• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697238)   Today's Articles (946)
For: Sun L, Li Q, Ren H, Su H, Shi QW, Yang J. Strain effect on electronic structures of graphene nanoribbons: A first-principles study. J Chem Phys 2008;129:074704. [DOI: 10.1063/1.2958285] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
Number Cited by Other Article(s)
1
Kumar S, Pratap S, Trivedi R, Chakraborty B. Combined effect of strain and intrinsic spin-orbit coupling on band gap engineering of GNRs: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024;36:485401. [PMID: 39191274 DOI: 10.1088/1361-648x/ad743b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
2
Hoat DM, Dien VK, Ho QD, Dam DP, Tien NT, Nguyen DK. Rich essential properties of silicon-substituted graphene nanoribbons: a comprehensive computational study. Phys Chem Chem Phys 2024;26:15939-15956. [PMID: 38691388 DOI: 10.1039/d4cp00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
3
Nhung Nguyen TT, Power SR, Karakachian H, Starke U, Tegenkamp C. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls. ACS NANO 2023;17:20345-20352. [PMID: 37788294 DOI: 10.1021/acsnano.3c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
4
Tepliakov NV, Lischner J, Kaxiras E, Mostofi AA, Pizzochero M. Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons. PHYSICAL REVIEW LETTERS 2023;130:026401. [PMID: 36706398 DOI: 10.1103/physrevlett.130.026401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
5
Kumar S, Pratap S, Kumar V, Mishra RK, Gwag JS, Chakraborty B. Electronic, transport, magnetic and optical properties of graphene nanoribbons review. LUMINESCENCE 2022. [PMID: 35850156 DOI: 10.1002/bio.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
6
Flores E, Mella JD, Aparicio E, Gonzalez RI, Parra C, Bringa EM, Munoz F. Inducing a topological transition in graphene nanoribbon superlattices by external strain. Phys Chem Chem Phys 2022;24:7134-7143. [PMID: 35262146 DOI: 10.1039/d2cp00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
8
Irani FS, Shafaghi AH, Tasdelen MC, Delipinar T, Kaya CE, Yapici GG, Yapici MK. Graphene as a Piezoresistive Material in Strain Sensing Applications. MICROMACHINES 2022;13:119. [PMID: 35056284 PMCID: PMC8779301 DOI: 10.3390/mi13010119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
9
Cheng X, Zhou B, Zhou B, Zhou G. Strain effect on electronic structure and transport properties of zigzagα-T3nanoribbons: a mean-field theoretical study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021;33:215301. [PMID: 33578408 DOI: 10.1088/1361-648x/abe608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
10
Saraswat V, Jacobberger RM, Arnold MS. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS NANO 2021;15:3674-3708. [PMID: 33656860 DOI: 10.1021/acsnano.0c07835] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
11
Bandeira NS, da Costa DR, Chaves A, Farias GA, Filho RNC. Gap opening in graphene nanoribbons by application of simple shear strain and in-plane electric field. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021;33:065503. [PMID: 33108780 DOI: 10.1088/1361-648x/abc4f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
12
Ri NC, Kim JC, Ri SI. Effect of strain on mechanical, electronic, and transport properties of hybrid armchair graphane/graphene/fluorographane nanoribbon. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
13
Thakur R, Ahluwalia PK, Kumar A, Sharma R. Strain modulated carrier mobility and optical properties of graphene nanowiggles. NANOTECHNOLOGY 2020;31:505202. [PMID: 32996468 DOI: 10.1088/1361-6528/abb391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
14
Zhang J, Fahrenthold EP. Conductance of Buckled N = 5 Armchair Graphene Nanoribbons. J Phys Chem Lett 2020;11:1378-1383. [PMID: 32011140 DOI: 10.1021/acs.jpclett.0c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
15
Narsaria AK, Poater J, Fonseca Guerra C, Ehlers AW, Hamlin TA, Lammertsma K, Bickelhaupt FM. Distortion-Controlled Redshift of Organic Dye Molecules. Chemistry 2020;26:2080-2093. [PMID: 31815315 PMCID: PMC7027851 DOI: 10.1002/chem.201905355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/31/2022]
16
First-principles study on effect of partially hydrogenation and fluorination on the mechanical and electronic properties of the graphene nanoribbon under tensile elastic strain. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
17
Tuček J, Błoński P, Ugolotti J, Swain AK, Enoki T, Zbořil R. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem Soc Rev 2018;47:3899-3990. [PMID: 29578212 DOI: 10.1039/c7cs00288b] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
18
Hu Y, Xie P, De Corato M, Ruini A, Zhao S, Meggendorfer F, Straasø LA, Rondin L, Simon P, Li J, Finley JJ, Hansen MR, Lauret JS, Molinari E, Feng X, Barth JV, Palma CA, Prezzi D, Müllen K, Narita A. Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. J Am Chem Soc 2018;140:7803-7809. [DOI: 10.1021/jacs.8b02209] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
19
Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K. Interfacial engineering in graphene bandgap. Chem Soc Rev 2018. [PMID: 29513306 DOI: 10.1039/c7cs00836h] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
20
Habibpour R, Kashi E, Vazirib R. N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418030226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
21
Maji R, Bhattacharjee J. Bias induced ferromagnetism and half-metallicity in graphene nano-ribbons. Sci Rep 2017;7:17094. [PMID: 29213098 PMCID: PMC5719007 DOI: 10.1038/s41598-017-17091-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022]  Open
22
Ryou J, Park J, Kim G, Hong S. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017;29:245301. [PMID: 28443604 DOI: 10.1088/1361-648x/aa6f6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
23
Liao Z, Medrano Sandonas L, Zhang T, Gall M, Dianat A, Gutierrez R, Mühle U, Gluch J, Jordan R, Cuniberti G, Zschech E. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope. Sci Rep 2017;7:211. [PMID: 28303001 PMCID: PMC5428052 DOI: 10.1038/s41598-017-00227-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022]  Open
24
He C, Wang XF, Zhang WX. Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons. Phys Chem Chem Phys 2017;19:18426-18433. [DOI: 10.1039/c7cp03404k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
25
Nigar S, Zhou Z, Wang H, Imtiaz M. Modulating the electronic and magnetic properties of graphene. RSC Adv 2017. [DOI: 10.1039/c7ra08917a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
26
Biofunctionalized carbon nanocomposites: New-generation diagnostic tools. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
27
Jang W, Kang K, Soon A. Acute mechano-electronic responses in twisted phosphorene nanoribbons. NANOSCALE 2016;8:14778-14784. [PMID: 27445229 DOI: 10.1039/c6nr04354b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
28
Xia D, Li Q, Xue Q, Liang C, Dong M. Super flexibility and stability of graphene nanoribbons under severe twist. Phys Chem Chem Phys 2016;18:18406-13. [PMID: 27339120 DOI: 10.1039/c6cp02580c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Zhang Z, Liu X, Yu J, Hang Y, Li Y, Guo Y, Xu Y, Sun X, Zhou J, Guo W. Tunable electronic and magnetic properties of two-dimensional materials and their one-dimensional derivatives. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016;6:324-350. [PMID: 27818710 PMCID: PMC5069645 DOI: 10.1002/wcms.1251] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/16/2022]
30
Zuluaga S, Liu LH, Shafiq N, Rupich SM, Veyan JF, Chabal YJ, Thonhauser T. Structural band-gap tuning in g-C3N4. Phys Chem Chem Phys 2015;17:957-62. [DOI: 10.1039/c4cp05164e] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Kang ES, Ismail R. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain. NANOSCALE RESEARCH LETTERS 2014;9:598. [PMID: 25404871 PMCID: PMC4231444 DOI: 10.1186/1556-276x-9-598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
32
Song EH, Ali G, Yoo SH, Jiang Q, Cho SO. Tuning electronic and magnetic properties of partially hydrogenated graphene by biaxial tensile strain: a computational study. NANOSCALE RESEARCH LETTERS 2014;9:491. [PMID: 25258610 PMCID: PMC4167252 DOI: 10.1186/1556-276x-9-491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
33
Qi Z, Rodríguez-Manzo JA, Botello-Méndez A, Hong SJ, Stach EA, Park YW, Charlier JC, Drndić M, Johnson ATC. Correlating atomic structure and transport in suspended graphene nanoribbons. NANO LETTERS 2014;14:4238-44. [PMID: 24954396 PMCID: PMC4134140 DOI: 10.1021/nl501872x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 05/22/2023]
34
Zhou Y, Li X, Wang Z, Li S, Zu X. Modulating the band gap of germanane nanoribbons for quantum well devices. Phys Chem Chem Phys 2014;16:18029-33. [DOI: 10.1039/c4cp01827c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
35
Chen N, Yu G, Gu X, Chen L, Xie Y, Liu F, Wang F, Ye X, Shi W. Band structure engineering of CdSe nanosheet by strain: A first-principles study. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
36
Kliros GS. Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors. NANOSCALE RESEARCH LETTERS 2014;9:65. [PMID: 24506842 PMCID: PMC3923746 DOI: 10.1186/1556-276x-9-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
37
Huang Y, Ling C, Liu H, Wang S. Edge-, width- and strain-dependent semiconductor–metal transition in SnSe nanoribbons. RSC Adv 2014. [DOI: 10.1039/c3ra45724a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
38
Dai QQ, Zhu YF, Jiang Q. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary. Phys Chem Chem Phys 2014;16:10607-13. [DOI: 10.1039/c4cp00868e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
39
Zhao YC, Ni J. Spin-semiconducting properties in silicene nanoribbons. Phys Chem Chem Phys 2014;16:15477-82. [DOI: 10.1039/c4cp01549e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Johari Z, Ismail R. The effect of uniaxial strain on graphene nanoribbon carrier statistic. NANOSCALE RESEARCH LETTERS 2013;8:479. [PMID: 24229375 PMCID: PMC3879716 DOI: 10.1186/1556-276x-8-479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/11/2013] [Indexed: 06/02/2023]
41
Sun DM, Liu C, Ren WC, Cheng HM. A review of carbon nanotube- and graphene-based flexible thin-film transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013;9:1188-205. [PMID: 23519953 DOI: 10.1002/smll.201203154] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/23/2013] [Indexed: 05/08/2023]
42
Lian C, Yang Z, Ni J. Strain modulated electronic properties of silicon nanoribbons with armchair edges. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
43
Effects of Strain on Notched Zigzag Graphene Nanoribbons. CRYSTALS 2013. [DOI: 10.3390/cryst3010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
44
Yeo PSE, Loh KP, Gan CK. Strain dependence of the heat transport properties of graphene nanoribbons. NANOTECHNOLOGY 2012;23:495702. [PMID: 23149343 DOI: 10.1088/0957-4484/23/49/495702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
45
Kou L, Tang C, Zhang Y, Heine T, Chen C, Frauenheim T. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. J Phys Chem Lett 2012;3:2934-41. [PMID: 26292229 DOI: 10.1021/jz301339e] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
46
Qi J, Qian X, Qi L, Feng J, Shi D, Li J. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. NANO LETTERS 2012;12:1224-8. [PMID: 22364268 DOI: 10.1021/nl2035749] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
47
Peng X, Tang F, Copple A. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012;24:075501. [PMID: 22297686 DOI: 10.1088/0953-8984/24/7/075501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
48
Tang P, Zou X, Wang S, Wu J, Liu H, Duan W. Electronic and magnetic properties of boron nitride nanoribbons with topological line defects. RSC Adv 2012. [DOI: 10.1039/c2ra20306e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
49
Zhang DB, Dumitrică T. Note: the role of Peierls-like distortions in the modification of electronic bandgaps of graphene nanoribbons under uniaxial strain. J Chem Phys 2011;134:196101. [PMID: 21599089 DOI: 10.1063/1.3592526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
50
Gunlycke D, Li J, Mintmire JW, White CT. Edges bring new dimension to graphene nanoribbons. NANO LETTERS 2010;10:3638-3642. [PMID: 20718402 DOI: 10.1021/nl102034c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA