNA into condensates can however induce cell toxicity. Here, we use (GR)20 as a model for biological poly-GR and condense it using either excluded volume interactions with polyethylene glycol (PEG) as a crowder or direct electrostatic interactions with RNA oligomers. Using two-dimensional infrared (2D IR) spectroscopy, we observe that (GR)20 condensed through an excluded volume forms β-sheet structures, whereas (GR)20 condensed with RNA forms loops. We also investigate local hydrogen-bond dynamics in the condensate and compare the measurements with molecular dynamics simulations. Hydrogen bond lifetimes undergo a marked slowdown compared to dynamics in the dilute phase. This is representative of confined water within the percolated networks inside the condensate due to the interaction present in the condensate disrupting H-bond networks. Overall, our results show that both protein structure and dynamics are inherently dependent on the type of interactions that stabilize the condensates.
Collapse
Affiliation(s)
- Keegan A Lorenz-Ochoa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Moonyeon Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. A new computational methodology for the characterization of complex molecular environments using IR spectroscopy: bridging the gap between experiments and computations. Chem Sci 2024; 15:d4sc03219e. [PMID: 39156932 PMCID: PMC11328912 DOI: 10.1039/d4sc03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
The molecular interactions and dynamics of complex liquid solutions are now routinely measured using IR and 2DIR spectroscopy. In particular, the use of the latter allows the determination of the frequency fluctuation correlation function (FFCF), while the former provides us with the average frequency. In turn, the FFCF can be used to quantify the vibrational dynamics of a molecule in a solution, and the center frequency provides details about the chemical environment, solvatochromism, of the vibrational mode. In simple solutions, the IR methodology can be used to unambiguously assign the interactions and dynamics observed by a molecule in solution. However, in complex environments with molecular heterogeneities, this assignment is not simple. Therefore, a method that allows for such an assignment is essential. Here, a parametrization free method, called Instantaneous Frequencies of Molecules or IFM, is presented. The IFM method, when coupled to classical molecular simulations, can predict the FFCF of a molecule in solutions. Here, N-methylacetamide (NMA) in seven different chemical environments, both simple and complex, is used to test this new method. The results show good agreement with experiments for the NMA solvatochromism and FFCF dynamics, including characteristic times and amplitudes of fluctuations. In addition, the new method shows equivalent or improved results when compared to conventional frequency maps. Overall, the use of the new method in conjunction with molecular dynamics simulations allows unlocking the full potential of IR spectroscopy to generate molecular maps from vibrational observables, capable of describing the interaction landscape of complex molecular systems.
Collapse
Affiliation(s)
| | - Johan F Galindo
- Department of Chemistry, Universidad Nacional de Colombia Sede Bogotá Bogotá 111321 Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
3
|
Krevert C, Chavez D, Chatterjee S, Stelzl LS, Pütz S, Roeters SJ, Rudzinski JF, Fawzi NL, Girard M, Parekh SH, Hunger J. Liquid-Liquid Phase Separation of the Intrinsically Disordered Domain of the Fused in Sarcoma Protein Results in Substantial Slowing of Hydration Dynamics. J Phys Chem Lett 2023; 14:11224-11234. [PMID: 38056002 PMCID: PMC10726384 DOI: 10.1021/acs.jpclett.3c02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Formation of liquid condensates plays a critical role in biology via localization of different components or via altered hydrodynamic transport, yet the hydrogen-bonding environment within condensates, pivotal for solvation, has remained elusive. We explore the hydrogen-bond dynamics within condensates formed by the low-complexity domain of the fused in sarcoma protein. Probing the hydrogen-bond dynamics sensed by condensate proteins using two-dimensional infrared spectroscopy of the protein amide I vibrations, we find that frequency-frequency correlations of the amide I vibration decay on a picosecond time scale. Interestingly, these dynamics are markedly slower for proteins in the condensate than in a homogeneous protein solution, indicative of different hydration dynamics. All-atom molecular dynamics simulations confirm that lifetimes of hydrogen-bonds between water and the protein are longer in the condensates than in the protein in solution. Altered hydrogen-bonding dynamics may contribute to unique solvation and reaction dynamics in such condensates.
Collapse
Affiliation(s)
- Carola
S. Krevert
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Chavez
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sayantan Chatterjee
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street, Stop C0800, Austin, Texas 78712, United States
| | - Lukas S. Stelzl
- KOMET 1,
Institute of Physics, Johannes Gutenberg
University, Staudingerweg 7, 55099 Mainz, Germany
- Faculty of
Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), Ackermannweg 2, 55128 Mainz, Germany
| | - Sabine Pütz
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Steven J. Roeters
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Department
of Anatomy and Neurosciences, Amsterdam
UMC, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Joseph F. Rudzinski
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- IRIS
Adlershof, Humboldt-Universität zu
Berlin, Zum Großen
Windkanal 2, 12489 Berlin, Germany
| | - Nicolas L. Fawzi
- Department
of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Martin Girard
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street, Stop C0800, Austin, Texas 78712, United States
| | - Johannes Hunger
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Chakrabarty S, Ghosh A. Inconsistent hydrogen bond-mediated vibrational coupling of amide I. RSC Adv 2023; 13:1295-1300. [PMID: 36686902 PMCID: PMC9814034 DOI: 10.1039/d2ra07177k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Using infrared spectroscopy and density functional theory (DFT) calculations, we scrutinized an amide (dimethylformamide) as a "model" compound to interpret the interactions of amide 1 with different phenol derivatives (para-chlorophenol (PCP) and para-cresol (CP)) as "model guest molecules". We established the involvement of amide I in vibrational coupling with symmetric and asymmetric C[double bond, length as m-dash]C modes of different phenolic derivatives and how their coupling was dependent upon different guest aromatic phenolic compounds. Interestingly, substitution of phenol perturbed the pattern of vibrational coupling with amide I. The symmetric and asymmetric C[double bond, length as m-dash]C modes of PC were coupled significantly with amide 1. For PCP, the symmetric C[double bond, length as m-dash]C mode coupled significantly, but the asymmetric mode coupled negligibly, with amide I. Here, we reveal the nature of vibrational coupling based on the structure of a guest molecule hydrogen-bonded with amide I. Our conclusions could be valuable for depiction of the unusual dynamics of coupled amide-I modes as well as the dependency of vibrational coupling on altered factors.
Collapse
Affiliation(s)
- Suranjana Chakrabarty
- a, Department of Condensed Matter of Physics and Materials Sciences, S. N. Bose National Centre for Basic SciencesJD Block, Sector-III, Salt Lake CityKolkata – 700 106India
| | - Anup Ghosh
- a, Department of Condensed Matter of Physics and Materials Sciences, S. N. Bose National Centre for Basic SciencesJD Block, Sector-III, Salt Lake CityKolkata – 700 106India
| |
Collapse
|
5
|
Donaldson PM. Spectrophotometric Concentration Analysis Without Molar Absorption Coefficients by Two-Dimensional-Infrared and Fourier Transform Infrared Spectroscopy. Anal Chem 2022; 94:17988-17999. [PMID: 36516397 PMCID: PMC9798376 DOI: 10.1021/acs.analchem.2c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
A spectrophotometric method for determining relative concentrations of infrared (IR)-active analytes with unknown concentration and unknown molar absorption coefficient is explored. This type of method may be useful for the characterization of complex/heterogeneous liquids or solids, the study of transient species, and for other scenarios where it might be difficult to gain concentration information by other means. Concentration ratios of two species are obtained from their IR absorption and two-dimensional (2D)-IR diagonal bleach signals using simple ratiometric calculations. A simple calculation framework for deriving concentration ratios from spectral data is developed, extended to IR-pump-probe signals, and applied to the calculation of transition dipole ratios. Corrections to account for the attenuation of the 2D-IR signal caused by population relaxation, spectral overlap, wavelength-dependent pump absorption, inhomogeneous broadening, and laser intensity variations are described. A simple formula for calculating the attenuation of the 2D-IR signal due to sample absorption is deduced and by comparison with 2D-IR signals at varying total sample absorbance found to be quantitatively accurate. 2D-IR and Fourier transform infrared spectroscopy of two carbonyl containing species acetone and N-methyl-acetamide dissolved in D2O are used to experimentally confirm the validity of the ratiometric calculations. Finally, to address ambiguities over units and scaling of 2D-IR signals, a physical unit of 2D-IR spectral amplitude in mOD/c m - 1 is proposed.
Collapse
Affiliation(s)
- Paul M. Donaldson
- Central Laser Facility, RCaH, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, DidcotOX11 0QX, U.K.
| |
Collapse
|
6
|
Askelson PG, Meloni SL, Hoffnagle AM, Anna JM. Resolving the Impact of Hydrogen Bonding on the Phylloquinone Cofactor through Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2022; 126:10120-10135. [PMID: 36444999 DOI: 10.1021/acs.jpcb.2c03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional infrared spectroscopy (2DIR) was applied to phylloquinone (PhQ), an important biological cofactor, to elucidate the impact of hydrogen bonding on the ultrafast dynamics and energetics of the carbonyl stretching modes. 2DIR measurements were performed on PhQ dissolved in hexanol, which served as the hydrogen bonding solvent, and hexane, which served as a non-hydrogen bonding control. Molecular dynamics simulations and quantum chemical calculations were performed to aid in spectral assignment and interpretation. From the position of the peaks in the 2DIR spectra, we extracted the transition frequencies for the fundamental, overtone, and combination bands of hydrogen bonded and non-hydrogen bonded carbonyl groups of PhQ in the 1635-1680 cm-1 region. We find that hydrogen bonding to a single carbonyl group acts to decouple the two carbonyl units of PhQ. Through analysis of the time-resolved 2DIR data, we find that hydrogen bonding leads to faster vibrational relaxation as well as an increase in the inhomogeneous broadening of the carbonyl groups. Overall, this work demonstrates how hydrogen bonding to the carbonyl groups of PhQ presents in the 2DIR spectra, laying the groundwork to use PhQ as a 2DIR probe to characterize the ultrafast fluctuations in the local environment of natural photosynthetic complexes.
Collapse
Affiliation(s)
- Phoebe G Askelson
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Stephen L Meloni
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Alexander M Hoffnagle
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
7
|
Biswas A, Mallik BS. Multiple Ensembles of the Hydrogen-bonded Network in Ethylammonium Nitrate versus Water from Vibrational Spectral Dynamics of SCN- Probe. Chemphyschem 2022; 23:e202200497. [PMID: 35965410 DOI: 10.1002/cphc.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Indexed: 11/12/2022]
Abstract
We performed classical molecular dynamics simulations to monitor the structural interactions and ultrafast dynamical and spectral response in the protic ionic liquid, ethylammonium nitrate (EAN) and water using the nitrile stretching mode of thiocyanate ion (SCN-) as the vibrational probe. The normalized stretch frequency distribution of nitrile stretch of SCN- attains an asymmetric shape in EAN, indicating the existence of more than one hydrogen-bonding environment in EAN. We computed the 2D IR spectrum from classical trajectories, applying the response function formalism. Spectral diffusion dynamics in EAN undergo an initial rattling of the SCN - inside the local ion-cage occurring at a timescale of 0.10 ps, followed by the breakup of the ion-cage activating molecular diffusion at 7.86 ps timescale. In contrast, the dynamics of structural reorganization occur at a timescale of 0.58 ps in H 2 O. Hence, the time dependence of the frequency-frequency correlation function decay hints at the local molecular structure and ultrafast ion dynamics of the SCN - probe. The loss of frequency correlation read from the peak shape changes in the 2D correlation spectrum as a function of waiting time is faster in H 2 O than in EAN due to the enhanced structural ordering and higher viscosity of the latter. We provide an atomic-level interpretation of the solvation environment around SCN - in EAN and water, which indicates the multiple ensembles of the hydrogen bond network in EAN.
Collapse
Affiliation(s)
- Aritri Biswas
- IITH: Indian Institute of Technology Hyderabad, Chemistry, INDIA
| | - Bhabani S Mallik
- IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, 502285, Sangareddy, INDIA
| |
Collapse
|
8
|
Biswas A, Mallik BS. Microheterogeneity-Induced Vibrational Spectral Dynamics of Aqueous 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids of Different Cationic Chain Lengths. J Phys Chem B 2022; 126:5523-5533. [PMID: 35833870 DOI: 10.1021/acs.jpcb.2c03561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have monitored the impacts of an increment in the alkyl chain length of the imidazolium-based tetrafluoroborate ionic liquids on the local deuteroxyl probe modes of interest. For this study, we have taken 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIm][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIm][BF4], 1-octyl-3-methylimidazolium tetrafluoroborate [OMIm][BF4], and 1-decyl-3-methylimidazolium tetrafluoroborate [DMIm][BF4] ionic liquid solutions with 5% HOD in H2O as the vibrational reporter of the associated ultrafast system dynamics. Classical molecular dynamics (MD) simulations were employed to determine molecular structure and dynamic properties, while the spectral profiles were derived by applying the wavelet analysis of classical trajectories. Spatial distribution functions reveal the heterogeneity within the molecular structures of the ionic liquids (ILs) with varying alkyl chain lengths. The intense position of the spectral peak, the frequency corresponding to the shoulder peak, and the spectral linewidth of the O-D stretch distribution are not influenced by the increment in the cationic chain length. In addition, the ionic liquid (IL) [BMIm][BF4] exhibits a notable trend; the dynamic timescales are longer than the other studied systems. Therefore, we have performed the Voronoi decomposition analysis of the ionic and the polar-apolar domains, symmetrically increasing the length of alkyl chains on the IL cations. Domain analysis reveals structural microheterogeneity; the anions form discrete domains, and the ionic liquid constituting cations form continuous domains irrespective of the alkyl chain length on the imidazolium cations. Therefore, this computational ultrafast spectroscopy study aids in forming a molecular-level picture of the ionic liquid cations and anions in the liquid phase, providing a detailed interpretation of the spectral properties of the probe stretching vibrations.
Collapse
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
9
|
Töpfer K, Upadhyay M, Meuwly M. Quantitative molecular simulations. Phys Chem Chem Phys 2022; 24:12767-12786. [PMID: 35593769 PMCID: PMC9158373 DOI: 10.1039/d2cp01211a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
10
|
Meuwly M. Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ Quo Vadis?. J Phys Chem B 2022; 126:2155-2167. [PMID: 35286087 DOI: 10.1021/acs.jpcb.2c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas and in the condensed phase. This Perspective delineates the present status of the field from the efforts of others and some of our own work and discusses open questions and future prospects. The combination of physics-based long-range representations using multipolar charge distributions and kernel representations for the bonded interactions is shown to provide realistic models for the exploration of the infrared spectroscopy of molecules in solution. For reactions, empirical models connecting dedicated energy functions for the reactant and product states allow statistically meaningful sampling of conformational space whereas machine-learned energy functions are superior in accuracy. The future combination of physics-based models with machine-learning techniques and integration into all-purpose molecular simulation software provides a unique opportunity to bring such dynamics simulations closer to reality.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Salehi SM, Meuwly M. Site-Selective Dynamics of Ligand-Free and Ligand-Bound Azidolysozyme. J Chem Phys 2022; 156:105105. [DOI: 10.1063/5.0077361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Markus Meuwly
- Department of Chemistry, University of Basel Department of Chemistry, Switzerland
| |
Collapse
|
12
|
Mondal P, Cazade PA, Das AK, Bereau T, Meuwly M. Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine Trimer. J Phys Chem B 2021; 125:10928-10938. [PMID: 34559531 DOI: 10.1021/acs.jpcb.1c05423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics and spectroscopy of N-methyl-acetamide (NMA) and trialanine in solution are characterized from molecular dynamics simulations using different energy functions, including a conventional point charge (PC)-based force field, one based on a multipolar (MTP) representation of the electrostatics, and a semiempirical DFT method. For the 1D infrared spectra, the frequency splitting between the two amide-I groups is 10 cm-1 from the PC, 13 cm-1 from the MTP, and 47 cm-1 from self-consistent charge density functional tight-binding (SCC-DFTB) simulations, compared with 25 cm-1 from experiment. The frequency trajectory required for the frequency fluctuation correlation function (FFCF) is determined from individual normal mode (INM) and full normal mode (FNM) analyses of the amide-I vibrations. The spectroscopy, time-zero magnitude of the FFCF C(t = 0), and the static component Δ02 from simulations using MTP and analysis based on FNM are all consistent with experiments for (Ala)3. Contrary to this, for the analysis excluding mode-mode coupling (INM), the FFCF decays to zero too rapidly and for simulations with a PC-based force field, the Δ02 is too small by a factor of two compared with experiments. Simulations with SCC-DFTB agree better with experiment for these observables than those from PC-based simulations. The conformational ensemble sampled from simulations using PCs is consistent with the literature (including PII, β, αR, and αL), whereas that covered by the MTP-based simulations is dominated by PII with some contributions from β and αR. This agrees with and confirms recently reported Bayesian-refined populations based on 1D infrared experiments. FNM analysis together with a MTP representation provides a meaningful model to correctly describe the dynamics of hydrated trialanine.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Tristan Bereau
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.,Department of Chemistry, Brown University, Providence/RI 02912, United States
| |
Collapse
|
13
|
Williams AE, Hammer NI, Fortenberry RC, Reinemann DN. Tracking the Amide I and αCOO- Terminal ν(C=O) Raman Bands in a Family of l-Glutamic Acid-Containing Peptide Fragments: A Raman and DFT Study. Molecules 2021; 26:4790. [PMID: 34443382 PMCID: PMC8399447 DOI: 10.3390/molecules26164790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
The E-hook of β-tubulin plays instrumental roles in cytoskeletal regulation and function. The last six C-terminal residues of the βII isotype, a peptide of amino acid sequence EGEDEA, extend from the microtubule surface and have eluded characterization with classic X-ray crystallographic techniques. The band position of the characteristic amide I vibration of small peptide fragments is heavily dependent on the length of the peptide chain, the extent of intramolecular hydrogen bonding, and the overall polarity of the fragment. The dependence of the E residue's amide I ν(C=O) and the αCOO- terminal ν(C=O) bands on the neighboring side chain, the length of the peptide fragment, and the extent of intramolecular hydrogen bonding in the structure are investigated here via the EGEDEA peptide. The hexapeptide is broken down into fragments increasing in size from dipeptides to hexapeptides, including EG, ED, EA, EGE, EDE, DEA, EGED, EDEA, EGEDE, GEDEA, and, finally, EGEDEA, which are investigated with experimental Raman spectroscopy and density functional theory (DFT) computations to model the zwitterionic crystalline solids (in vacuo). The molecular geometries and Boltzmann sum of the simulated Raman spectra for a set of energetic minima corresponding to each peptide fragment are computed with full geometry optimizations and corresponding harmonic vibrational frequency computations at the B3LYP/6-311++G(2df,2pd) level of theory. In absence of the crystal structure, geometry sampling is performed to approximate solid phase behavior. Natural bond order (NBO) analyses are performed on each energetic minimum to quantify the magnitude of the intramolecular hydrogen bonds. The extent of the intramolecular charge transfer is dependent on the overall polarity of the fragment considered, with larger and more polar fragments exhibiting the greatest extent of intramolecular charge transfer. A steady blue shift arises when considering the amide I band position moving linearly from ED to EDE to EDEA to GEDEA and, finally, to EGEDEA. However, little variation is observed in the αCOO- ν(C=O) band position in this family of fragments.
Collapse
Affiliation(s)
- Ashley E. Williams
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA; (A.E.W.); (N.I.H.)
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA; (A.E.W.); (N.I.H.)
| | - Ryan C. Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA; (A.E.W.); (N.I.H.)
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA
- Department of Chemical Engineering, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
14
|
Tumbic GW, Hossan MY, Thielges MC. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:299-321. [PMID: 34314221 PMCID: PMC8713465 DOI: 10.1146/annurev-anchem-091520-091009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
15
|
Duan R, Mastron JN, Song Y, Kubarych KJ. Direct comparison of amplitude and geometric measures of spectral inhomogeneity using phase-cycled 2D-IR spectroscopy. J Chem Phys 2021; 154:174202. [PMID: 34241049 DOI: 10.1063/5.0043961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two-dimensional infrared (2D-IR) spectroscopy provides access to equilibrium dynamics with the extraction of the frequency-fluctuation correlation function (FFCF) from the measured spectra. Several different methods of obtaining the FFCF from experimental spectra, such as the center line slope (CLS), ellipticity, phase slope, and nodal line slope, all depend on the geometrical nature of the 2D line shape and necessarily require spectral extent in order to achieve a measure of the FFCF. Amplitude measures, on the other hand, such as the inhomogeneity index, rely only on signal amplitudes and can, in principle, be computed using just a single point in a 2D spectrum. With a pulse shaper-based 2D-IR spectrometer, in conjunction with phase cycling, we separate the rephasing and nonrephasing signals used to determine the inhomogeneity index. The same measured data provide the absorptive spectrum, needed for the CLS. Both methods are applied to two model molecular systems: tungsten hexacarbonyl (WCO6) and methylcyclopentadienyl manganese tricarbonyl [Cp'Mn(CO)3, MCMT]. The three degenerate IR modes of W(CO)6 lack coherent modulation or noticeable intramolecular vibrational redistribution (IVR) and are used to establish a baseline comparison. The two bands of the MCMT tripod complex include intraband coherences and IVR as well as likely internal torsional motion on a few-picosecond time scale. We find essentially identical spectral diffusion, but faster, non-equilibrium dynamics lead to differences in the FFCFs extracted with the two methods. The inhomogeneity index offers an advantage in cases where spectra are complex and energy transfer can mimic line shape changes due to frequency fluctuations.
Collapse
Affiliation(s)
- Rong Duan
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| | - Joseph N Mastron
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| | - Yin Song
- Department of Physics, University of Michigan, 430 Church Ave., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Rosenberger D, Smith JS, Garcia AE. Modeling of Peptides with Classical and Novel Machine Learning Force Fields: A Comparison. J Phys Chem B 2021; 125:3598-3612. [DOI: 10.1021/acs.jpcb.0c10401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David Rosenberger
- Los Alamos National Laboratory, Theoretical Division, Chemistry and Physics of Materials Group, Los Alamos, 87545 New Mexico, United States
- Los Alamos National Laboratory, Theoretical Division, Center for Nonlinear Studies, Los Alamos, 87545 New Mexico, United States
| | - Justin S. Smith
- Los Alamos National Laboratory, Theoretical Division, Chemistry and Physics of Materials Group, Los Alamos, 87545 New Mexico, United States
| | - Angel E. Garcia
- Los Alamos National Laboratory, Theoretical Division, Center for Nonlinear Studies, Los Alamos, 87545 New Mexico, United States
| |
Collapse
|
17
|
Linear and Non-Linear Middle Infrared Spectra of Penicillin G in the CO Stretching Mode Region. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work we report the linear and non-linear IR spectral response characterization of the CO bonds of PenicillinG sodium salt in D2O and in DMSO−d6 solutions. In order to better characterize the spectral IR features in the CO stretching region, broadband middle infrared pump-probe spectra are recorded. The role of hydrogen bonds in determining the inhomogeneous broadening and in tuning anharmonicity of the different types of oscillators is exploited. Narrow band pump experiments, at the three central frequencies of β−lactam, amide and carboxylate CO stretching modes, identify the couplings between the different types of CO oscillators opening the possibility to gather structural dynamic information. Our results show that the strongest coupling is between the β−lactam and the carboxylate CO vibrational modes.
Collapse
|
18
|
Biswas S, Mallik BS. Probing the vibrational dynamics of amide bands of N-methylformamide, N, N-dimethylacetamide, and N-methylacetamide in water. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
20
|
Dai X, Fan S, Qian Z, Wang R, Wallace VP, Sun Y. Prediction of the terahertz absorption features with a straightforward molecular dynamics method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118330. [PMID: 32330823 DOI: 10.1016/j.saa.2020.118330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we provide a straightforward method to predict the terahertz absorption spectrum based on a fixed charge model with classic molecular dynamics calculations. The absorption features in the frequency range between 1 and 3.4 THz of stearic acid B-form and between 1 and 2.7 THz of C-form were successfully calculated. Most of the absorption peaks from the simulation correspond well with those from the measurements. By calculating the spatial and time-dependent energy accumulation in the molecular system, the core idea of our calculation method is further validated. Compared with the ab initio calculations, our method provides a computationally inexpensive way to accurately predict the locations of absorption features. With regard to the traditional molecular dynamic simulations, our method is able to extract the spatial distribution of the energy accumulation as well as the local motions in the molecular system.
Collapse
Affiliation(s)
- Xiangyu Dai
- College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, Guangdong, China
| | - Shuting Fan
- College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, Guangdong, China
| | - Zhengfang Qian
- College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, Guangdong, China.
| | - Renheng Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, Guangdong, China.
| | - Vincent P Wallace
- Dept of Physics, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Yiwen Sun
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
21
|
Koner D, Salehi SM, Mondal P, Meuwly M. Non-conventional force fields for applications in spectroscopy and chemical
reaction dynamics. J Chem Phys 2020; 153:010901. [DOI: 10.1063/5.0009628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland
| | - Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland
| | - Padmabati Mondal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra
Pradesh, India
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel,
Switzerland and Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Biswas S, Mallik BS. Aqueous hydroxyl group as the vibrational probe to access the hydrophobicity of amide derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Do TN, Khyasudeen MF, Nowakowski PJ, Zhang Z, Tan HS. Measuring Ultrafast Spectral Diffusion and Correlation Dynamics by Two-Dimensional Electronic Spectroscopy. Chem Asian J 2019; 14:3992-4000. [PMID: 31595651 DOI: 10.1002/asia.201900994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/07/2022]
Abstract
The frequency fluctuation correlation function (FFCF) measures the spectral diffusion of a state's transition while the frequency fluctuation cross-correlation function (FXCF) measures the correlation dynamics between the transitions of two separate states. These quantities contain a wealth of information on how the chromophores or excitonic states interact and couple with its environment and with each other. We summarize the experimental implementations and theoretical considerations of using two-dimensional electronic spectroscopy to characterize FFCFs and FXCFs. Applications can be found in systems such as the chlorophyll pigment molecules in light-harvesting complexes and CdSe nanomaterials.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - M Faisal Khyasudeen
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore.,Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Paweł J Nowakowski
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Zhengyang Zhang
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Howe-Siang Tan
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| |
Collapse
|
24
|
Abstract
Despite the key roles of proteins and nucleic acids in biology, understanding their labile structures and hydrogen bond interactions with guest molecules has posed a critical challenge to the scientific community. In this report, I have used dimethylformamide as a model amide to account for amide hydrogen bond interactions of protein. To quantify hydrogen bond conformation and the structural change, I have monitored the amide I infrared (IR) stretching frequencies while varying the pKa of phenol derivatives. For all phenol derivatives, amide I has formed one hydrogen bond and two hydrogen bond conformation. It has been observed that the formation constant for one hydrogen bond is higher than that of two hydrogen bonds for all phenol derivatives. During the formation of hydrogen bond with amide I, IR absorbance of C═C transition is enhanced for all phenol derivatives. Enhancement of the IR absorbance of the C═C transition indicates hydrogen bond-assisted vibrational coupling between the amide I and phenol ring transition. The relative coupling constant is estimated to be higher for single hydrogen-bonded conformer than the double hydrogen-bonded conformer. This is an intriguing result as the frequency difference between the two coupled transitions predicts otherwise. Using IR absorption spectroscopy, a delicate interplay between hydrogen bonding conformations and intermolecular vibrational coupling between amide I and H-bond donor phenol molecules has been shown. This study can be used as a point of reference for understanding the structural information of proteins, peptides, and nucleosides having hydrogen bond interaction with any drug or ligand molecules. My results as well provide an insight into the vibrational coupling of carbonyl and C═C transition of nucleobases.
Collapse
Affiliation(s)
- Anup Ghosh
- Department of Condensed Matter Physics and Materials Sciences , S. N. Bose National Centre for Basic Sciences , JD Block, Sector-III, Salt Lake City , Kolkata 700 106 , India
| |
Collapse
|
25
|
Amadei A, Aschi M. Modelling vibrational relaxation in complex molecular systems. Phys Chem Chem Phys 2019; 21:20003-20017. [PMID: 31478042 DOI: 10.1039/c9cp03379c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we show how it is possible to treat the quantum vibrational relaxation of a chromophore, embedded in a complex atomic-molecular environment, via the explicit solution of the time-dependent Schroedinger equation once using a proper separation between quantum and semiclassical degrees of freedom. The rigorous theoretical framework derived, based on first principles and making use of well defined approximations/assumptions, is utilized to construct a general model for the kinetics of the vibrational relaxation as obtained by the direct evaluation of the density matrix for all the relevant quantum state transitions. Application to (deuterated) N-methylacetamide (the typical benchmark used as a model for the amino acids) shows that the obtained theoretical-computational approach captures the essential features of the experimental process, unveiling the basic relaxation mechanism involving several vibrational state transitions.
Collapse
Affiliation(s)
- Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | | |
Collapse
|
26
|
Feng CJ, Dhayalan B, Tokmakoff A. Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala‒Ala‒Ala. Biophys J 2019; 114:2820-2832. [PMID: 29925019 DOI: 10.1016/j.bpj.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/28/2022] Open
Abstract
Characterizing ensembles of intrinsically disordered proteins is experimentally challenging because of the ill-conditioned nature of ensemble determination with limited data and the intrinsic fast dynamics of the conformational ensemble. Amide I two-dimensional infrared (2D IR) spectroscopy has picosecond time resolution to freeze structural ensembles as needed for probing disordered-protein ensembles and conformational dynamics. Also, developments in amide I computational spectroscopy now allow a quantitative and direct prediction of amide I spectra based on conformational distributions drawn from molecular dynamics simulations, providing a route to ensemble refinement against experimental spectra. We performed a Bayesian ensemble refinement method on Ala-Ala-Ala against isotope-edited Fourier-transform infrared spectroscopy and 2D IR spectroscopy and tested potential factors affecting the quality of ensemble refinements. We found that isotope-edited 2D IR spectroscopy provides a stringent constraint on Ala-Ala-Ala conformations and returns consistent conformational ensembles with the dominant ppII conformer across varying prior distributions from many molecular dynamics force fields and water models. The dominant factor influencing ensemble refinements is the systematic frequency uncertainty from spectroscopic maps. However, the uncertainty of conformer populations can be significantly reduced by incorporating 2D IR spectra in addition to traditional Fourier-transform infrared spectra. Bayesian ensemble refinement against isotope-edited 2D IR spectroscopy thus provides a route to probe equilibrium-complex protein ensembles and potentially nonequilibrium conformational dynamics.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Balamurugan Dhayalan
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
27
|
Desmond JL, Koner D, Meuwly M. Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy. J Phys Chem B 2019; 123:6588-6598. [PMID: 31318551 DOI: 10.1021/acs.jpcb.9b04628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The monomer-dimer equilibrium for insulin is one of the essential steps in forming the receptor-binding competent monomeric form of the hormone. Despite this importance, the thermodynamic stability, in particular for modified insulins, is quite poorly understood, in part, due to experimental difficulties. This work explores one- and two-dimensional infrared spectroscopy in the range of the amide-I band for the hydrated monomeric and dimeric wild-type hormone. It is found that for the monomer the frequency fluctuation correlation function (FFCF) and the one-dimensional infrared spectra are position sensitive. The spectra of the -CO probes at the dimerization interface (residues Phe24, Phe25, and Tyr26) split and indicate an asymmetry despite the overall (formal) point symmetry of the dimer structure. Also, the decay times of the FFCF for the same -CO probe in the monomer and the dimer can differ by up to 1 order of magnitude, for example, for residue PheB24, which is solvent exposed for the monomer but at the interface for the dimer. The spectroscopic shifts correlate approximately with the average number of hydration waters and the magnitude of the FFCF at time zero. However, this correlation is only qualitative due to the heterogeneous and highly dynamical environment. Based on density functional theory calculations, the dominant contribution for solvent-exposed -CO is found to arise from the surrounding water (∼75%), whereas the protein environment contributes considerably less. The results suggest that infrared spectroscopy is a positionally sensitive probe of insulin dimerization, in particular in conjunction with isotopic labeling of the probe.
Collapse
Affiliation(s)
- Jasmine L Desmond
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Debasish Koner
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Markus Meuwly
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| |
Collapse
|
28
|
Cui Y, Rushing JC, Seifert S, Bedford NM, Kuroda DG. Molecularly Heterogeneous Structure of a Nonionic Deep Eutectic Solvent Composed of N-Methylacetamide and Lauric Acid. J Phys Chem B 2019; 123:3984-3993. [DOI: 10.1021/acs.jpcb.8b11732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeramie C. Rushing
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Soenke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicholas M. Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
29
|
Ghosh A, Cohn B, Prasad AK, Chuntonov L. Quantifying conformations of ester vibrational probes with hydrogen-bond-induced Fermi resonances. J Chem Phys 2018; 149:184501. [PMID: 30441918 DOI: 10.1063/1.5055041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Solvatochromic shifts of local vibrational probes report on the strength of the surrounding electric fields and the probe's hydrogen bonding status. Stretching vibrational mode of the ester carbonyl group is a popular solvatochromic reporter used in the studies of peptides and proteins. Small molecules, used to calibrate the response of the vibrational probes, sometimes involve Fermi resonances (FRs) induced by inter-molecular interactions. In the present work, we focus on the scenario where FR does not appear in the infrared spectrum of the ester carbonyl stretching mode in aprotic solvents; however, it is intensified when a hydrogen bond with the reporter is established. When two molecules form hydrogen bonds to the same carbonyl oxygen atom, FR leads to strong hybridization of the involved modes and splitting of the absorption peak. Spectral overlap between the Fermi doublets associated with singly and doubly hydrogen-bonded carbonyl groups significantly complicates quantifying different hydrogen-bonded conformations. We employed a combination of linear and third-order (2DIR) infrared spectroscopy with chemometrics analysis to reveal the individual line shapes and to estimate the occupations of the hydrogen-bonded conformations in methyl acetate, a model small molecule. We identified a hydrogen-bond-induced FR in complexes of methyl acetate with alcohols and water and found that FR is lifted in larger molecules used for control experiments-cholesteryl stearate and methyl cyanoacetate. Applying this methodology to analyze acetonitrile-water solutions revealed that when dissolved in neat water, methyl acetate occupies a single hydrogen-bonding conformation, which is in contrast to the conclusions of previous studies. Our approach can be generally used when FRs prevent direct quantification of the hydrogen bonding status of the vibrational probe.
Collapse
Affiliation(s)
- Anup Ghosh
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Cohn
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit K Prasad
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
30
|
Torii H. Dynamical behavior of molecular partial charges implied by the far-infrared spectral profile of liquid water. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Cerutti DS, Debiec KT, Case DA, Chong LT. Links between the charge model and bonded parameter force constants in biomolecular force fields. J Chem Phys 2018; 147:161730. [PMID: 29096508 DOI: 10.1063/1.4985866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α-helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α-helices in simulations of a β-hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop other popular force fields, and may explain some of the need for manual corrections in this force fields' evolution. In contrast, ff15ipq-Vac incorrectly depicts globular protein unfolding in numerous systems tested, including Trp cage, villin, lysozyme, and GB3, and does not perform any better than ff15ipq or ff15ipq-Qsolv in tests on short peptides. We analyze the free energy surfaces of individual amino acid dipeptides and the electrostatic potential energy surfaces of each charge model to explain the differences.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghueysen Road, Piscataway, New Jersey 08854-8066, USA
| | - Karl T Debiec
- Epic Systems, 1979 Milky Way, Verona, Wisconsin 53593, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghueysen Road, Piscataway, New Jersey 08854-8066, USA
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
32
|
Salamatova E, Cunha AV, Bloem R, Roeters SJ, Woutersen S, Jansen TLC, Pshenichnikov MS. Hydrophobic Collapse in N-Methylacetamide-Water Mixtures. J Phys Chem A 2018; 122:2468-2478. [PMID: 29425450 PMCID: PMC6028151 DOI: 10.1021/acs.jpca.8b00276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Aqueous N-methylacetamide solutions were investigated by polarization-resolved pump-probe and 2D infrared spectroscopy (2D IR), using the amide I mode as a reporter. The 2D IR results are compared with molecular dynamics simulations and spectral calculations to gain insight into the molecular structures in the mixture. N-Methylacetamide and water molecules tend to form clusters with "frozen" amide I dynamics. This is driven by a hydrophobic collapse as the methyl groups of the N-methylacetamide molecules cluster in the presence of water. Since the studied system can be considered as a simplified model for the backbone of proteins, the present study forms a convenient basis for understanding the structural and vibrational dynamics in proteins. It is particularly interesting to find out that a hydrophobic collapse as the one driving protein folding is observed in such a simple system.
Collapse
Affiliation(s)
- Evgeniia Salamatova
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Robbert Bloem
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Steven J. Roeters
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
Cui Y, Kuroda DG. Evidence of Molecular Heterogeneities in Amide-Based Deep Eutectic Solvents. J Phys Chem A 2018; 122:1185-1193. [DOI: 10.1021/acs.jpca.7b10264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
34
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
35
|
Feng CJ, Tokmakoff A. The dynamics of peptide-water interactions in dialanine: An ultrafast amide I 2D IR and computational spectroscopy study. J Chem Phys 2017; 147:085101. [PMID: 28863528 PMCID: PMC5593305 DOI: 10.1063/1.4991871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 11/14/2022] Open
Abstract
We present a joint experimental and computational study of the dynamic interactions of dialanine (Ala-Ala) with water, comparing the results of ultrafast 2D IR and infrared transient absorption spectroscopy of its amide I vibration with spectra modeled from molecular dynamics (MD) simulations. The experimental data are analyzed to describe vibrational frequency fluctuations, vibrational energy relaxation, and chemical exchange processes. The origin of these processes in the same underlying fluctuating forces allows a common description in terms of the fluctuations and conformational dynamics of the peptide and associated solvent. By comparing computational spectroscopy from MD simulations with multiple force fields and water models, we describe how the dynamics of water hydrogen bond fluctuations and switching processes act as a source of friction that governs the dephasing and vibrational relaxation, and provide a description of coupled water and peptide motions that give rise to spectroscopic exchange processes.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Lee M, Yoon J, Jang S, Shin S. Conformational sampling of metastable states: Tq-REM as a novel replica exchange method. Phys Chem Chem Phys 2017; 19:5454-5464. [PMID: 28165074 DOI: 10.1039/c6cp05322j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the replica exchange methods (REMs) were developed as efficient conformational sampling methods for bio-molecular simulations, their application to very large bio-systems is somewhat limited. We propose a new replica exchange scheme (Tq-REM) created by combining the conventional temperature-REM (T-REM) and one of the Hamiltonian-REMs, q-REM, using the effective potential with reduced barriers. In the proposed Tq-REM scheme, high temperature replicas in T-REM are substituted with q-replicas. This combined scheme is expected to exploit advantages of the T-REM and q-REM resulting in improved sampling efficiency while minimizing the drawbacks of both approaches. We investigated the performance of Tq-REM compared with T-REM by performing all-atom MD simulations on Met-enkephalin, (AAQAA)3, and Trpzip2. It was found that convergence of the free energy surfaces was improved by Tq-REM over the conventional T-REM. In particular, the trajectories of Tq-REM were able to sample the relevant conformations for all of the metastable folding intermediates, while some of the local minimum structures are poorly represented by T-REM. The results of the present study suggest that Tq-REM can provide useful tools to investigate systems where metastable states play important roles.
Collapse
Affiliation(s)
- MinJun Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| | - Jeseong Yoon
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 143-747, Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| |
Collapse
|
38
|
Park SD, Baranov D, Ryu J, Cho B, Halder A, Seifert S, Vajda S, Jonas DM. Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy. NANO LETTERS 2017; 17:762-771. [PMID: 28045274 DOI: 10.1021/acs.nanolett.6b03874] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. It is shown that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distribution determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. The absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.
Collapse
Affiliation(s)
- Samuel D Park
- Department of Chemistry and Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| | - Dmitry Baranov
- Department of Chemistry and Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| | - Jisu Ryu
- Department of Chemistry and Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| | - Byungmoon Cho
- Department of Chemistry and Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| | | | | | | | - David M Jonas
- Department of Chemistry and Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
39
|
Kraack JP, Hamm P. Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chem Rev 2016; 117:10623-10664. [DOI: 10.1021/acs.chemrev.6b00437] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
40
|
Okuda M, Ohta K, Tominaga K. Comparison of vibrational dynamics between non-ionic and ionic vibrational probes in water: Experimental study with two-dimensional infrared and infrared pump-probe spectroscopies. J Chem Phys 2016. [DOI: 10.1063/1.4962344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Masaki Okuda
- Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Moleuclar Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
- Moleuclar Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
41
|
Feng Y, Huang J, Kim S, Shim JH, MacKerell AD, Ge NH. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation. J Phys Chem B 2016; 120:5325-39. [PMID: 27299801 DOI: 10.1021/acs.jpcb.6b02608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared with the previous results on alanine based oligopeptides, the dihedral angles of our fitted structure, and the most populated ppII structure from the C36 simulation are in good agreement with those suggesting a major ppII population. Our results provide further support for the importance of ppII conformation in the ensemble of unfolded peptides.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Jing Huang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Seongheun Kim
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Ji Hyun Shim
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
42
|
Bastida A, Zúñiga J, Requena A, Miguel B, Candela ME, Soler MA. Conformational Changes of Trialanine in Water Induced by Vibrational Relaxation of the Amide I Mode. J Phys Chem B 2016; 120:348-57. [PMID: 26690744 DOI: 10.1021/acs.jpcb.5b09753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the protein-based diseases are caused by anomalies in the functionality and stability of these molecules. Experimental and theoretical studies of the conformational dynamics of proteins are becoming in this respect essential to understand the origin of these anomalies. However, a description of the conformational dynamics of proteins based on mechano-energetic principles still remains elusive because of the intrinsic high flexibility of the peptide chains, the participation of weak noncovalent interactions, and the role of the ubiquitous water solvent. In this work, the conformational dynamics of trialanine dissolved in water (D2O) is investigated through Molecular Dynamics (MD) simulations combined with instantaneous normal modes (INMs) analysis both at equilibrium and after the vibrational excitation of the C-terminal amide I mode. The conformational equilibrium between α and pPII conformers is found to be altered by the intramolecular relaxation of the amide I mode as a consequence of the different relaxation pathways of each conformer which modify the amount of vibrational energy stored in the torsional motions of the tripeptide, so the α → pPII and pPII → α conversion rates are increased differently. The selectivity of the process comes from the shifts of the vibrational frequencies with the conformational changes that modify the resonance conditions driving the intramolecular energy flows.
Collapse
Affiliation(s)
- Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Beatriz Miguel
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena , 30203 Cartagena, Spain
| | | | - Miguel Angel Soler
- Department of Medical and Biological Sciences, University of Udine , 33100 Udine, Italy
| |
Collapse
|
43
|
Liu J, Zhang JZH, He X. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins. Phys Chem Chem Phys 2016; 18:1864-75. [DOI: 10.1039/c5cp05693d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geometry optimization and vibrational spectra (infrared and Raman spectra) calculations of proteins are carried out by a quantum chemical approach using the EE-GMFCC (electrostatically embedded generalized molecular fractionation with conjugate caps) method (J. Phys. Chem. A, 2013, 117, 7149).
Collapse
Affiliation(s)
- Jinfeng Liu
- State Key Laboratory of Precision Spectroscopy
- Institute of Theoretical and Computational Science
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
| | - John Z. H. Zhang
- State Key Laboratory of Precision Spectroscopy
- Institute of Theoretical and Computational Science
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy
- Institute of Theoretical and Computational Science
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
| |
Collapse
|
44
|
Yadav VK, Chandra A. First-Principles Simulation Study of Vibrational Spectral Diffusion and Hydrogen Bond Fluctuations in Aqueous Solution of N-Methylacetamide. J Phys Chem B 2015; 119:9858-67. [DOI: 10.1021/acs.jpcb.5b03836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| |
Collapse
|
45
|
Cazade PA, Tran H, Bereau T, Das AK, Kläsi F, Hamm P, Meuwly M. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study. J Chem Phys 2015; 142:212415. [DOI: 10.1063/1.4916630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Conformational analyses of an alanine oligomer during chain propagation using quantum chemical calculations. Polym J 2015. [DOI: 10.1038/pj.2015.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Chen X, Zhao Y, Zhang H, Xue J, Zheng X. Excited state proton transfer dynamics of thioacetamide in S2(ππ*) state: resonance Raman spectroscopic and quantum mechanical calculations study. J Phys Chem A 2015; 119:832-42. [PMID: 25559740 DOI: 10.1021/jp510396y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photophysics and photochemistry of thioacetamide (CH3CSNH2) after excitation to the S2 electronic state were investigated by using resonance Raman spectroscopy in conjunction with the complete active space self-consistent field (CASSCF) method and density functional theory (DFT) calculations. The A-band resonance Raman spectra in acetonitrile, methanol, and water were obtained at 299.1, 282.4, 266.0, 252.7, and 245.9 nm excitation wavelengths to probe the structural dynamics of thioacetamide in the S2 state. CASSCF calculations were done to determine the transition energies and structures of the lower-lying excited states, the conical intersection points CI(S2/S1) and CI(S1/S0), and intersystem crossing points. The structural dynamics of thioacetamide in the S2 state was revealed to be along eight Franck-Condon active vibrational modes ν15, ν11, ν14, ν10, ν8, ν12, ν18, and ν19, mostly in the CC/CS/CN stretches and the CNH8,9/CCH5,6,7/CCN/CCS in-plane bends as indicated by the corresponding normal mode descriptions. The S2 → S1 decay process via the S2/S1 conical intersection point as the major channel were excluded. The thione-thiol photoisomerization reaction mechanism of thioacetamide via the S2,FC → S'1,min excited state proton transfer (ESPT) reaction channel was proposed.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Chemistry, Zhejiang Sci-Tech University , Hangzhou 310018, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Jakobsen S, Bereau T, Meuwly M. Multipolar force fields and their effects on solvent dynamics around simple solutes. J Phys Chem B 2015; 119:3034-45. [PMID: 25584801 DOI: 10.1021/jp508052q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential, which is especially important to describe key, challenging interactions, such as lone pairs, π-interactions, and hydrogen bonds. These chemical environments are probed by focusing on the hydration properties of two molecules: N-methylacetamide and phenyl bromide. Both, equilibrium and dynamical, quantities are affected by the quality of the electrostatic model. The alteration of the first solvation shell in MTP simulations is validated by comparing with lifetimes and correlation times of solute-solvent interactions from experiment. The improved dynamical behavior found in the MTP simulations—observed for molecules parametrized using very different protocols—suggests that a systematic improvement of both equilibrium and dynamical quantities when using MTP electrostatics is possible.
Collapse
Affiliation(s)
- Sofie Jakobsen
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | |
Collapse
|
49
|
Toal S, Schweitzer-Stenner R. Local order in the unfolded state: conformational biases and nearest neighbor interactions. Biomolecules 2014; 4:725-73. [PMID: 25062017 PMCID: PMC4192670 DOI: 10.3390/biom4030725] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short) peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19026, USA.
| | | |
Collapse
|
50
|
Pazos IM, Ghosh A, Tucker MJ, Gai F. Ester carbonyl vibration as a sensitive probe of protein local electric field. Angew Chem Int Ed Engl 2014; 53:6080-4. [PMID: 24788907 PMCID: PMC4104746 DOI: 10.1002/anie.201402011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/20/2014] [Indexed: 11/10/2022]
Abstract
The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6.
Collapse
Affiliation(s)
- Ileana M. Pazos
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street, Philadelphia, PA 19104, United States
| | - Ayanjeet Ghosh
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street, Philadelphia, PA 19104, United States
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania 231 S. 34th Street, Philadelphia, PA 19104, United States
| |
Collapse
|