1
|
Altun A, Leach IF, Neese F, Bistoni G. A Generally Applicable Method for Disentangling the Effect of Individual Noncovalent Interactions on the Binding Energy. Angew Chem Int Ed Engl 2025; 64:e202421922. [PMID: 39625704 PMCID: PMC11914957 DOI: 10.1002/anie.202421922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
We introduce the fragment-pairwise Local Energy Decomposition (fp-LED) scheme for precise quantification of individual interactions contributing to the binding energy of arbitrary chemical entities, such as protein-ligand binding energies, lattice energies of molecular crystals, or association energies of large biomolecular assemblies. Using fp-LED, we can assess whether the contribution to the binding energy arising from noncovalent interactions between pairs of molecular fragments in any chemical system is attractive or repulsive, and accurately quantify its magnitude at the coupled cluster level - commonly considered as the "gold standard" of computational chemistry. Such insights are crucial for advancing molecular and material design strategies in fields like catalysis and therapeutic development. Illustrative applications across diverse fields demonstrate the versatility and accuracy of this theoretical framework, promising profound implications for fundamental understanding and practical applications.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Isaac F Leach
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
2
|
Henrichsmeyer J, Thelen M, Fink RF. What is the Exchange Repulsion Energy? Insight by Partitioning into Physically Meaningful Contributions. Chemphyschem 2025; 26:e202400887. [PMID: 39571090 DOI: 10.1002/cphc.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Indexed: 12/20/2024]
Abstract
It is shown that the exchange repulsion energy, Exr, can be rationalized by partitioning the respective energy expression for two systems with Hartree-Fock orbitals into physically meaningful contributions. A division of Exr into a positive kinetic and a negative potential part is possible, but these contributions correlate only poorly with the actual exchange repulsion energy. A more meaningful partitioning is derived, where all kinetic energy contributions are collected in a term that vanishes for exact Hartree-Fock orbitals due to their stationarity conditions. The remaining terms can be distinguished into an exchange integral contribution as well as contributions to the repulsion energy with two, three and four orbital indices. The forms, relationships and absolute sizes of these terms suggest an intuitive partitioning of the exchange repulsion energy into Molecular Orbital Pair Contributions to the Exchange repulsion energy (MOPCE). Insight into the analytic form and quantitative size of these contributions is provided by considering the3 Σ u + ( 1 σ g 1 σ u ) ${^3 \Sigma _u^+ (1\sigma _g 1\sigma _u )}$ state of the H2 molecule, the water dimer, as well as an argon atom interacting with Cl2 and N2.
Collapse
Affiliation(s)
- Johannes Henrichsmeyer
- Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076, Tübingen, Germany
| | - Michael Thelen
- Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076, Tübingen, Germany
| | - Reinhold F Fink
- Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076, Tübingen, Germany
| |
Collapse
|
3
|
Rehman AU, Szalewicz K. Dispersionless Nonhybrid Density Functional. J Chem Theory Comput 2025; 21:1098-1118. [PMID: 39823213 DOI: 10.1021/acs.jctc.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
A dispersion-corrected density functional theory (DFT+D) method has been developed. It includes a nonhybrid dispersionless generalized gradient approximation (GGA) functional paired with a literature-parametrized dispersion function. The functional's 9 adjustable parameters were optimized using a training set of 589 benchmark interaction energies. The resulting method performs better than other GGA-based DFT+D methods, giving a mean unsigned error of 0.33 kcal/mol. It even performs better than some more expensive meta-GGA or hybrid dispersion-corrected functionals. An important advantage of using the new functional is that its dispersion energy given by the D component is very close to the true dispersion energy at all intermolecular separations, whereas in other similarly accurate DFT+D approaches, such a dispersion contribution in the van der Waals minimum region is only a small fraction of the true value.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025; 27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
Collapse
Affiliation(s)
- Junmin Chen
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Gao
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Miaofei Huang
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kuang Yu
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Krupka KM, Carroll LL, de Lara-Castells MP. Functionalization of zeolite-encapsulated Cu 5 clusters as visible-light photoactive sub-nanomaterials. RSC Adv 2025; 15:2086-2098. [PMID: 39845110 PMCID: PMC11753201 DOI: 10.1039/d4ra08633c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
The unique structural properties of zeolites make them ideal environments for encapsulating subnanometric metal clusters on their microporous channels and cavities, showing an enhanced catalytic performance. As a first step towards the functionalization of these clusters as photocatalysts as well, this work addresses the optical properties of zeolite-encapsulated Cu5-TiO2 nanoparticles as well as their application in the photo-induced activation of CO2 by sunlight. Model density functional theory (DFT) calculations indicate the stability of the Cu5 cluster adsorbed on the TiO2 nanoparticles filling the pores of a model zeolite structure. Second, it is shown that while TiO2 nanoparticles absorb in the UV, the photo-absorption spectrum of the Cu5-TiO2 nanoparticle composite is peaked at the visible region, where the sun has its maximum energy input, also allowing for the photo-induced activation of CO2 adsorbed onto the Cu5 cluster.
Collapse
Affiliation(s)
- Katarzyna M Krupka
- Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC) E-28006 Madrid Spain
| | - Lenard L Carroll
- Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC) E-28006 Madrid Spain
| | - María Pilar de Lara-Castells
- Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC) E-28006 Madrid Spain
| |
Collapse
|
6
|
Hoja J, Boese AD. The V30 benchmark set for anharmonic vibrational frequencies of molecular dimers. J Chem Phys 2024; 161:234110. [PMID: 39692487 DOI: 10.1063/5.0238491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Intermolecular vibrations are extremely challenging to describe but are the most crucial part for determining entropy and hence free energies and enable, for instance, the distinction between different crystal-packing arrangements of the same molecule via THz spectroscopy. Herein, we introduce a benchmark dataset-V30-containing 30 small molecular dimers with intermolecular interactions ranging from exclusively van der Waals dispersion to systems with hydrogen bonds. All the calculations are performed with the gold standard of quantum chemistry CCSD(T). We discuss vibrational frequencies obtained via different models starting with the harmonic approximation over independent Morse oscillators up to second-order vibrational perturbation theory (VPT2), which allows a proper anharmonic treatment including coupling of vibrational modes. However, large amplitude motions present in many low-frequency intermolecular modes are problematic for VPT2. In analogy to the often used treatment for internal rotations, we replace such problematic modes by a simple one-dimensional hindered rotor model. We compare selected dimers to the available experimental data or high-level calculations of potential energy surfaces and show that VPT2 in combination with hindered rotors can yield a very good description of fundamental frequencies for the discussed subset of dimers involving small and semi-rigid molecules.
Collapse
Affiliation(s)
- Johannes Hoja
- Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| | - A Daniel Boese
- Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| |
Collapse
|
7
|
Altun A, Schiavo E, Mehring M, Schulz S, Bistoni G, Auer AA. Rationalizing polymorphism with local correlation-based methods: a case study of pnictogen molecular crystals. Phys Chem Chem Phys 2024; 26:28733-28745. [PMID: 39530261 DOI: 10.1039/d4cp03697b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A computational workflow is proposed to quantify and rationalize the relative stability of different structures of molecular crystals using cluster models and quantum chemical methods. The Hartree-Fock plus London Dispersion (HFLD) scheme is used to estimate the lattice energy of molecular crystals in various structural arrangements. The fragment-pairwise Local Energy Decomposition (fp-LED) scheme is then employed to quantify the key intermolecular interactions responsible for the relative stability of different crystal structures. The fp-LED scheme provides also in-depth chemical insights by decomposing each interaction into energy components such as dispersion, electrostatics, and exchange. Notably, this analysis requires only a single interaction energy computation per structure on a suitable cluster model. As a case study, two polymorphs of each of the following are considered: naphthyl-substituted dipnictanes (with As, Sb, and Bi as the pnictogen atom) and tris(thiophen-2-yl)bismuthane. The approach outlined offers high accuracy as well as valuable insights for developing design principles to engineer crystal structures with tailored properties, opening up new avenues in the study of molecular aggregates, potentially impacting diverse fields in materials science and beyond.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - Eduardo Schiavo
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - Michael Mehring
- Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
8
|
Tsuzuki S, Ono R, Inoue S, Matsuoka S, Hasegawa T. Origin of the intermolecular forces that produce donor-acceptor stacks in π-conjugated charge-transfer complexes. Commun Chem 2024; 7:253. [PMID: 39506085 PMCID: PMC11542100 DOI: 10.1038/s42004-024-01329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
The attraction between π-conjugated planar electron donor and acceptor molecules that form many stable charge-transfer (CT) complexes has been explained by quantum chemical CT interactions, although the fundamental origin remains unclear. Here, we demonstrate the mechanism of CT complex formation by potential energy map analysis for TTF-CA and BTBT-TCNQ, using energy decomposition of intermolecular interaction by symmetry-adapted perturbation theory (SAPT) combined with coupled cluster calculation. We find that the source of attraction between donor and acceptor molecules is ascribed primarily to the dispersion force and also to the electrostatic force. In contrast, the contribution of CT interactions to the attractive forces is minimal. We demonstrate that the highly directional feature of the exchange repulsion force, coupled with the attractive dispersion and electrostatic forces, is crucial in determining the intermolecular arrangements of actual CT crystals. These findings are key for understanding the unique structural and electronic properties of π-conjugated CT complexes.
Collapse
Affiliation(s)
- Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113 8656, Japan.
| | - Ryota Ono
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113 8656, Japan
| | - Satoru Inoue
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113 8656, Japan
| | - Satoshi Matsuoka
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113 8656, Japan
| | - Tatsuo Hasegawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113 8656, Japan.
| |
Collapse
|
9
|
Masoumifeshani E, Korona T. Intermolecular interaction energies with AROFRAG-A systematic approach for fragmentation of aromatic molecules. J Comput Chem 2024; 45:2446-2464. [PMID: 38946399 DOI: 10.1002/jcc.27429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Intermolecular interactions with polycyclic aromatic hydrocarbons (PAHs) represent an important area of physisorption studies. These investigations are often hampered by a size of interacting PAHs, which makes the calculation prohibitively expensive. Therefore, methods designed to deal with large molecules could be helpful to reduce the computational costs of such studies. Recently we have introduced a new systematic approach for the molecular fragmentation of PAHs, denoted as AROFRAG, which decomposes a large PAH molecule into a set of predefined small PAHs with a benzene ring being the smallest unbreakable unit, and which in conjunction with the Molecules-in-Molecules (MIM) approach provides an accurate description of total molecular energies. In this contribution we propose an extension of the AROFRAG, which provides a description of intermolecular interactions for complexes composed of PAH molecules. The examination of interaction energy partitioning for various test cases shows that the AROFRAG3 model connected with the MIM approach accurately reproduces all important components of the interaction energy. An additional important finding in our study is that the computationally expensive long-range electron-correlation part of the interaction energy, that is, the dispersion component, is well described at lower AROFRAG levels even without MIM, which makes the latter models interesting alternatives to existing methods for an accurate description of the electron-correlated part of the interaction energy.
Collapse
Affiliation(s)
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Glick CS, Alenaizan A, Cheney DL, Cavender CE, Sherrill CD. Electrostatically embedded symmetry-adapted perturbation theory. J Chem Phys 2024; 161:134112. [PMID: 39361153 PMCID: PMC11452212 DOI: 10.1063/5.0221974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) is an ab initio approach that directly computes noncovalent interaction energies in terms of electrostatics, exchange repulsion, induction/polarization, and London dispersion components. Due to its high computational scaling, routine applications of even the lowest order of SAPT are typically limited to a few hundred atoms. To address this limitation, we report here the addition of electrostatic embedding to the SAPT (EE-SAPT) and ISAPT (EE-ISAPT) methods. We illustrate the embedding scheme using water trimer as a prototype example. Then, we show that EE-SAPT/EE-ISAPT can be applied for efficiently and accurately computing noncovalent interactions in large systems, including solvated dimers and protein-ligand systems. In the latter application, particular care must be taken to properly handle the quantum mechanics/molecular mechanics boundary when it cuts covalent bonds. We investigate various schemes for handling charges near this boundary and demonstrate which are most effective in the context of charge-embedded SAPT.
Collapse
Affiliation(s)
| | | | - Daniel L. Cheney
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - Chapin E. Cavender
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
11
|
Czernek J, Brus J. On the Potential Energy Surface of the Pyrene Dimer. Int J Mol Sci 2024; 25:10762. [PMID: 39409090 PMCID: PMC11476719 DOI: 10.3390/ijms251910762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Knowledge of reliable geometries and associated intermolecular interaction energy (ΔE) values at key fragments of the potential energy surface (PES) in the gas phase is indispensable for the modeling of various properties of the pyrene dimer (PYD) and other important aggregate systems of a comparatively large size (ca. 50 atoms). The performance of the domain-based local pair natural orbital (DLPNO) variant of the coupled-cluster theory with singles, doubles and perturbative triples in the complete basis set limit [CCSD(T)/CBS] method for highly accurate predictions of the ΔE at a variety of regions of the PES was established for a representative set of pi-stacked dimers, which also includes the PYD. For geometries with the distance between stacked monomers close to a value of such a distance in the ΔE minimum structure, an excellent agreement between the canonical CCSD(T)/CBS results and their DLPNO counterparts was found. This finding enabled us to accurately characterize the lowest-lying configurations of the PYD, and the physical origin of their stabilization was thoroughly analyzed. The proposed DLPNO-CCSD(T)/CBS procedure should be applied with the aim of safely locating a global minimum of the PES and firmly establishing the pertaining ΔE of even larger dimers in studies of packing motifs of organic electronic devices and other novel materials.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic;
| | | |
Collapse
|
12
|
Wallace AM, Sherrill CD. Optimization of damping function parameters for -D3 and -D4 dispersion models for Hartree-Fock based symmetry-adapted perturbation theory. J Chem Phys 2024; 161:114115. [PMID: 39291687 DOI: 10.1063/5.0219185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) directly computes intermolecular interaction energy in terms of electrostatics, exchange-repulsion, induction/polarization, and London dispersion components. In SAPT based on Hartree-Fock ("SAPT0") or based on density functional theory, the most time-consuming step is the computation of the dispersion terms. Previous work has explored the replacement of these expensive dispersion terms with simple damped asymptotic models. We recently examined [Schriber et al. J. Chem. Phys. 154, 234107 (2021)] the accuracy of SAPT0 when replacing its dispersion term with Grimme's popular -D3 correction, reducing the computational cost scaling from O(N5) to O(N3). That work optimized damping function parameters for SAPT0-D3/jun-cc-pVDZ using estimates of the coupled-cluster complete basis set limit [CCSD(T)/CBS] on a 8299 dimer dataset. Here, we explore the accuracy of SAPT0-D3 with additional basis sets, along with an analogous model using -D4. Damping parameters are rather insensitive to basis sets, and the resulting SAPT0-D models are more accurate on average for total interaction energies than SAPT0. Our results are surprising in several respects: (1) improvement of -D4 over -D3 is negligible for these systems, even charged systems where -D4 should, in principle, be more accurate; (2) addition of Axilrod-Teller-Muto terms for three-body dispersion does not improve error statistics for this test set; and (3) SAPT0-D is even more accurate on average for total interaction energies than the much more computationally costly density functional theory based SAPT [SAPT(DFT)] in an aug-cc-pVDZ basis. However, SAPT0 and SAPT0-D3/D4 interaction energies benefit from significant error cancellation between exchange and dispersion terms.
Collapse
Affiliation(s)
- Austin M Wallace
- Center for Computational Molecular Science and Technology and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
13
|
Luu D, Corminboeuf C, Patkowski K. Range Separation of the Interaction Potential in Intermolecular and Intramolecular Symmetry-Adapted Perturbation Theory. J Chem Theory Comput 2024. [PMID: 39255506 DOI: 10.1021/acs.jctc.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Symmetry-adapted perturbation theory (SAPT) is a popular and versatile tool to compute and decompose noncovalent interaction energies between molecules. The intramolecular SAPT (ISAPT) variant provides a similar energy decomposition between two nonbonded fragments of the same molecule, covalently connected by a third fragment. In this work, we explore an alternative approach where the noncovalent interaction is singled out by a range separation of the Coulomb potential. We investigate two common splittings of the 1/r potential into long-range and short-range parts based on the Gaussian and error functions, and approximate either the entire intermolecular/interfragment interaction or only its attractive terms by the long-range contribution. These range separation schemes are tested for a number of intermolecular and intramolecular complexes. We find that the energy corrections from range-separated SAPT or ISAPT are in reasonable agreement with complete SAPT/ISAPT data. This result should be contrasted with the inability of the long-range multipole expansion to describe crucial short-range charge penetration and exchange effects; it shows that the long-range interaction potential does not just recover the asymptotic interaction energy but also provides a useful account of short-range terms. The best consistency is attained for the error-function separation applied to all interaction terms, both attractive and repulsive. This study is the first step toward a fragmentation-free decomposition of intramolecular nonbonded energy.
Collapse
Affiliation(s)
- Du Luu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
14
|
Zhang Y, Xiong X, Wu W, Su P. Real-space energy decomposition analysis method for qualitative and quantitative interpretations. J Chem Phys 2024; 161:084102. [PMID: 39171702 DOI: 10.1063/5.0221644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
In the work, a real-space energy decomposition analysis method, called DM-EDA(RS), is introduced based on our recently developed DM-EDA method [Zhang et al., J. Chem. Phys. 160, 174101 (2024)]. The EDA terms in DM-EDA(RS), including electrostatic, exchange, repulsion, polarization, and correlation, are expressed as the summations of grid-based energy density in real-space. This method is able to interpret intermolecular interactions in a unified qualitative and quantitative way. DM-EDA(RS) results provide not only comprehensive explanations for intermolecular interactions but also insights for sub-region interactions involving different functional groups.
Collapse
Affiliation(s)
- Yueyang Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xuewei Xiong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
15
|
Czernek J, Brus J. Revisiting the Most Stable Structures of the Benzene Dimer. Int J Mol Sci 2024; 25:8272. [PMID: 39125845 PMCID: PMC11312267 DOI: 10.3390/ijms25158272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (ΔE) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures. In the optimal geometries obtained by searching extensive sets of the CCSD(T)/CBS ΔE data of the TT, FT and SP arrangements, the resulting ΔE values were -11.84, -11.34 and -11.21 kJ/mol, respectively. The intrinsic strength of the intermolecular bonding in these configurations was evaluated by analyzing the distance dependence of the CCSD(T)/CBS ΔE data over wide ranges of intermonomer separations. In this way, regions of the relative distances that favor BD structures with either π∙∙∙π or C-H∙∙∙π interactions were found and discussed in a broader context.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic;
| | | |
Collapse
|
16
|
Masumian E, Boese AD. Benchmarking Swaths of Intermolecular Interaction Components with Symmetry-Adapted Perturbation Theory. J Chem Theory Comput 2024; 20:30-48. [PMID: 38117939 PMCID: PMC10782453 DOI: 10.1021/acs.jctc.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
A benchmark database for interaction energy components of various noncovalent interactions (NCIs) along their dissociation curve is one of the essential needs in theoretical chemistry, especially for the development of force fields and machine-learning methods. We utilize DFT-SAPT or SAPT(DFT) as one of the most accurate methods to generate an extensive stock of the energy components, including dispersion energies extrapolated to the complete basis set limit (CBS). Precise analyses of the created data, and benchmarking the total interaction energies against the best available CCSD(T)/CBS values, reveal different aspects of the methodology and the nature of NCIs. For example, error cancellation effects between the S2 approximation and nonexact xc-potentials occur, and large charge transfer energies in some systems, including heavy atoms, can explain the lower accuracy of DFT-SAPT. This method is perfect for neutral complexes containing light nonmetals, while other systems with heavier atoms should be treated carefully. In the last part, a representative data set for all NCIs is extracted from the original data.
Collapse
Affiliation(s)
- Ehsan Masumian
- Physical and Theoretical Chemistry,
Department of Chemistry, University of Graz, 8010 Graz, Austria
| | - A. Daniel Boese
- Physical and Theoretical Chemistry,
Department of Chemistry, University of Graz, 8010 Graz, Austria
| |
Collapse
|
17
|
Chen J, Yu K. PhyNEO: A Neural-Network-Enhanced Physics-Driven Force Field Development Workflow for Bulk Organic Molecule and Polymer Simulations. J Chem Theory Comput 2024; 20:253-265. [PMID: 38118076 DOI: 10.1021/acs.jctc.3c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
An accurate, generalizable, and transferable force field plays a crucial role in the molecular dynamics simulations of organic polymers and biomolecules. Conventional empirical force fields often fail to capture precise intermolecular interactions due to their negligence of important physics, such as polarization, charge penetration, many-body dispersion, etc. Moreover, the parameterization of these force fields relies heavily on top-down fittings, limiting their transferabilities to new systems where the experimental data are often unavailable. To address these challenges, we introduce a general and fully ab initio force field construction strategy, named PhyNEO. It features a hybrid approach that combines both the physics-driven and the data-driven methods and is able to generate a bulk potential with chemical accuracy using only quantum chemistry data of very small clusters. Careful separations of long-/short-range interactions and nonbonding/bonding interactions are the key to the success of PhyNEO. By such a strategy, we mitigate the limitations of pure data-driven methods in long-range interactions, thus largely increasing the data efficiency and the scalability of machine learning models. The new approach is thoroughly tested on poly(ethylene oxide) and polyethylene glycol systems, giving superior accuracies in both microscopic and bulk properties compared to conventional force fields. This work thus offers a promising framework for the development of advanced force fields in a wide range of organic molecular systems.
Collapse
Affiliation(s)
- Junmin Chen
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
- Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
18
|
Czernek J, Brus J. Reliable Dimerization Energies for Modeling of Supramolecular Junctions. Int J Mol Sci 2024; 25:602. [PMID: 38203773 PMCID: PMC10778993 DOI: 10.3390/ijms25010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic;
| | | |
Collapse
|
19
|
Yourdkhani S, Klimeš J. Using Noncovalent Interactions to Test the Precision of Projector-Augmented Wave Data Sets. J Chem Theory Comput 2023; 19:8871-8885. [PMID: 38038278 PMCID: PMC10720388 DOI: 10.1021/acs.jctc.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
The projector-augmented wave (PAW) method is one of the approaches that are widely used to approximately treat core electrons and thus to speed up plane-wave basis set electronic structure calculations. However, PAW involves approximations, and it is thus important to understand how they affect the results. Tests of the precision of PAW data sets often use the properties of isolated atoms or atomic solids. While this is sufficient to identify problematic PAW data sets, little information has been gained to understand the origins of the errors and suggest ways to correct them. Here, we show that the interaction energies of molecular dimers are very useful not only to identify problematic PAW data sets but also to uncover the origin of the errors. Using dimers from the S22 and S66 test sets and other dimers, we find that the error in the interaction energy is composed of a short-range component with an exponential decay and a long-range electrostatic part caused by an error in the total charge density. We propose and evaluate a simple improvable scheme to correct the long-range error and find that even in its simple and readily usable form, it is able to reduce the interaction energy errors to less than half on average for hydrogen-bonded dimers.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and
Optics, Faculty of Mathematics and Physics, Charles University, Prague
2 CZ-12116, Czech Republic
| | - Jiří Klimeš
- Department of Chemical Physics and
Optics, Faculty of Mathematics and Physics, Charles University, Prague
2 CZ-12116, Czech Republic
| |
Collapse
|
20
|
Vindel-Zandbergen P, Kȩdziera D, Żółtowski M, Kłos J, Żuchowski P, Felker PM, Lique F, Bačić Z. H2O-HCN complex: A new potential energy surface and intermolecular rovibrational states from rigorous quantum calculations. J Chem Phys 2023; 159:174302. [PMID: 37909452 DOI: 10.1063/5.0173751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
In this work the H2O-HCN complex is quantitatively characterized in two ways. First, we report a new rigid-monomer 5D intermolecular potential energy surface (PES) for this complex, calculated using the symmetry-adapted perturbation theory based on density functional theory method. The PES is based on 2833 ab initio points computed employing the aug-cc-pVQZ basis set, utilizing the autoPES code, which provides a site-site analytical fit with the long-range region given by perturbation theory. Next, we present the results of the quantum 5D calculations of the fully coupled intermolecular rovibrational states of the H2O-HCN complex for the total angular momentum J values of 0, 1, and 2, performed on the new PES. These calculations rely on the quantum bound-state methodology developed by us recently and applied to a variety of noncovalently bound binary molecular complexes. The vibrationally averaged ground-state geometry of H2O-HCN determined from the quantum 5D calculations agrees very well with that from the microwave spectroscopic measurements. In addition, the computed ground-state rotational transition frequencies, as well as the B and C rotational constants calculated for the ground state of the complex, are in excellent agreement with the experimental values. The assignment of the calculated intermolecular vibrational states of the H2O-HCN complex is surprisingly challenging. It turns out that only the excitations of the intermolecular stretch mode can be assigned with confidence. The coupling among the angular degrees of freedom (DOFs) of the complex is unusually strong, and as a result most of the excited intermolecular states are unassigned. On the other hand, the coupling of the radial, intermolecular stretch mode and the angular DOFs is weak, allowing straightforward assignment of the excitation of the former.
Collapse
Affiliation(s)
| | - Dariusz Kȩdziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland
| | - Michał Żółtowski
- University of Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
- LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP1123, 76 063 Le Havre cedex, France
| | - Jacek Kłos
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Piotr Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - François Lique
- University of Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
21
|
Ochieng SA, Patkowski K. Accurate three-body noncovalent interactions: the insights from energy decomposition. Phys Chem Chem Phys 2023; 25:28621-28637. [PMID: 37874287 DOI: 10.1039/d3cp03938b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
An impressive collection of accurate two-body interaction energies for small complexes has been assembled into benchmark databases and used to improve the performance of multiple density functional, semiempirical, and machine learning methods. Similar benchmark data on nonadditive three-body energies in molecular trimers are comparatively scarce, and the existing ones are practically limited to homotrimers. In this work, we present a benchmark dataset of 20 equilibrium noncovalent interaction energies for a small but diverse selection of 10 heteromolecular trimers. The new 3BHET dataset presents complexes that combine different interactions including π-π, anion-π, cation-π, and various motifs of hydrogen and halogen bonding in each trimer. A detailed symmetry-adapted perturbation theory (SAPT)-based energy decomposition of the two- and three-body interaction energies shows that 3BHET consists of electrostatics- and dispersion-dominated complexes. The nonadditive three-body contribution is dominated by induction, but its influence on the overall bonding type in the complex (as exemplified by its position on the ternary diagram) is quite small. We also tested the extended SAPT (XSAPT) approach which is capable of including some nonadditive interactions in clusters of any size. The resulting three-body dispersion term (obtained from the many-body dispersion formalism) is mostly in good agreement with the supermolecular CCSD(T)-MP2 values and the nonadditive induction term is similar to the three-body SAPT(DFT) data, but the overall three-body XSAPT energies are not very accurate as they are missing the first-order exchange terms.
Collapse
Affiliation(s)
- Sharon A Ochieng
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.
| |
Collapse
|
22
|
Hapka M, Krzemińska A, Modrzejewski M, Przybytek M, Pernal K. Efficient Calculation of the Dispersion Energy for Multireference Systems with Cholesky Decomposition: Application to Excited-State Interactions. J Phys Chem Lett 2023; 14:6895-6903. [PMID: 37494637 PMCID: PMC10405273 DOI: 10.1021/acs.jpclett.3c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Accurate and efficient prediction of dispersion interactions in excited-state complexes poses a challenge due to the complex nature of electron correlation effects that need to be simultaneously considered. We propose an algorithm for computing the dispersion energy in nondegenerate ground- or excited-state complexes with arbitrary spin. The algorithm scales with the fifth power of the system size due to employing Cholesky decomposition of Coulomb integrals and a recently developed recursive formula for density response functions of the monomers. As a numerical illustration, we apply the new algorithm in the framework of multiconfigurational symmetry adapted perturbation theory, SAPT(MC), to study interactions in dimers with localized excitons. The SAPT(MC) analysis reveals that the dispersion energy may be the main force stabilizing excited-state dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Krzemińska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Marcin Modrzejewski
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
23
|
Orek C, Bartolomei M, Coletti C, Bulut N. Graphene as Nanocarrier for Gold(I)-Monocarbene Complexes: Strength and Nature of Physisorption. Molecules 2023; 28:3941. [PMID: 37175351 PMCID: PMC10180098 DOI: 10.3390/molecules28093941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Gold(I) metal complexes are finding increasing applications as therapeutic agents against a variety of diseases. As their potential use as effective metallodrugs is continuously confirmed, the issue of their administration, distribution and delivery to desired biological targets emerges. Graphene and its derivatives possess attractive properties in terms of high affinity and low toxicity, suggesting that they can efficaciously be used as drug nanocarriers. In the present study, we computationally address the adsorption of a gold(I) N-heterocyclic monocarbene, namely, IMeAuCl (where IMe = 1,3-dimethylimidazol-2-ylidene), on graphene. The Au(I) N-heterocyclic carbene family has indeed shown promising anticancer activity and the N-heterocyclic ring could easily interact with planar graphene nanostructures. By means of high-level electronic structure approaches, we investigated the strength and nature of the involved interaction using small graphene prototypes, which allow us to benchmark the best-performing DFT functionals as well as assess the role of the different contributions to total interaction energies. Moreover, realistic adsorption enthalpies and free energy values are obtained by exploiting the optimal DFT method to describe the drug adsorption on larger graphene models. Such values (ΔHads = -18.4 kcal/mol and ΔGads= -7.20 kcal/mol for the largest C150H30 model) indicate a very favorable adsorption, mainly arising from the dispersion component of the interaction, with the electrostatic attraction also playing a non-negligible role.
Collapse
Affiliation(s)
- Cahit Orek
- Department of Physics, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Massimiliano Bartolomei
- Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain;
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Niyazi Bulut
- Department of Physics, Faculty of Science, Firat University, Elazig 23119, Turkey;
| |
Collapse
|
24
|
Kumawat RL, Sherrill CD. High-Order Quantum-Mechanical Analysis of Hydrogen Bonding in Hachimoji and Natural DNA Base Pairs. J Chem Inf Model 2023; 63:3150-3157. [PMID: 37125692 DOI: 10.1021/acs.jcim.3c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-order quantum chemistry is applied to hydrogen-bonded natural DNA nucleobase pairs [adenine:thymine (A:T) and guanine:cytosine (G:C)] and non-natural Hachimoji nucleobase pairs [isoguanine:1-methylcytosine (B:S) and 2-aminoimidazo[1,2a][1,3,5]triazin-4(1H)-one:6-amino-5-nitropyridin-2-one (P:Z)] to see how the intermolecular interaction energies and their energetic components (electrostatics, exchange-repulsion, induction/polarization, and London dispersion interactions) vary among the base pairs. We examined the Hoogsteen (HG) geometries in addition to the traditional Watson-Crick (WC) geometries. Coupled-cluster theory through perturbative triples [CCSD(T)] extrapolated to the complete basis set (CBS) limit and high-order symmetry-adapted perturbation theory (SAPT) at the SAPT2+(3)(CCD)δMP2/aug-cc-pVTZ level are used to estimate highly accurate noncovalent interaction energies. Electrostatic interactions are the most attractive component of the interaction energies, but the sum of induction/polarization and London dispersion is nearly as large, for all base pairs and geometries considered. Interestingly, the non-natural Hachimoji base pairs interact more strongly than the corresponding natural base pairs, by -21.8 (B:S) and -0.3 (P:Z) kcal mol-1 in the WC geometries, according to CCSD(T)/CBS. This is consistent with the H-bond distances being generally shorter in the non-natural base pairs. The natural base pairs are energetically more stabilized in their Hoogsteen geometries than in their WC geometries. The Hoogsteen geometry makes the A:T base pair slightly more stable, by -0.8 kcal mol-1, and it greatly stabilizes the G:C+ base pair, by -15.3 kcal mol-1. The G:C+ stabilization is mainly due to the fact that C has typically added a proton when found in Hoogsteen geometries. By contrast, Hoogsteen geometries are substantially less favorable than WC geometries for non-natural Hachimoji base pairs, by 17.3 (B:S) and 13.8 (P:Z) kcal mol-1.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
25
|
Shirkov L, Tomza M. Long-range interactions of aromatic molecules with alkali-metal and alkaline-earth-metal atoms. J Chem Phys 2023; 158:094109. [PMID: 36889959 DOI: 10.1063/5.0135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The isotropic and anisotropic coefficients Cn l,m of the long-range spherical expansion ∼1/Rn (R-the intermolecular distance) of the dispersion and induction intermolecular energies are calculated using the first principles for the complexes containing an aromatic molecule (benzene, pyridine, furan, and pyrrole) and alkali-metal (Li, Na, K, Rb, and Cs) or alkaline-earth-metal (Be, Mg, Ca, Sr, and Ba) atoms in their electronic ground states. The values of the first- and second-order properties of the aromatic molecules are calculated using the response theory with the asymptotically corrected LPBE0 functional. The second-order properties of the closed-shell alkaline-earth-metal atoms are obtained using the expectation-value coupled cluster theory and of the open-shell alkali-metal atoms using analytical wavefunctions. These properties are used for the calculation of the dispersion Cn,disp l,m and induction Cn,ind l,m coefficients (Cn l,m=Cn,disp l,m+Cn,ind l,m) with n up to 12 using the available implemented analytical formulas. It is shown that the inclusion of the coefficients with n > 6 is important for reproducing the interaction energy in the van der Waals region at R ≈ 6 Å. The reported long-range potentials should be useful for constructing the analytical potentials valid for the whole intermolecular interaction range, which are needed for spectroscopic and scattering studies.
Collapse
Affiliation(s)
- Leonid Shirkov
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Michał Tomza
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
26
|
Xie Y, Glick ZL, Sherrill CD. Assessment of three-body dispersion models against coupled-cluster benchmarks for crystalline benzene, carbon dioxide, and triazine. J Chem Phys 2023; 158:094110. [PMID: 36889937 DOI: 10.1063/5.0143712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
To study the contribution of three-body dispersion to crystal lattice energies, we compute the three-body contributions to the lattice energies for crystalline benzene, carbon dioxide, and triazine using various computational methods. We show that these contributions converge quickly as the intermolecular distances between the monomers grow. In particular, the smallest value among the three pairwise intermonomer closest-contact distances, Rmin, shows a strong correlation with the three-body contribution to the lattice energy, and, here, the largest of the closest-contact distances, Rmax, serves as a cutoff criterion to limit the number of trimers to be considered. We considered all trimers up to Rmax=15Å. The trimers with Rmin<4Å contribute 90.4%, 90.6%, and 93.9% of the total three-body contributions for crystalline benzene, carbon dioxide, and triazine, respectively, for the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] method. For trimers with Rmin>4Å, the second-order Møller-Plesset perturbation theory (MP2) supplemented with the Axilrod-Teller-Muto (ATM) three-body dispersion correction reproduces the CCSD(T) values for the cumulative three-body contributions with errors of less than 0.1 kJ mol-1. Moreover, three-body contributions are converged within 0.15 kJ mol-1 by Rmax=10Å. From these results, it appears that in molecular crystals where dispersion dominates the three-body contribution to the lattice energy, the trimers with Rmin>4Å can be computed with the MP2+ATM method to reduce the computational cost, and those with Rmax>10Å appear to be basically negligible.
Collapse
Affiliation(s)
- Yi Xie
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
27
|
Chakraborty S, Mandal K, Ramakrishnan R. Understanding the Role of Intramolecular Ion-Pair Interactions in Conformational Stability Using an Ab Initio Thermodynamic Cycle. J Phys Chem B 2023; 127:648-660. [PMID: 36638237 DOI: 10.1021/acs.jpcb.2c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intramolecular ion-pair interactions yield shape and functionality to many molecules. With proper orientation, these interactions overcome steric factors and are responsible for the compact structures of several peptides. In this study, we present a thermodynamic cycle based on isoelectronic and alchemical mutation to estimate the intramolecular ion-pair interaction energy. We determine these energies for 26 benchmark molecules with common ion-pair combinations and compare them with results obtained using intramolecular symmetry-adapted perturbation theory. For systems with long linkers, the ion-pair energies evaluated using both approaches deviate by less than 2.5% in the vacuum phase. The thermodynamic cycle based on density functional theory facilitates calculations of salt-bridge interactions in model tripeptides with continuum/microsolvation modeling and four large peptides: 1EJG (crambin), 1BDK (bradykinin), 1L2Y (a mini-protein with a tryptophan cage), and 1SCO (a toxin from the scorpion venom).
Collapse
Affiliation(s)
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad500046, India
| | | |
Collapse
|
28
|
Luu D, Patkowski K. Overcoming Artificial Multipoles in Intramolecular Symmetry-Adapted Perturbation Theory. J Phys Chem A 2023; 127:356-377. [PMID: 36563050 DOI: 10.1021/acs.jpca.2c06465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intramolecular symmetry-adapted perturbation theory (ISAPT) is a method to compute and decompose the noncovalent interaction energy between two molecular fragments A and B covalently connected via a linker C. However, the existing ISAPT algorithm displays several issues for many fragmentation patterns (that is, specific assignments of atoms to the A/B/C subsystems), including an artificially repulsive electrostatic energy (even when the fragments are hydrogen-bonded) and very large and mutually cancelling induction and exchange-induction terms. We attribute those issues to the presence of artificial dipole moments at the interfragment boundary, as the atoms of A and B directly connected to C are missing electrons on one of their hybrid orbitals. Therefore, we propose several new partitioning algorithms which reassign one electron, on a singly occupied link hybrid orbital, from C to each of A/B. Once the contributions from these link orbitals are added to fragment density matrices, the computation of ISAPT electrostatic, induction, and dispersion energies proceeds exactly as normal, and the exchange energy expressions need only minor modifications. Among the link partitioning algorithms introduced, the so-called ISAPT(SIAO1) approach (in which the link orbital is obtained by a projection onto the intrinsic atomic orbitals (IAOs) of a given fragment followed by orthogonalization to this fragment's occupied space) leads to reasonable values of all ISAPT corrections for all fragmentation patterns, and exhibits a fast and systematic basis set convergence. This improvement is made possible by a significant reduction in magnitude (even though not a complete elimination) of the unphysical dipole moments at the interfragment boundaries. We demonstrate the utility of the improved ISAPT partitioning by examining intramolecular interactions in several pentanediol isomers, examples of linear and branched alkanes, and the open and closed conformations of a family of N-arylimide molecular torsion balances.
Collapse
Affiliation(s)
- Du Luu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
29
|
Szalewicz K, Jeziorski B. Physical mechanisms of intermolecular interactions from symmetry-adapted perturbation theory. J Mol Model 2022; 28:273. [PMID: 36006512 DOI: 10.1007/s00894-022-05190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 10/15/2022]
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for computational studies of noncovalent interactions between molecules. This method will be discussed here from the perspective of establishing the paradigm for understanding mechanisms of intermolecular interactions. SAPT interaction energies are obtained as sums of several contributions. Each contribution possesses a clear physical interpretation as it results from some specific physical process. It also exhibits a specific dependence on the intermolecular separation R. The four major contributions are the electrostatic, induction, dispersion, and exchange energies, each due to a different mechanism, valid at any R. In addition, at large R, SAPT interaction energies are seamlessly connected with the corresponding terms in the asymptotic multipole expansion of interaction energy in inverse powers of R. Since such expansion explicitly depends on monomers' multipole moments and polarizabilities, this connection provides additional insights by rigorously relating interaction energies to monomers' properties.
Collapse
Affiliation(s)
- Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA.
| | - Bogumił Jeziorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093, Warsaw, Poland
| |
Collapse
|
30
|
Beregovaya IV, Shchegoleva LN. Potential energy surfaces of a stacked dimer of benzene and its radical cation: what remains and what appears. Phys Chem Chem Phys 2022; 24:17547-17560. [PMID: 35822440 DOI: 10.1039/d2cp01691e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stepwise qualitative consideration of the reduction in symmetry for the highly symmetrical "right sandwich" and "twisted sandwich" structures of the stacked benzene dimer caused by the pseudo-Jahn-Teller effect made it possible to construct a scheme of the potential energy surface (PES) of this dimer. Thirty-six equivalent structures of minimum energy are ordered on this extremely flat surface, transforming into each other in an almost barrier-free manner. There are two kinds of these transformations, both of which are pseudorotation. The transformation pathways inherent in this neutral dimer are also characteristic of its radical cation (RC). Structural transformations of the RC are inextricably linked with changes in its electronic state since its stationary structures relate to different electronic states. (C6H6)2+˙ exists in the form of two orbital isomers, each of which "pseudorotates" on its own area of the PES. During the pseudorotation, the SOMO distribution on the fragments of (C6H6)2+˙ changes, which is identical to what occurs during the pseudorotation of the Jahn-Teller benzene RC. These areas are connected by pairwise interconversions of their minimum energy structures. The interconversion of the orbital isomers is a bypassing of conical intersections between corresponding electronic states, which occurs through a synchronized pseudorotation of the fragments. The conclusions of the qualitative consideration and the results of quantum chemical calculations of various levels performed for (C6H6)2+˙ are in full agreement with each other. The revealed features of the structure of the PES of the two reference systems in studying the intermolecular and ion-molecule interactions are the basis for considering their more complex analogs, primarily their less symmetrical ones.
Collapse
Affiliation(s)
- Irina V Beregovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Ac. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Lyudmila N Shchegoleva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Ac. Lavrentiev Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
31
|
Xu Y, Zhang S, Lindahl E, Friedman R, Wu W, Su P. A general tight-binding based energy decomposition analysis scheme for intermolecular interactions in large molecules. J Chem Phys 2022; 157:034104. [DOI: 10.1063/5.0091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, a general tight-binding based energy decomposition analysis (EDA) scheme for intermolecular interactions is proposed. Different from the earlier version [Xu et al., J. Chem. Phys. 154, 194106 (2021)], the current tight-binding based density functional theory (DFTB)-EDA is capable of performing interaction analysis with all the self-consistent charge (SCC) type DFTB methods, including SCC-DFTB2/3 and GFN1/2-xTB, despite their different formulas and parameterization schemes. In DFTB-EDA, the total interaction energy is divided into frozen, polarization, and dispersion terms. The performance of DFTB-EDA with SCC-DFTB2/3 and GFN1/2-xTB for various interaction systems is discussed and assessed.
Collapse
Affiliation(s)
- Yuan Xu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shu Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Erik Lindahl
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
32
|
Xie Y, Smith DGA, Sherrill CD. Implementation of Symmetry-Adapted Perturbation Theory based on density functional theory and using hybrid exchange-correlation kernels for dispersion terms. J Chem Phys 2022; 157:024801. [DOI: 10.1063/5.0090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the implementation of a symmetry-adapted perturbation theory algorithm based on a density functional theory description of the monomers [SAPT(DFT)]. The implementation adopts a density-fitting treatment of hybrid exchange-correlation kernels to enable the description of monomers with hybrid functionals, as in the algorithm by Bukowski, Podeszwa, and Szalewicz [Chem. Phys. Lett. 414, 111(2005)]. We have improved the algorithm by increasing numerical stability with QR factorization, and optimized the computation of the exchange-correlation kernel with its 2-index density-fitted representation. The algorithm scales as O(N5) formally and is usable for systems with up to ∼3000 basis functions, as demonstrated forthe C60-buckycatcher complex with the aug-cc-pVDZ basis set. The hybrid-kernel-based SAPT(DFT) algorithm is shown to be as accurate as SAPT(DFT) implementations based on local effective exact exchange potentials obtained from the local Hartree-Fock (LHF) method, while avoiding the lower-scaling [O(N4)] but iterative and sometimes hard-to-converge LHF process. The hybrid-kernel algorithm outperforms Hartree-Fock-based SAPT (SAPT0) for the S66 test set, and its accuracy is comparable to the many-body perturbation theory based SAPT2+ approach, which scales as O(N7), although SAPT2+ exhibits a more narrow distribution of errors.
Collapse
Affiliation(s)
- Yi Xie
- Georgia Institute of Technology College of Sciences, United States of America
| | | | - C. David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology College of Sciences, United States of America
| |
Collapse
|
33
|
Nikhar R, Szalewicz K. Reliable crystal structure predictions from first principles. Nat Commun 2022; 13:3095. [PMID: 35654882 PMCID: PMC9163189 DOI: 10.1038/s41467-022-30692-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
An inexpensive and reliable method for molecular crystal structure predictions (CSPs) has been developed. The new CSP protocol starts from a two-dimensional graph of crystal's monomer(s) and utilizes no experimental information. Using results of quantum mechanical calculations for molecular dimers, an accurate two-body, rigid-monomer ab initio-based force field (aiFF) for the crystal is developed. Since CSPs with aiFFs are essentially as expensive as with empirical FFs, tens of thousands of plausible polymorphs generated by the crystal packing procedures can be optimized. Here we show the robustness of this protocol which found the experimental crystal within the 20 most stable predicted polymorphs for each of the 15 investigated molecules. The ranking was further refined by performing periodic density-functional theory (DFT) plus dispersion correction (pDFT+D) calculations for these 20 top-ranked polymorphs, resulting in the experimental crystal ranked as number one for all the systems studied (and the second polymorph, if known, ranked in the top few). Alternatively, the polymorphs generated can be used to improve aiFFs, which also leads to rank one predictions. The proposed CSP protocol should result in aiFFs replacing empirical FFs in CSP research.
Collapse
Affiliation(s)
- Rahul Nikhar
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
34
|
Czernek J, Brus J, Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J Chem Phys 2022; 156:204303. [DOI: 10.1063/5.0093557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The gas-phase value of the dissociation energy ( D0) is a key parameter employed in both experimental and theoretical descriptions of noncovalent complexes. The D0 data were obtained for a set of mid-sized organic dimers in their global minima which was located using geometry optimizations that applied ample basis sets together with either the conventional second-order Møller–Plesset (MP2) method or several dispersion-corrected density-functional theory (DFT-D) schemes. The harmonic vibrational zero-point (VZP) and deformation energies from the MP2 calculations were combined with electronic energies from the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)] extrapolated to the complete basis set (CBS) limit to estimate D0 with the aim of inspecting values that were most recently measured, and an analogous comparison was performed using the DFT-D data. In at least one case (namely, for the aniline⋯methane cluster), the D0 estimate that employed the CCSD(T)/CBS energies differed from experiment in the way that could not be explained by a possible deficiency in the VZP contribution. Curiously, one of the DFT-D schemes (namely, the B3LYP-D3/def2-QZVPPD) was able to reproduce all measured D0 values to within 1.0 kJ/mol from experimental error bars. These findings show the need for further measurements and computations of some of the complexes. In order to facilitate such studies, the physical nature of intermolecular interactions in the investigated dimers was analyzed by means of the DFT-based symmetry-adapted perturbation theory.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 06 Praha 6, The Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 06 Praha 6, The Czech Republic
| | - Vladimíra Czerneková
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, The Czech Republic
| |
Collapse
|
35
|
Jangrouei MR, Krzemińska A, Hapka M, Pastorczak E, Pernal K. Dispersion Interactions in Exciton-Localized States. Theory and Applications to π-π* and n-π* Excited States. J Chem Theory Comput 2022; 18:3497-3511. [PMID: 35587598 PMCID: PMC9202351 DOI: 10.1021/acs.jctc.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We address the problem
of intermolecular interaction energy calculations
in molecular complexes with localized excitons. Our focus is on the
correct representation of the dispersion energy. We derive an extended
Casimir-Polder formula for direct computation of this contribution
through second order in the intermolecular interaction operator V̂. An alternative formula, accurate to infinite order
in V̂, is derived within the framework of the
adiabatic connection (AC) theory. We also propose a new parametrization
of the VV10 nonlocal correlation density functional, so that it corrects
the CASSCF energy for the dispersion contribution and can be applied
to excited-state complexes. A numerical investigation is carried out
for benzene, pyridine, and peptide complexes with the local exciton
corresponding to the lowest π–π* or n– π*
states. The extended Casimir-Polder formula is implemented in the
framework of multiconfigurational symmetry-adapted perturbation theory,
SAPT(MC). A SAPT(MC) analysis shows that the creation of a localized
exciton affects mostly the electrostatic component of the interaction
energy of investigated complexes. Nevertheless, the changes in Pauli
repulsion and dispersion energies cannot be neglected. We verify the
performance of several perturbation- and AC-based methods. Best results
are obtained with a range-separated variant of an approximate AC approach
employing extended random phase approximation and CASSCF wave functions.
Collapse
Affiliation(s)
- Mohammad Reza Jangrouei
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093, Warsaw, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| |
Collapse
|
36
|
Wiscons RA, Nikhar R, Szalewicz K, Matzger AJ. Factors influencing hydrogen peroxide versus water inclusion in molecular crystals. Phys Chem Chem Phys 2022; 24:11206-11212. [PMID: 35481469 DOI: 10.1039/d1cp05765k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrate formation is often unavoidable during crystallization, leading to performance degradation of pharmaceuticals and energetics. In some cases, water molecules trapped within crystal lattices can be substituted for hydrogen peroxide, improving the solubility of drugs and detonation performance of explosives. The present work compares hydrates and hydrogen peroxide solvates in two ways: (1) analyzing structural motifs present in crystal structures accessed from the Cambridge Structural Database and (2) developing potential energy surfaces for water and hydrogen peroxide interacting with functional groups of interest at geometries relevant to the solid state. By elucidating fundamental differences in local interactions that can be formed with molecules of hydrogen peroxide and/or water, the analyses presented here provide a foundation for the design and selection of candidate molecules for the formation of hydrogen peroxide solvates.
Collapse
Affiliation(s)
- Ren A Wiscons
- Department of Chemistry and the Macromolecular Science and Engineering Program, University of Michigan, 930 North University of Ave, Ann Arbor, Michigan 48109-1055, USA.
| | - Rahul Nikhar
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, 19716, USA. szalewic.@udel.edu
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, 19716, USA. szalewic.@udel.edu
| | - Adam J Matzger
- Department of Chemistry and the Macromolecular Science and Engineering Program, University of Michigan, 930 North University of Ave, Ann Arbor, Michigan 48109-1055, USA.
| |
Collapse
|
37
|
de Lara-Castells MP. First-principles modelling of the new generation of subnanometric metal clusters: Recent case studies. J Colloid Interface Sci 2022; 612:737-759. [PMID: 35033919 DOI: 10.1016/j.jcis.2021.12.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
The very recent development of highly selective techniques making possible the synthesis and experimental characterization of subnanometric (subnanometer-sized) metal clusters (even single atoms) is pushing our understanding far beyond the present knowledge in materials science, driving these clusters as a new generation of quantum materials at the lower bounds of nanotechnology. When the size of the metal cluster is reduced to a small number of atoms, the d-band of the metal splits into a subnanometric d-type molecular orbitals network in which all metal atoms are inter-connected, with the inter-connections having the length of a chemical bond (1-2 Å). These molecular characteristics are at the very core of the high stability and novel properties of the smallest metal clusters, with their integration into colloidal materials interacting with the environment having the potential to further boost their performance in applications such as luminescence, sensing, bioimaging, theranostics, energy conversion, catalysis, and photocatalysis. Through the presentation of very recent case studies, this Feature Article is aimed to illustrate how first-principles modelling, including methods beyond the state-of-the-art and an interplay with cutting-edge experiments, is helping to understand the special properties of these clusters at the most fundamental level. Moreover, it will be discussed how superfluid helium droplets can act both as nano-reactors and carriers to achieve the synthesis and surface deposition of metal clusters. This concept will be illustrated with the quantum simulation of the helium droplet-assisted soft-landing of a single Au atom onto a titanium dioxide (TiO2) surface. Next, it will be shown how the application of first-principles methods have disclosed the fundamental reasons why subnanometric Cu5 clusters are resistant to irreversible oxidation, and capable of increasing and extending into the visible region the solar absorption of TiO2, of augmenting its efficiency for photo-catalysis beyond a factor of four, also considering the decomposition and photo-activation of CO2 as a prototypical (photo-) catalytic reaction. Finally, I will discuss how the modification of the same material with subnanometric Ag5 clusters has converted it into a "reporter" of a surface polaron property as well as a novel two-dimensional polaronic material.
Collapse
|
38
|
Altun A, Neese F, Bistoni G. Open-Shell Variant of the London Dispersion-Corrected Hartree-Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. J Chem Theory Comput 2022; 18:2292-2307. [PMID: 35167304 PMCID: PMC9009084 DOI: 10.1021/acs.jctc.1c01295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The London dispersion
(LD)-corrected Hartree–Fock (HF) method
(HFLD) is an ab initio approach for the quantification
and analysis of noncovalent interactions (NCIs) in large systems that
is based on the domain-based local pair natural orbital coupled-cluster
(DLPNO-CC) theory. In the original HFLD paper, we discussed the implementation,
accuracy, and efficiency of its closed-shell variant. Herein, an extension
of this method to open-shell molecular systems is presented. Its accuracy
is tested on challenging benchmark sets for NCIs, using CCSD(T) energies
at the estimated complete basis set limit as reference. The HFLD scheme
was found to be as accurate as the best-performing dispersion-corrected
exchange-correlation functionals, while being nonempirical and equally
efficient. In addition, it can be combined with the well-established
local energy decomposition (LED) for the analysis of NCIs, thus yielding
additional physical insights.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
39
|
Gray M, Herbert JM. Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost. J Chem Theory Comput 2022; 18:2308-2330. [PMID: 35289608 DOI: 10.1021/acs.jctc.1c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better performing alternatives while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Errors can be reduced in a systematic way using correlation-consistent basis sets, with aug-cc-pVTZ results converged within <0.1 kcal/mol. Similar (if slightly less systematic) behavior is obtained using Karlsruhe basis sets at much lower cost, and we introduce new versions with limited augmentation that are even more efficient. Pople-style basis sets, which are more efficient still, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using triple-ζ basis sets. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "δ(Hartree-Fock)" correction for high-order induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4× speedup over the existing (cubic scaling) XSAPT approach.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
40
|
Jansen G, Schulz S, van der Vight F. Effects of Dispersion and Charge‐Transfer Interactions on Structures of Heavy Chalcogenide Compounds: A Quantum Chemical Case Study for (Et2Bi)2Te. Chempluschem 2022; 87:e202100487. [DOI: 10.1002/cplu.202100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Georg Jansen
- Universitat Duisburg-Essen Chemistry Universitätsstr. 5-7 45141 Essen GERMANY
| | - Stephan Schulz
- University of Duisburg-Essen: Universitat Duisburg-Essen Chemistry Universitätsstr. 5-7 45141 Essen GERMANY
| | - Felix van der Vight
- University of Duisburg-Essen: Universitat Duisburg-Essen Chemistry Universitätsstr. 5-7 45141 Essen GERMANY
| |
Collapse
|
41
|
Decomposition of the interaction energy of several flavonoids with Escherichia coli DNA Gyr using the SAPT (DFT) method: The relation between the interaction energy components, ligand structure, and biological activity. Biochim Biophys Acta Gen Subj 2022; 1866:130111. [DOI: 10.1016/j.bbagen.2022.130111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
|
42
|
de Lara-Castells MP, Mitrushchenkov AO. Mini Review: Quantum Confinement of Atomic and Molecular Clusters in Carbon Nanotubes. Front Chem 2021; 9:796890. [PMID: 34957050 PMCID: PMC8704106 DOI: 10.3389/fchem.2021.796890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
We overview our recent developments on a computational approach addressing quantum confinement of light atomic and molecular clusters (made of atomic helium and molecular hydrogen) in carbon nanotubes. We outline a multi-scale first-principles approach, based on density functional theory (DFT)-based symmetry-adapted perturbation theory, allowing an accurate characterization of the dispersion-dominated particle–nanotube interaction. Next, we describe a wave-function-based method, allowing rigorous fully coupled quantum calculations of the pseudo-nuclear bound states. The approach is illustrated by showing the transition from molecular aggregation to quasi-one-dimensional condensed matter systems of molecular deuterium and hydrogen as well as atomic 4He, as case studies. Finally, we present a perspective on future-oriented mixed approaches combining, e.g., orbital-free helium density functional theory (He-DFT), machine-learning parameterizations, with wave-function-based descriptions.
Collapse
|
43
|
Gehlhaar A, Wölper C, Vight F, Jansen G, Schulz S. Noncovalent Intra‐ and Intermolecular Interactions in Peri‐Substituted Pnicta Naphthalene and Acenaphthalene Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander Gehlhaar
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Felix Vight
- Theoretical Organic Chemistry University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Georg Jansen
- Theoretical Organic Chemistry University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| |
Collapse
|
44
|
Hapka M, Przybytek M, Pernal K. Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers. J Chem Theory Comput 2021; 17:5538-5555. [PMID: 34517707 PMCID: PMC8444344 DOI: 10.1021/acs.jctc.1c00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a formulation
of the multiconfigurational (MC) wave
function symmetry-adapted perturbation theory (SAPT). The method is
applicable to noncovalent interactions between monomers which require
a multiconfigurational description, in particular when the interacting
system is strongly correlated or in an electronically excited state.
SAPT(MC) is based on one- and two-particle reduced density matrices
of the monomers and assumes the single-exchange approximation for
the exchange energy contributions. Second-order terms are expressed
through response properties from extended random phase approximation
(ERPA). The dispersion components of SAPT(MC) have been introduced
in our previous works [HapkaM.J. Chem. Theory Comput.2019, 15, 1016−102730525591; HapkaM.J. Chem. Theory Comput.2019, 15, 6712–672331670950]. SAPT(MC) is applied either with generalized valence
bond perfect pairing (GVB) or with complete active space self-consistent
field (CASSCF) treatment of the monomers. We discuss two model multireference
systems: the H2 ··· H2 dimer
in out-of-equilibrium geometries and interaction between the argon
atom and excited state of ethylene. Using the C2H4* ··· Ar complex as an example, we examine second-order
terms arising from negative transitions in the linear response function
of an excited monomer. We demonstrate that the negative-transition
terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their
computation. Factors limiting the accuracy of SAPT(MC) are discussed
in comparison with other second-order SAPT schemes on a data set of
small single-reference dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
45
|
Towards Quantum-Chemical Modeling of the Activity of Anesthetic Compounds. Int J Mol Sci 2021; 22:ijms22179272. [PMID: 34502179 PMCID: PMC8431746 DOI: 10.3390/ijms22179272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
The modeling of the activity of anesthetics is a real challenge because of their unique electronic and structural characteristics. Microscopic approaches relevant to the typical features of these systems have been developed based on the advancements in the theory of intermolecular interactions. By stressing the quantum chemical point of view, here, we review the advances in the field highlighting differences and similarities among the chemicals within this group. The binding of the anesthetics to their partners has been analyzed by Symmetry-Adapted Perturbation Theory to provide insight into the nature of the interaction and the modeling of the adducts/complexes allows us to rationalize their anesthetic properties. A new approach in the frame of microtubule concept and the importance of lipid rafts and channels in membranes is also discussed.
Collapse
|
46
|
Wang X, Xu Y, Zheng H, Yu K. A Scalable Graph Neural Network Method for Developing an Accurate Force Field of Large Flexible Organic Molecules. J Phys Chem Lett 2021; 12:7982-7987. [PMID: 34433274 DOI: 10.1021/acs.jpclett.1c02214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An accurate force field is the key to the success of all molecular mechanics simulations on organic polymers and biomolecules. Accurate correlated wave function (CW) methods scale poorly with system size, so this poses a great challenge to the development of an extendible ab initio force field for large flexible organic molecules at the CW level of accuracy. In this work, we combine the physics-driven nonbonding potential with a data-driven subgraph neural network bonding model (named sGNN). Tests on polyethylene glycol, polyethene, and their block polymers show that our strategy is highly accurate and robust for molecules of different sizes and chemical compositions. Therefore, one can develop a parameter library of small molecular fragments (with sizes easily accessible to CW methods) and assemble them to predict the energy of large polymers, thus opening a new path to next-generation organic force fields.
Collapse
Affiliation(s)
- Xufei Wang
- Two Sigma Investments, New York, New York 10013, United States
| | - Yuanda Xu
- The Program in Applied & Computational Mathematics, Princeton University, Princeton, New Jersey 08544-1000, United States
| | - Han Zheng
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 518055, P. R. China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
47
|
Symmetrized systematic molecular fragmentation model and its application for molecular properties. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Gray M, Herbert JM. Simplified tuning of long-range corrected density functionals for use in symmetry-adapted perturbation theory. J Chem Phys 2021; 155:034103. [PMID: 34293871 DOI: 10.1063/5.0059364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn-Sham orbitals, or SAPT0(KS), can be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately for each monomer. As in other contexts, correct asymptotic behavior can be enforced via "optimal tuning" based on the ionization energy theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on the size of the exchange hole. In conjunction with "extended" (X)SAPT methods that improve the description of dispersion, this procedure achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific tuning.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
49
|
Schriber JB, Sirianni DA, Smith DGA, Burns LA, Sitkoff D, Cheney DL, Sherrill CD. Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory. J Chem Phys 2021; 154:234107. [PMID: 34241276 DOI: 10.1063/5.0049745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) has become an invaluable tool for studying the fundamental nature of non-covalent interactions by directly computing the electrostatics, exchange (steric) repulsion, induction (polarization), and London dispersion contributions to the interaction energy using quantum mechanics. Further application of SAPT is primarily limited by its computational expense, where even its most affordable variant (SAPT0) scales as the fifth power of system size [O(N5)] due to the dispersion terms. The algorithmic scaling of SAPT0 is reduced from O(N5)→O(N4) by replacing these terms with the empirical D3 dispersion correction of Grimme and co-workers, forming a method that may be termed SAPT0-D3. Here, we optimize the damping parameters for the -D3 terms in SAPT0-D3 using a much larger training set than has previously been considered, namely, 8299 interaction energies computed at the complete-basis-set limit of coupled cluster through perturbative triples [CCSD(T)/CBS]. Perhaps surprisingly, with only three fitted parameters, SAPT0-D3 improves on the accuracy of SAPT0, reducing mean absolute errors from 0.61 to 0.49 kcal mol-1 over the full set of complexes. Additionally, SAPT0-D3 exhibits a nearly 2.5× speedup over conventional SAPT0 for systems with ∼300 atoms and is applied here to systems with up to 459 atoms. Finally, we have also implemented a functional group partitioning of the approach (F-SAPT0-D3) and applied it to determine important contacts in the binding of salbutamol to G-protein coupled β1-adrenergic receptor in both active and inactive forms. SAPT0-D3 capabilities have been added to the open-source Psi4 software.
Collapse
Affiliation(s)
- Jeffrey B Schriber
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Dominic A Sirianni
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Daniel G A Smith
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Doree Sitkoff
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - Daniel L Cheney
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
50
|
Kodrycka M, Patkowski K. Efficient Density-Fitted Explicitly Correlated Dispersion and Exchange Dispersion Energies. J Chem Theory Comput 2021; 17:1435-1456. [PMID: 33606539 DOI: 10.1021/acs.jctc.0c01158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The leading-order dispersion and exchange-dispersion terms in symmetry-adapted perturbation theory (SAPT), Edisp(20) and Eexch-disp(20), suffer from slow convergence to the complete basis set limit. To alleviate this problem, explicitly correlated variants of these corrections, Edisp(20)-F12 and Eexch-disp(20)-F12, have been proposed recently. However, the original formalism (M., Kodrycka , J. Chem. Theory Comput. 2019, 15, 5965-5986), while highly successful in terms of improving convergence, was not competitive to conventional orbital-based SAPT in terms of computational efficiency due to the need to manipulate several kinds of two-electron integrals. In this work, we eliminate this need by decomposing all types of two-electron integrals using robust density fitting. We demonstrate that the error of the density fitting approximation is negligible when standard auxiliary bases such as aug-cc-pVXZ/MP2FIT are employed. The new implementation allowed us to study all complexes in the A24 database in basis sets up to aug-cc-pV5Z, and the Edisp(20)-F12 and Eexch-disp(20)-F12 values exhibit vastly improved basis set convergence over their conventional counterparts. The well-converged Edisp(20)-F12 and Eexch-disp(20)-F12 numbers can be substituted for conventional Edisp(20) and Eexch-disp(20) ones in a calculation of the total SAPT interaction energy at any level (SAPT0, SAPT2+3, ...). We show that the addition of F12 terms does not improve the accuracy of low-level SAPT treatments. However, when the theory errors are minimized in high-level SAPT approaches such as SAPT2+3(CCD)δMP2, the reduction of basis set incompleteness errors thanks to the F12 treatment substantially improves the accuracy of small-basis calculations.
Collapse
Affiliation(s)
- Monika Kodrycka
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|