1
|
Stanton R, Kaymak MC, Niklasson AMN. Shadow Molecular Dynamics for a Charge-Potential Equilibration Model. J Chem Theory Comput 2025; 21:4779-4791. [PMID: 40279554 DOI: 10.1021/acs.jctc.5c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
We introduce a shadow molecular dynamics (MD) approach based on the Atom-Condensed Kohn-Sham second-order (ACKS2) charge-potential equilibration model. In contrast to regular flexible charge models, the ACKS2 model includes both flexible atomic charges and potential fluctuation parameters that allow for physically correct charge fragmentation and improved scaling of the polarizability. Our shadow MD scheme is based on an approximation of the ACKS2's flexible charge-potential energy function, in combination with extended Lagrangian Born-Oppenheimer MD. Utilizing this shadow charge-potential equilibration approach mitigates the costly overhead and stability problems associated with finding well-converged iterative solutions to the charges and potential fluctuations of the ACKS2 model in an MD simulation. Our work provides a robust and versatile framework for efficient, high-fidelity MD simulations of diverse physical phenomena and applications.
Collapse
Affiliation(s)
- Robert Stanton
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mehmet Cagri Kaymak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
2
|
Li CH, Kaymak MC, Kulichenko M, Lubbers N, Nebgen BT, Tretiak S, Finkelstein J, Tabor DP, Niklasson AMN. Shadow Molecular Dynamics with a Machine Learned Flexible Charge Potential. J Chem Theory Comput 2025; 21:3658-3675. [PMID: 40085742 DOI: 10.1021/acs.jctc.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
We present an extended Lagrangian shadow molecular dynamics scheme with an interatomic Born-Oppenheimer potential determined by the relaxed atomic charges of a second-order charge equilibration model. To parametrize the charge equilibration model, we use machine learning with neural networks to determine the environment-dependent electronegativities and chemical hardness parameters for each atom, in addition to the charge-independent energy and force terms. The approximate shadow molecular dynamics potential in combination with the extended Lagrangian formulation improves the numerical stability and reduces the number of Coulomb potential calculations required to evaluate accurate conservative forces. We demonstrate efficient and accurate simulations with excellent long-term stability of the molecular dynamics trajectories. The significance of choosing fixed or environment-dependent electronegativities and chemical hardness parameters is evaluated. Finally, we compute the infrared spectrum of molecules via the dipole autocorrelation function and compare to experiments to highlight the accuracy of the shadow molecular dynamics scheme with a machine learned flexible charge potential.
Collapse
Affiliation(s)
- Cheng-Han Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mehmet Cagri Kaymak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maksim Kulichenko
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin T Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joshua Finkelstein
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Daniel P Tabor
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Askarpour Z, Nottoli M, Stamm B. Grassmann Extrapolation for Accelerating Geometry Optimization. J Chem Theory Comput 2025; 21:1643-1651. [PMID: 39916515 DOI: 10.1021/acs.jctc.4c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This study extends the Grassmann extrapolation (G-Ext) method, which was introduced for Born-Oppenheimer molecular dynamics, to the context of geometry optimization. Using density matrices from previous optimization steps, the G-Ext approach applies a nonlinear, structure-preserving mapping onto the Grassmann manifold to provide an initial guess which accelerates the convergence of the self-consistent field (SCF) procedure. Using the optimal parameters identified by employing various descriptors and computational strategies across a diverse set of molecules, G-Ext shows excellent performance improvements, particularly with large molecular systems.
Collapse
Affiliation(s)
- Zahra Askarpour
- Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Michele Nottoli
- Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Benjamin Stamm
- Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Curtis ER, Jones CM, Martínez TJ. Initial Conditions for Excited-State Dynamics in Solvated Systems: A Case Study. J Phys Chem B 2025; 129:2030-2042. [PMID: 39931914 DOI: 10.1021/acs.jpcb.4c06536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Simulating excited-state dynamics or computing spectra for molecules in condensed phases requires sampling the ground state to generate initial conditions. Initial conditions (or snapshots for spectra) are typically produced by QM/MM Boltzmann sampling following MM equilibration or optimization. Given the switch from a MM to a QM/MM potential energy surface, one should discard a set period of time (which we call the "healing time") from the beginning of the QM/MM trajectory. Ideally, the healing time is as short as possible (to avoid unnecessary computational effort), but long enough to equilibrate to the QM/MM ground state distribution. Healing times in previous studies range from tens of femtoseconds to tens of picoseconds, suggesting the need for guidelines to choose a healing time. We examine the effect of healing time on the nonadiabatic dynamics and spectrum of a first-generation Donor-Acceptor Stenhouse Adduct in chloroform. Insufficient healing times skew the branching ratio of ground state products and alter the relaxation time for one pathway. The influence of the healing time on the absorption spectrum is less pronounced, warning that the spectrum is not a sensitive indicator for the quality of a set of initial conditions for dynamics. We demonstrate that a reasonable estimate for the healing time can be obtained by monitoring the solute temperature during the healing trajectory. We suggest that this procedure should become standard practice for determining healing times to generate initial conditions for nonadiabatic QM/MM simulations in large molecules and condensed phases.
Collapse
Affiliation(s)
- Ethan R Curtis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chey M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Hwang W, Austin SL, Blondel A, Boittier ED, Boresch S, Buck M, Buckner J, Caflisch A, Chang HT, Cheng X, Choi YK, Chu JW, Crowley MF, Cui Q, Damjanovic A, Deng Y, Devereux M, Ding X, Feig MF, Gao J, Glowacki DR, Gonzales JE, Hamaneh MB, Harder ED, Hayes RL, Huang J, Huang Y, Hudson PS, Im W, Islam SM, Jiang W, Jones MR, Käser S, Kearns FL, Kern NR, Klauda JB, Lazaridis T, Lee J, Lemkul JA, Liu X, Luo Y, MacKerell AD, Major DT, Meuwly M, Nam K, Nilsson L, Ovchinnikov V, Paci E, Park S, Pastor RW, Pittman AR, Post CB, Prasad S, Pu J, Qi Y, Rathinavelan T, Roe DR, Roux B, Rowley CN, Shen J, Simmonett AC, Sodt AJ, Töpfer K, Upadhyay M, van der Vaart A, Vazquez-Salazar LI, Venable RM, Warrensford LC, Woodcock HL, Wu Y, Brooks CL, Brooks BR, Karplus M. CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed. J Phys Chem B 2024; 128:9976-10042. [PMID: 39303207 PMCID: PMC11492285 DOI: 10.1021/acs.jpcb.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
- Center for
AI and Natural Sciences, Korea Institute
for Advanced Study, Seoul 02455, Republic
of Korea
| | - Steven L. Austin
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Arnaud Blondel
- Institut
Pasteur, Université Paris Cité, CNRS UMR3825, Structural
Bioinformatics Unit, 28 rue du Dr. Roux F-75015 Paris, France
| | - Eric D. Boittier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Stefan Boresch
- Faculty of
Chemistry, Department of Computational Biological Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
| | - Matthias Buck
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | - Joshua Buckner
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Hao-Ting Chang
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Xi Cheng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yeol Kyo Choi
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jhih-Wei Chu
- Institute
of Bioinformatics and Systems Biology, Department of Biological Science
and Technology, Institute of Molecular Medicine and Bioengineering,
and Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan,
ROC
| | - Michael F. Crowley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Qiang Cui
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Ana Damjanovic
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Physics and Astronomy, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuqing Deng
- Shanghai
R&D Center, DP Technology, Ltd., Shanghai 201210, China
| | - Mike Devereux
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Xinqiang Ding
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael F. Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jiali Gao
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David R. Glowacki
- CiTIUS
Centro Singular de Investigación en Tecnoloxías Intelixentes
da USC, 15705 Santiago de Compostela, Spain
| | - James E. Gonzales
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mehdi Bagerhi Hamaneh
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | | | - Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Jing Huang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yandong Huang
- College
of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Phillip S. Hudson
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Medicine
Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shahidul M. Islam
- Department
of Chemistry, Delaware State University, Dover, Delaware 19901, United States
| | - Wei Jiang
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael R. Jones
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Silvan Käser
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nathan R. Kern
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering, Institute for Physical Science
and Technology, Biophysics Program, University
of Maryland, College Park, Maryland 20742, United States
| | - Themis Lazaridis
- Department
of Chemistry, City College of New York, New York, New York 10031, United States
| | - Jinhyuk Lee
- Disease
Target Structure Research Center, Korea
Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department
of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Xiaorong Liu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yun Luo
- Department
of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, United States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lennart Nilsson
- Karolinska
Institutet, Department of Biosciences and
Nutrition, SE-14183 Huddinge, Sweden
| | - Victor Ovchinnikov
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universitá
di Bologna, Bologna 40127, Italy
| | - Soohyung Park
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Carol Beth Post
- Borch Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samarjeet Prasad
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jingzhi Pu
- Department
of Chemistry and Chemical Biology, Indiana
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yifei Qi
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Daniel R. Roe
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Benoit Roux
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Andrew C. Simmonett
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kai Töpfer
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Meenu Upadhyay
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin Karplus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Laboratoire
de Chimie Biophysique, ISIS, Université
de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
6
|
Zheng J, Frisch MJ. Multiple-time scale integration method based on an interpolated potential energy surface for ab initio path integral molecular dynamics. J Chem Phys 2024; 160:144111. [PMID: 38597307 DOI: 10.1063/5.0196634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
A new multiple-time scale integration method is presented that propagates ab initio path integral molecular dynamics (PIMD). This method uses a large time step to generate an approximate geometrical configuration whose energy and gradient are evaluated at the level of an ab initio method, and then, a more precise integration scheme, e.g., the Bulirsch-Stoer method or velocity Verlet integration with a smaller time step, is used to integrate from the previous step using the computationally efficient interpolated potential energy surface constructed from two consecutive points. This method makes the integration of PIMD more efficient and accurate compared with the velocity Verlet integration. A Nosé-Hoover chain thermostat combined with this new multiple-time scale method has good energy conservation even with a large time step, which is usually challenging in velocity Verlet integration for PIMD due to the very small chain mass when a large number of beads are used. The new method is used to calculate infrared spectra and free energy profiles to demonstrate its accuracy and capabilities.
Collapse
Affiliation(s)
- Jingjing Zheng
- Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA
| | - Michael J Frisch
- Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA
| |
Collapse
|
7
|
Pes F, Polack É, Mazzeo P, Dusson G, Stamm B, Lipparini F. A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born-Oppenheimer Molecular Dynamics. J Phys Chem Lett 2023; 14:9720-9726. [PMID: 37879072 PMCID: PMC10626629 DOI: 10.1021/acs.jpclett.3c02098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
This Letter introduces the so-called Quasi Time-Reversible scheme based on Grassmann extrapolation (QTR G-Ext) of density matrices for an accurate calculation of initial guesses in Born-Oppenheimer Molecular Dynamics (BOMD) simulations. The method shows excellent results on four large molecular systems that are representative of real-life production applications, ranging from 21 to 94 atoms simulated with Kohn-Sham (KS) density functional theory surrounded with a classical environment with 6k to 16k atoms. Namely, it clearly reduces the number of self-consistent field iterations while at the same time achieving energy-conserving simulations, resulting in a considerable speed-up of BOMD simulations even when tight convergence of the KS equations is required.
Collapse
Affiliation(s)
- Federica Pes
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Étienne Polack
- CERMICS, École des Ponts and Inria Paris, 6 & 8 avenue Blaise Pascal, 77455 Marne-la-Valée, France
| | - Patrizia Mazzeo
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Geneviève Dusson
- Laboratoire
de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon, France
| | - Benjamin Stamm
- Institute
of Applied Analysis and Numerical Simulation, University of Stuttgart, 70569 Stuttgart, Germany
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
8
|
Kulichenko M, Barros K, Lubbers N, Fedik N, Zhou G, Tretiak S, Nebgen B, Niklasson AMN. Semi-Empirical Shadow Molecular Dynamics: A PyTorch Implementation. J Chem Theory Comput 2023. [PMID: 37163680 DOI: 10.1021/acs.jctc.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extended Lagrangian Born-Oppenheimer molecular dynamics (XL-BOMD) in its most recent shadow potential energy version has been implemented in the semiempirical PyTorch-based software PySeQM. The implementation includes finite electronic temperatures, canonical density matrix perturbation theory, and an adaptive Krylov subspace approximation for the integration of the electronic equations of motion within the XL-BOMB approach (KSA-XL-BOMD). The PyTorch implementation leverages the use of GPU and machine learning hardware accelerators for the simulations. The new XL-BOMD formulation allows studying more challenging chemical systems with charge instabilities and low electronic energy gaps. The current public release of PySeQM continues our development of modular architecture for large-scale simulations employing semi-empirical quantum-mechanical treatment. Applied to molecular dynamics, simulation of 840 carbon atoms, one integration time step executes in 4 s on a single Nvidia RTX A6000 GPU.
Collapse
Affiliation(s)
- Maksim Kulichenko
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Guoqing Zhou
- NVIDIA Corporation, 2788 San Tomas Expy, Santa Clara, California 95051, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
9
|
Niklasson AMN, Negre CFA. Shadow energy functionals and potentials in Born-Oppenheimer molecular dynamics. J Chem Phys 2023; 158:2882249. [PMID: 37093997 DOI: 10.1063/5.0146431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
In Born-Oppenheimer molecular dynamics (BOMD) simulations based on the density functional theory (DFT), the potential energy and the interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization procedure, which, in practice, never is fully converged. The calculated energies and forces are, therefore, only approximate, which may lead to an unphysical energy drift and instabilities. Here, we discuss an alternative shadow BOMD approach that is based on backward error analysis. Instead of calculating approximate solutions for an underlying exact regular Born-Oppenheimer potential, we do the opposite. Instead, we calculate the exact electron density, energies, and forces, but for an underlying approximate shadow Born-Oppenheimer potential energy surface. In this way, the calculated forces are conservative with respect to the approximate shadow potential and generate accurate molecular trajectories with long-term energy stabilities. We show how such shadow Born-Oppenheimer potentials can be constructed at different levels of accuracy as a function of the integration time step, δt, from the constrained minimization of a sequence of systematically improvable, but approximate, shadow energy density functionals. For each energy functional, there is a corresponding ground state Born-Oppenheimer potential. These pairs of shadow energy functionals and potentials are higher-level generalizations of the original "zeroth-level" shadow energy functionals and potentials used in extended Lagrangian BOMD [Niklasson, Eur. Phys. J. B 94, 164 (2021)]. The proposed shadow energy functionals and potentials are useful only within this extended dynamical framework, where also the electronic degrees of freedom are propagated as dynamical field variables together with the atomic positions and velocities. The theory is quite general and can be applied to MD simulations using approximate DFT, Hartree-Fock, or semi-empirical methods, as well as to coarse-grained flexible charge models.
Collapse
Affiliation(s)
- Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Negre CFA, Wall ME, Niklasson AMN. Graph-based quantum response theory and shadow Born-Oppenheimer molecular dynamics. J Chem Phys 2023; 158:074108. [PMID: 36813723 DOI: 10.1063/5.0137119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Graph-based linear scaling electronic structure theory for quantum-mechanical molecular dynamics simulations [A. M. N. Niklasson et al., J. Chem. Phys. 144, 234101 (2016)] is adapted to the most recent shadow potential formulations of extended Lagrangian Born-Oppenheimer molecular dynamics, including fractional molecular-orbital occupation numbers [A. M. N. Niklasson, J. Chem. Phys. 152, 104103 (2020) and A. M. N. Niklasson, Eur. Phys. J. B 94, 164 (2021)], which enables stable simulations of sensitive complex chemical systems with unsteady charge solutions. The proposed formulation includes a preconditioned Krylov subspace approximation for the integration of the extended electronic degrees of freedom, which requires quantum response calculations for electronic states with fractional occupation numbers. For the response calculations, we introduce a graph-based canonical quantum perturbation theory that can be performed with the same natural parallelism and linear scaling complexity as the graph-based electronic structure calculations for the unperturbed ground state. The proposed techniques are particularly well-suited for semi-empirical electronic structure theory, and the methods are demonstrated using self-consistent charge density-functional tight-binding theory both for the acceleration of self-consistent field calculations and for quantum-mechanical molecular dynamics simulations. Graph-based techniques combined with the semi-empirical theory enable stable simulations of large, complex chemical systems, including tens-of-thousands of atoms.
Collapse
Affiliation(s)
- Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Michael E Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
11
|
Mazzeo P, Hashem S, Lipparini F, Cupellini L, Mennucci B. Fast Method for Excited-State Dynamics in Complex Systems and Its Application to the Photoactivation of a Blue Light Using Flavin Photoreceptor. J Phys Chem Lett 2023; 14:1222-1229. [PMID: 36716231 PMCID: PMC9923743 DOI: 10.1021/acs.jpclett.2c03797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The excited-state dynamics of molecules embedded in complex (bio)matrices is still a challenging goal for quantum chemical models. Hybrid QM/MM models have proven to be an effective strategy, but an optimal combination of accuracy and computational cost still has to be found. Here, we present a method which combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method. The newly implemented method is applied to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein. We show that the proton-coupled electron transfer (PCET) process suggested for other BLUF proteins is still valid also for AppA.
Collapse
|
12
|
Lease N, Klamborowski LM, Perriot R, Cawkwell MJ, Manner VW. Identifying the Molecular Properties that Drive Explosive Sensitivity in a Series of Nitrate Esters. J Phys Chem Lett 2022; 13:9422-9428. [PMID: 36191261 PMCID: PMC9575148 DOI: 10.1021/acs.jpclett.2c02701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Energetic materials undergo hundreds of chemical reactions during exothermic runaway, generally beginning with the breaking of the weakest chemical bond, the "trigger linkage." Herein we report the syntheses of a series of pentaerythritol tetranitrate (PETN) derivatives in which the energetic nitrate ester groups are systematically substituted by hydroxyl groups. Because all the PETN derivatives have the same nitrate ester-based trigger linkages, quantum molecular dynamics (QMD) simulations show very similar Arrhenius kinetics for the first reactions. However, handling sensitivity testing conducted using drop weight impact indicates that sensitivity decreases precipitously as nitrate esters are replaced by hydroxyl groups. These experimental results are supported by QMD simulations that show systematic decreases in the final temperatures of the products and the energy release as the nitrate ester functional groups are removed. To better interpret these results, we derive a simple model based only on the specific enthalpy of explosion and the kinetics of trigger linkage rupture that accounts qualitatively for the decrease in sensitivity as nitrate ester groups are removed.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Lisa M. Klamborowski
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Romain Perriot
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Marc J. Cawkwell
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
13
|
Cawkwell MJ, Davis J, Lease N, Marrs FW, Burch A, Ferreira S, Manner VW. Understanding Explosive Sensitivity with Effective Trigger Linkage Kinetics. ACS PHYSICAL CHEMISTRY AU 2022; 2:448-458. [PMID: 36855691 PMCID: PMC9955191 DOI: 10.1021/acsphyschemau.2c00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a simple linear model for ranking the drop weight impact sensitivity of organic explosives that is based explicitly on chemical kinetics. The model is parameterized to specific heats of explosion, Q, and Arrhenius kinetics for the onset of chemical reactions that are obtained from gas-phase Born-Oppenheimer molecular dynamics simulations for a chemically diverse set of 24 molecules. Reactive molecular dynamics simulations sample all possible decomposition pathways of the molecules with the appropriate probabilities to provide an effective reaction barrier. In addition, the calculations of effective trigger linkage kinetics can be accomplished without prior physical intuition of the most likely decomposition pathways. We found that the specific heat of explosion tends to reduce the effective barrier for decomposition in accordance with the Bell-Evans-Polanyi principle, which accounts naturally for the well-known correlations between explosive performance and sensitivity. Our model indicates that sensitive explosives derive their properties from a combination of weak trigger linkages that react at relatively low temperatures and large specific heats of explosion that further reduce the effective activation energy.
Collapse
Affiliation(s)
- Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jack Davis
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexandra Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Suyana Ferreira
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
14
|
Laqua H, Dietschreit JCB, Kussmann J, Ochsenfeld C. Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units. J Chem Theory Comput 2022; 18:6010-6020. [PMID: 36136665 DOI: 10.1021/acs.jctc.2c00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals and their respective integral derivatives typically represents the major bottleneck within hybrid Kohn-Sham density functional theory molecular dynamics simulations. Building upon our previous works on seminumerical exact-exchange (sn-LinK) [Laqua, H., Thompsons, T. H., Kussmann, J., Ochsenfeld, C., J. Chem. Theory Comput. 2020, 16, 1465] and resolution-of-the-identity Coulomb (RI-J) [Kussmann, J., Laqua, H., Ochsenfeld, C., J. Chem. Theory Comput. 2021, 17, 1512], the expensive 4c2e integral evaluation can be avoided entirely, resulting in a highly efficient electronic structure theory method, allowing for fast ab initio molecular dynamics (AIMD) simulations even with large basis sets. Moreover, we propose to combine the final self-consistent field (SCF) step with the subsequent nuclear forces evaluation, providing the forces at virtually no additional cost after a converged SCF calculation, reducing the total runtime of an AIMD simulation by about another 25%. In addition, multiple independent MD trajectories can be computed concurrently on a single node, leading to a greatly increased utilization of the available hardware─especially when combined with graphics processing unit acceleration─improving the overall throughput by up to another 5 times in this way. With all of those optimizations combined, our proposed method provides nearly 3 orders of magnitude faster execution times than traditional 4c2e integral-based methods. To demonstrate the practical utility of the approach, quantum-mechanical/molecular-mechanical dynamics simulations on double-stranded DNA were performed, investigating the relative hydrogen bond strength between adenine-thymine and guanine-cytosine base pairs. In addition, this illustrative application also contains a general accuracy assessment of the introduced approximations (integration grids, resolution-of-the-identity) within AIMD simulations, serving as a protocol on how to apply these new methods to practical problems.
Collapse
Affiliation(s)
- Henryk Laqua
- Department of Chemistry, Chair of Theoretical Chemistry, University of Munich (LMU), D-81377 München, Germany
| | - Johannes C B Dietschreit
- Department of Chemistry, Chair of Theoretical Chemistry, University of Munich (LMU), D-81377 München, Germany
| | - Jörg Kussmann
- Department of Chemistry, Chair of Theoretical Chemistry, University of Munich (LMU), D-81377 München, Germany
| | - Christian Ochsenfeld
- Department of Chemistry, Chair of Theoretical Chemistry, University of Munich (LMU), D-81377 München, Germany.,Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Kroonblawd MP, Goldman N, Maiti A, Lewicki JP. Polymer degradation through chemical change: a quantum-based test of inferred reactions in irradiated polydimethylsiloxane. Phys Chem Chem Phys 2022; 24:8142-8157. [PMID: 35332907 DOI: 10.1039/d1cp05647f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical reaction schemes are key conceptual tools for interpreting the results of experiments and simulations, but often carry implicit assumptions that remain largely unverified for complicated systems. Established schemes for chemical damage through crosslinking in irradiated silicone polymers comprised of polydimethylsiloxane (PDMS) date to the 1950's and correlate small-molecule off-gassing with specific crosslink features. In this regard, we use a somewhat reductionist model to develop a general conditional probability and correlation analysis approach that tests these types of causal connections between proposed experimental observables to reexamine this chemistry through quantum-based molecular dynamics (QMD) simulations. Analysis of the QMD simulations suggests that the established reaction schemes are qualitatively reasonable, but lack strong causal connections under a broad set of conditions that would enable making direct quantitative connections between off-gassing and crosslinking. Further assessment of the QMD data uncovers a strong (but nonideal) quantitative connection between exceptionally hard-to-measure chain scission events and the formation of silanol (Si-OH) groups. Our analysis indicates that conventional notions of radiation damage to PDMS should be further qualified and not necessarily used ad hoc. In addition, our efforts enable independent quantum-based tests that can inform confidence in assumed connections between experimental observables without the burden of fully elucidating entire reaction networks.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
16
|
Dietschreit JCB, von der Esch B, Ochsenfeld C. Exponential averaging versus umbrella sampling for computing the QM/MM free energy barrier of the initial step of the desuccinylation reaction catalyzed by sirtuin 5. Phys Chem Chem Phys 2022; 24:7723-7731. [PMID: 35292791 DOI: 10.1039/d1cp05007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The computational characterization of enzymatic reactions poses a great challenge which arises from the high dimensional and often rough potential energy surfaces commonly explored by static QM/MM methods such as adiabatic mapping (AM). The present study highlights the difficulties in estimating free energy barriers via exponential averaging over AM pathways. Based on our previous study [von der Esch et al., J. Chem. Theory Comput., 2019, 15, 6660-6667], where we analyzed the first reaction step of the desuccinylation reaction catalyzed by human sirtuin 5 (SIRT5) by means of QM/MM adiabatic mapping and machine learning, we use, here, umbrella sampling to compute the free energy profile of the initial reaction step. The computational investigations show that the initial step of the desuccinylation reaction proceeds via an SN2-type reaction mechanism in SIRT5, suggesting that the first step of the deacylation reactions catalyzed by sirtuins is highly conserved. In addition, the direct comparison of the extrapolated free energy barrier from minimal energy paths and the computed free energy path from umbrella sampling further underlines the importance of extensive sampling.
Collapse
Affiliation(s)
- Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Beatriz von der Esch
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany.,Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany.
| |
Collapse
|
17
|
Shen Z, Peng S, Glover WJ. Flexible boundary layer using exchange for embedding theories. II. QM/MM dynamics of the hydrated electron. J Chem Phys 2021; 155:224113. [PMID: 34911320 DOI: 10.1063/5.0067861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The FlexiBLE embedding method introduced in Paper I [Z. Shen and W. J. Glover, J. Chem. Phys. 155, 224112 (2021)] is applied to explore the structure and dynamics of the aqueous solvated electron at an all-electron density functional theory Quantum Mechanics/Molecular Mechanics level. Compared to a one-electron mixed quantum/classical description, we find the dynamics of the many-electron model of the hydrated electron exhibits enhanced coupling to water OH stretch modes. Natural bond orbital analysis reveals this coupling is due to significant population of water OH σ* orbitals, reaching 20%. Based on this, we develop a minimal frontier orbital picture of the hydrated electron involving a cavity orbital and important coupling to 4-5 coordinating OH σ* orbitals. Implications for the interpretation of the spectroscopy of this interesting species are discussed.
Collapse
Affiliation(s)
- Zhuofan Shen
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China
| | - Shaoting Peng
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China
| | | |
Collapse
|
18
|
Polack É, Dusson G, Stamm B, Lipparini F. Grassmann Extrapolation of Density Matrices for Born-Oppenheimer Molecular Dynamics. J Chem Theory Comput 2021; 17:6965-6973. [PMID: 34623810 PMCID: PMC8582259 DOI: 10.1021/acs.jctc.1c00751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/16/2023]
Abstract
Born-Oppenheimer molecular dynamics (BOMD) is a powerful but expensive technique. The main bottleneck in a density functional theory BOMD calculation is the solution to the Kohn-Sham (KS) equations that requires an iterative procedure that starts from a guess for the density matrix. Converged densities from previous points in the trajectory can be used to extrapolate a new guess; however, the nonlinear constraint that an idempotent density needs to satisfy makes the direct use of standard linear extrapolation techniques not possible. In this contribution, we introduce a locally bijective map between the manifold where the density is defined and its tangent space so that linear extrapolation can be performed in a vector space while, at the same time, retaining the correct physical properties of the extrapolated density using molecular descriptors. We apply the method to real-life, multiscale, polarizable QM/MM BOMD simulations, showing that sizeable performance gains can be achieved, especially when a tighter convergence to the KS equations is required.
Collapse
Affiliation(s)
- Étienne Polack
- Laboratoire
de Mathématiques de Besançon, UMR CNRS 6623, Université
Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Geneviève Dusson
- Laboratoire
de Mathématiques de Besançon, UMR CNRS 6623, Université
Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Benjamin Stamm
- Department
of Mathematics, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Univeristà
di Pisa, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
19
|
Finkelstein J, Smith JS, Mniszewski SM, Barros K, Negre CFA, Rubensson EH, Niklasson AMN. Quantum-Based Molecular Dynamics Simulations Using Tensor Cores. J Chem Theory Comput 2021; 17:6180-6192. [PMID: 34595916 DOI: 10.1021/acs.jctc.1c00726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tensor cores, along with tensor processing units, represent a new form of hardware acceleration specifically designed for deep neural network calculations in artificial intelligence applications. Tensor cores provide extraordinary computational speed and energy efficiency but with the caveat that they were designed for tensor contractions (matrix-matrix multiplications) using only low-precision floating-point operations. Despite this perceived limitation, we demonstrate how tensor cores can be applied with high efficiency to the challenging and numerically sensitive problem of quantum-based Born-Oppenheimer molecular dynamics, which requires highly accurate electronic structure optimizations and conservative force evaluations. The interatomic forces are calculated on-the-fly from an electronic structure that is obtained from a generalized deep neural network, where the computational structure naturally takes advantage of the exceptional processing power of the tensor cores and allows for high performance in excess of 100 Tflops on a single Nvidia A100 GPU. Stable molecular dynamics trajectories are generated using the framework of extended Lagrangian Born-Oppenheimer molecular dynamics, which combines computational efficiency with long-term stability, even when using approximate charge relaxations and force evaluations that are limited in accuracy by the numerically noisy conditions caused by the low-precision tensor core floating-point operations. A canonical ensemble simulation scheme is also presented, where the additional numerical noise in the calculated forces is absorbed into a Langevin-like dynamics.
Collapse
Affiliation(s)
- Joshua Finkelstein
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
| | - Justin S Smith
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
| | - Susan M Mniszewski
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
| | - Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
| | - Emanuel H Rubensson
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
| | - Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
| |
Collapse
|
20
|
Jones CM, List NH, Martínez TJ. Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water. Chem Sci 2021; 12:11347-11363. [PMID: 34667545 PMCID: PMC8447926 DOI: 10.1039/d1sc02508b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
The chromophore of the green fluorescent protein (GFP) is critical for probing environmental influences on fluorescent protein behavior. Using the aqueous system as a bridge between the unconfined vacuum system and a constricting protein scaffold, we investigate the steric and electronic effects of the environment on the photodynamical behavior of the chromophore. Specifically, we apply ab initio multiple spawning to simulate five picoseconds of nonadiabatic dynamics after photoexcitation, resolving the excited-state pathways responsible for internal conversion in the aqueous chromophore. We identify an ultrafast pathway that proceeds through a short-lived (sub-picosecond) imidazolinone-twisted (I-twisted) species and a slower (several picoseconds) channel that proceeds through a long-lived phenolate-twisted (P-twisted) intermediate. The molecule navigates the non-equilibrium energy landscape via an aborted hula-twist-like motion toward the one-bond-flip dominated conical intersection seams, as opposed to following the pure one-bond-flip paths proposed by the excited-state equilibrium picture. We interpret our simulations in the context of time-resolved fluorescence experiments, which use short- and long-time components to describe the fluorescence decay of the aqueous GFP chromophore. Our results suggest that the longer time component is caused by an energetically uphill approach to the P-twisted intersection seam rather than an excited-state barrier to reach the twisted intramolecular charge-transfer species. Irrespective of the location of the nonadiabatic population events, the twisted intersection seams are inefficient at facilitating isomerization in aqueous solution. The disordered and homogeneous nature of the aqueous solvent environment facilitates non-selective stabilization with respect to I- and P-twisted species, offering an important foundation for understanding the consequences of selective stabilization in heterogeneous and rigid protein environments.
Collapse
Affiliation(s)
- Chey M Jones
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Nanna H List
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
21
|
Hamilton BW, Steele BA, Sakano MN, Kroonblawd MP, Kuo IFW, Strachan A. Predicted Reaction Mechanisms, Product Speciation, Kinetics, and Detonation Properties of the Insensitive Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105). J Phys Chem A 2021; 125:1766-1777. [PMID: 33617263 DOI: 10.1021/acs.jpca.0c10946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a relatively new and promising insensitive high-explosive (IHE) material that remains only partially characterized. IHEs are of interest for a range of applications and from a fundamental science standpoint, as the root causes behind insensitivity are poorly understood. We adopt a multitheory approach based on reactive molecular dynamic simulations performed with density functional theory, density functional tight-binding, and reactive force fields to characterize the reaction pathways, product speciation, reaction kinetics, and detonation performance of LLM-105. We compare and contrast these predictions to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a prototypical IHE, and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), a more sensitive and higher performance material. The combination of different predictive models allows access to processes operative on progressively longer timescales while providing benchmarks for assessing uncertainties in the predictions. We find that the early reaction pathways of LLM-105 decomposition are extremely similar to TATB; they involve intra- and intermolecular hydrogen transfer. Additionally, the detonation performance of LLM-105 falls between that of TATB and HMX. We find agreement between predictive models for first-step reaction pathways but significant differences in final product formations. Predictions of detonation performance result in a wide range of values, and one-step kinetic parameters show the similar reaction rates at high temperatures for three out of four models considered.
Collapse
Affiliation(s)
- Brenden W Hamilton
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brad A Steele
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Michael N Sakano
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - I-Feng W Kuo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Niklasson AMN. Extended Lagrangian Born-Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models. J Chem Phys 2021; 154:054101. [PMID: 33557538 DOI: 10.1063/5.0038190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extended Lagrangian Born-Oppenheimer molecular dynamics (XL-BOMD) [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for orbital-free Hohenberg-Kohn density-functional theory and for charge equilibration and polarizable force-field models that can be derived from the same orbital-free framework. The purpose is to introduce the most recent features of orbital-based XL-BOMD to molecular dynamics simulations based on charge equilibration and polarizable force-field models. These features include a metric tensor generalization of the extended harmonic potential, preconditioners, and the ability to use only a single Coulomb summation to determine the fully equilibrated charges and the interatomic forces in each time step for the shadow Born-Oppenheimer potential energy surface. The orbital-free formulation has a charge-dependent, short-range energy term that is separate from long-range Coulomb interactions. This enables local parameterizations of the short-range energy term, while the long-range electrostatic interactions can be treated separately. The theory is illustrated for molecular dynamics simulations of an atomistic system described by a charge equilibration model with periodic boundary conditions. The system of linear equations that determines the equilibrated charges and the forces is diagonal, and only a single Ewald summation is needed in each time step. The simulations exhibit the same features in accuracy, convergence, and stability as are expected from orbital-based XL-BOMD.
Collapse
Affiliation(s)
- Anders M N Niklasson
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
23
|
Esch BVD, Peters LDM, Sauerland L, Ochsenfeld C. Quantitative Comparison of Experimental and Computed IR-Spectra Extracted from Ab Initio Molecular Dynamics. J Chem Theory Comput 2021; 17:985-995. [PMID: 33512155 DOI: 10.1021/acs.jctc.0c01279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimentally measured infrared spectra are often compared to their computed equivalents. However, the accordance is typically characterized by visual inspection, which is prone to subjective judgment. The primary challenge for a similarity-based analysis is that the artifacts introduced by each approach are very different and, therefore, may require preprocessing steps to determine and correct impeding irregularities. To allow for automated objective assessment, we propose a practical and comprehensive workflow involving scaling factors, a novel baseline correction scheme, and peak smoothing. The resulting spectra can then easily be compared quantitatively using similarity measures, for which we found the Pearson correlation coefficient to be the most suitable. The proposed procedure is then applied to compare the agreement of the experimental infrared spectra from the NIST Chemistry Web book with the calculated spectra using standard harmonic frequency analysis and spectra extracted from ab initio molecular dynamics simulations at different levels of theory. We conclude that the direct, quantitative comparison of calculated and measured IR spectra might become a novel, sophisticated approach to benchmark quantum-chemical methods. In the present benchmark, simulated spectra based on ab initio molecular dynamics show in general better agreement with the experiment than static calculations.
Collapse
Affiliation(s)
- Beatriz von der Esch
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Laurens D M Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Lena Sauerland
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| |
Collapse
|
24
|
Kroonblawd MP, Goldman N, Maiti A, Lewicki JP. A Quantum-Based Approach to Predict Primary Radiation Damage in Polymeric Networks. J Chem Theory Comput 2021; 17:463-473. [PMID: 33272015 DOI: 10.1021/acs.jctc.0c00967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Initial atomistic-level radiation damage in chemically reactive materials is thought to induce reaction cascades that can result in undesirable degradation of macroscale properties. Ensembles of quantum-based molecular dynamics (QMD) simulations can accurately predict these cascades, but extracting chemical insights from the many underlying trajectories is a labor-intensive process that can require substantial a priori intuition. We develop here a general and automated graph-based approach to extract all chemically distinct structures sampled in QMD simulations and apply our approach to predict primary radiation damage of polydimethylsiloxane (PDMS), the main constituent of silicones. A postprocessing protocol is developed to identify underlying polymer backbone structures as connected components in QMD trajectories. These backbones form a repository of radiation-damaged structures. A scheme for extracting and updating a library of isomorphically distinct structures is proposed to identify the spanning set and aid chemical interpretation of the repository. The analyses are applied to ensembles of cascade QMD simulations in which the four element types in PDMS are selectively excited in primary knock-on atom events. Our approach reveals a much higher degree of combinatorial complexity in this system than was inferred through radiolysis experiments. Probabilities are extracted for radiation-induced network changes including formation of branch points, carbon linkages, cycles, bond scissions, and carbon uptake into the Si-O siloxane backbone network. The general analysis framework presented here is readily extendable to modeling chemical degradation of other polymers and molecular materials and provides a basis for future quantum-informed multiscale modeling of radiation damage.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
25
|
Polack É, Mikhalev A, Dusson G, Stamm B, Lipparini F. An approximation strategy to compute accurate initial density matrices for repeated self-consistent field calculations at different geometries. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1779834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- É. Polack
- Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université Bourgogne Franche-Comté, Besançon, France
| | - A. Mikhalev
- Center for Computational Engineering Science, RWTH Aachen University, Aachen, Germany
| | - G. Dusson
- Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université Bourgogne Franche-Comté, Besançon, France
| | - B. Stamm
- Center for Computational Engineering Science, RWTH Aachen University, Aachen, Germany
| | - F. Lipparini
- Dipartimento di Chimica e Chimica Industriale, Univeristà di Pisa, Pisa, Italy
| |
Collapse
|
26
|
Vogler S, Dietschreit JCB, Peters LDM, Ochsenfeld C. Important components for accurate hyperfine coupling constants: electron correlation, dynamic contributions, and solvation effects. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1772515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sigurd Vogler
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | | | - Laurens D. M. Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| |
Collapse
|
27
|
Steele BA, Goldman N, Kuo IFW, Kroonblawd MP. Mechanochemical synthesis of glycine oligomers in a virtual rotational diamond anvil cell. Chem Sci 2020; 11:7760-7771. [PMID: 34123069 PMCID: PMC8163322 DOI: 10.1039/d0sc00755b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023] Open
Abstract
Mechanochemistry of glycine under compression and shear at room temperature is predicted using quantum-based molecular dynamics (QMD) and a simulation design based on rotational diamond anvil cell (RDAC) experiments. Ensembles of high throughput semiempirical density functional tight binding (DFTB) simulations are used to identify chemical trends and bounds for glycine chemistry during rapid shear under compressive loads of up to 15.6 GPa. Significant chemistry is found to occur during compressive shear above 10 GPa. Recovered products consist of small molecules such as water, structural analogs to glycine, heterocyclic molecules, large oligomers, and polypeptides including the simplest polypeptide glycylglycine at up to 4% mass fraction. The population and size of oligomers generally increases with pressure. A number of oligomeric polypeptide precursors and intermediates are also identified that consist of two or three glycine monomers linked together through C-C, C-N, and/or C-O bridges. Even larger oligomers also form that contain peptide C-N bonds and exhibit branched structures. Many of the product molecules exhibit one or more chiral centers. Our simulations demonstrate that athermal mechanical compressive shearing of glycine is a plausible prebiotic route to forming polypeptides.
Collapse
Affiliation(s)
- Brad A Steele
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - I-Feng W Kuo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| |
Collapse
|
28
|
Seritan S, Bannwarth C, Fales BS, Hohenstein EG, Isborn CM, Kokkila‐Schumacher SIL, Li X, Liu F, Luehr N, Snyder JW, Song C, Titov AV, Ufimtsev IS, Wang L, Martínez TJ. TeraChem
: A graphical processing unit
‐accelerated
electronic structure package for
large‐scale
ab initio molecular dynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1494] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Seritan
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Christoph Bannwarth
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Bryan S. Fales
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Edward G. Hohenstein
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Christine M. Isborn
- Department of Chemistry University of California Merced Merced California USA
| | | | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Stockholm Sweden
| | - Fang Liu
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA
| | | | | | - Chenchen Song
- Department of Physics University of California Berkeley Berkeley California USA
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California USA
| | | | - Ivan S. Ufimtsev
- Department of Structural Biology Stanford University School of Medicine Stanford California USA
| | - Lee‐Ping Wang
- Department of Chemistry University of California Davis Davis California USA
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| |
Collapse
|
29
|
Malone W, Nebgen B, White A, Zhang Y, Song H, Bjorgaard JA, Sifain AE, Rodriguez-Hernandez B, Freixas VM, Fernandez-Alberti S, Roitberg AE, Nelson TR, Tretiak S. NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:5771-5783. [DOI: 10.1021/acs.jctc.0c00248] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Walter Malone
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Josiah A. Bjorgaard
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E. Sifain
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, United States
| | | | - Victor M. Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tammie R. Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
30
|
Zhou G, Nebgen B, Lubbers N, Malone W, Niklasson AMN, Tretiak S. Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch. J Chem Theory Comput 2020; 16:4951-4962. [DOI: 10.1021/acs.jctc.0c00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Ben Nebgen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Walter Malone
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Sergei Tretiak
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
31
|
Prentice JCA, Aarons J, Womack JC, Allen AEA, Andrinopoulos L, Anton L, Bell RA, Bhandari A, Bramley GA, Charlton RJ, Clements RJ, Cole DJ, Constantinescu G, Corsetti F, Dubois SMM, Duff KKB, Escartín JM, Greco A, Hill Q, Lee LP, Linscott E, O'Regan DD, Phipps MJS, Ratcliff LE, Serrano ÁR, Tait EW, Teobaldi G, Vitale V, Yeung N, Zuehlsdorff TJ, Dziedzic J, Haynes PD, Hine NDM, Mostofi AA, Payne MC, Skylaris CK. The ONETEP linear-scaling density functional theory program. J Chem Phys 2020; 152:174111. [PMID: 32384832 DOI: 10.1063/5.0004445] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.
Collapse
Affiliation(s)
- Joseph C A Prentice
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jolyon Aarons
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Alice E A Allen
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lampros Andrinopoulos
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lucian Anton
- UKAEA, Culham Science Centre, Abingdon OX14 3DB, United Kingdom
| | - Robert A Bell
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Arihant Bhandari
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Gabriel A Bramley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Robert J Charlton
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Rebecca J Clements
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gabriel Constantinescu
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Fabiano Corsetti
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Simon M-M Dubois
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kevin K B Duff
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - José María Escartín
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andrea Greco
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Quintin Hill
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Louis P Lee
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Edward Linscott
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David D O'Regan
- School of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Maximillian J S Phipps
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Laura E Ratcliff
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Álvaro Ruiz Serrano
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Edward W Tait
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Gilberto Teobaldi
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Valerio Vitale
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nelson Yeung
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter D Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Arash A Mostofi
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mike C Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
32
|
Niklasson AMN. Density-Matrix Based Extended Lagrangian Born–Oppenheimer Molecular Dynamics. J Chem Theory Comput 2020; 16:3628-3640. [DOI: 10.1021/acs.jctc.0c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
33
|
Nakata A, Baker JS, Mujahed SY, Poulton JTL, Arapan S, Lin J, Raza Z, Yadav S, Truflandier L, Miyazaki T, Bowler DR. Large scale and linear scaling DFT with the CONQUEST code. J Chem Phys 2020; 152:164112. [DOI: 10.1063/5.0005074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ayako Nakata
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jack S. Baker
- London Centre for Nanotechnology, University College London, 17-19 Gordon St., London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Shereif Y. Mujahed
- London Centre for Nanotechnology, University College London, 17-19 Gordon St., London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Jack T. L. Poulton
- London Centre for Nanotechnology, University College London, 17-19 Gordon St., London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Sergiu Arapan
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jianbo Lin
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Zamaan Raza
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sushma Yadav
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lionel Truflandier
- Institut des Sciences Moléculaires, Université Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Tsuyoshi Miyazaki
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - David R. Bowler
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- London Centre for Nanotechnology, University College London, 17-19 Gordon St., London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| |
Collapse
|
34
|
Perriot R, Cawkwell MJ, Martinez E, McGrane SD. Reaction Rates in Nitromethane under High Pressure from Density Functional Tight Binding Molecular Dynamics Simulations. J Phys Chem A 2020; 124:3314-3328. [DOI: 10.1021/acs.jpca.9b11897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romain Perriot
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - M. J. Cawkwell
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Martinez
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn D. McGrane
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
35
|
Bonella S, Coretti A, Vuilleumier R, Ciccotti G. Adiabatic motion and statistical mechanics via mass-zero constrained dynamics. Phys Chem Chem Phys 2020; 22:10775-10785. [PMID: 32175532 DOI: 10.1039/d0cp00163e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent work [Coretti et al., J. Chem. Phys., 2018, 149, 191102], a new algorithm to solve numerically the dynamics of the shell model for polarization was presented. The approach, broadly applicable to systems involving adiabatically separated dynamical variables, employs constrained molecular dynamics to strictly enforce the condition that the force on the fast degrees of freedom, modeled as having zero mass, is null at each time step. The algorithm is symplectic and fully time reversible, and results in stable and efficient propagation. In this paper we complete the discussion of the mechanics of mass-zero constrained dynamics by showing how to adapt it to problems where the fast degrees of freedom must satisfy additional conditions. This extension includes, in particular, the important case of first principles molecular dynamics. We then consider the statistical mechanics of the mass-zero constrained dynamical system demonstrating that the marginal probability sampled by the dynamics in the physical phase space recovers the form of the Born-Oppenheimer probability density. The effectiveness of the approach and the favorable scaling of the algorithm with system size are illustrated in test calculations of solid Na via orbital-free density functional dynamics.
Collapse
Affiliation(s)
- Sara Bonella
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
36
|
Niklasson AMN. Extended Lagrangian Born–Oppenheimer molecular dynamics using a Krylov subspace approximation. J Chem Phys 2020; 152:104103. [DOI: 10.1063/1.5143270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA and Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
| |
Collapse
|
37
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
38
|
Cawkwell MJ, Manner VW. Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations. J Phys Chem A 2019; 124:74-81. [DOI: 10.1021/acs.jpca.9b10808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- M. J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - V. W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
39
|
Peters LM, Kussmann J, Ochsenfeld C. Nonadiabatic Molecular Dynamics on Graphics Processing Units: Performance and Application to Rotary Molecular Motors. J Chem Theory Comput 2019; 15:6647-6659. [PMID: 31763834 PMCID: PMC6909237 DOI: 10.1021/acs.jctc.9b00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 11/29/2022]
Abstract
Nonadiabatic molecular dynamics (NAMD) simulations of molecular systems require the efficient evaluation of excited-state properties, such as energies, gradients, and nonadiabatic coupling vectors. Here, we investigate the use of graphics processing units (GPUs) in addition to central processing units (CPUs) to efficiently calculate these properties at the time-dependent density functional theory (TDDFT) level of theory. Our implementation in the FermiONs++ program package uses the J-engine and a preselective screening procedure for the calculation of Coulomb and exchange kernels, respectively. We observe good speed-ups for small and large molecular systems (comparable to those observed in ground-state calculations) and reduced (down to sublinear) scaling behavior with respect to the system size (depending on the spatial locality of the investigated excitation). As a first illustrative application, we present efficient NAMD simulations of a series of newly designed light-driven rotary molecular motors and compare their S1 lifetimes. Although all four rotors show different S1 excitation energies, their ability to rotate upon excitation is conserved, making the series an interesting starting point for rotary molecular motors with tunable excitation energies.
Collapse
Affiliation(s)
- Laurens
D. M. Peters
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
40
|
Loco D, Lagardère L, Cisneros GA, Scalmani G, Frisch M, Lipparini F, Mennucci B, Piquemal JP. Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chem Sci 2019; 10:7200-7211. [PMID: 31588288 PMCID: PMC6677116 DOI: 10.1039/c9sc01745c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, we present a general route to hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Molecular Dynamics for complex systems using a polarizable embedding. We extend the capabilities of our hybrid framework, combining the Gaussian and Tinker/Tinker-HP packages in the context of the AMOEBA polarizable force field to treat large (bio)systems where the QM and the MM subsystems are covalently bound, adopting pseudopotentials at the boundaries between the two regions. We discuss in detail the implementation and demonstrate the global energy conservation of our QM/MM Born-Oppenheimer molecular dynamics approach using Density Functional Theory. Finally, the approach is assessed on the electronic absorption properties of a 16 500 atom complex encompassing an organic dye embedded in a DNA matrix in solution, extending the hybrid method to a time-dependent Density Functional Theory approach. The results obtained comparing different partitions between the quantum and the classical subsystems also suggest that large QM portions are not necessary if accurate polarizable force fields are used in a variational formulation of the embedding, properly including the QM/MM mutual polarization.
Collapse
Affiliation(s)
- Daniele Loco
- Sorbonne Université , CNRS , Laboratoire de Chimie Théorique, LCT , Paris , France . ;
| | - Louis Lagardère
- Sorbonne Université , CNRS , Institut Parisien de Chimie Physique et Théorique, IP2CT , Paris , France
- Sorbonne Université , Institut des Sciences du Calcul et des Données, ISCD , Paris , France
| | | | | | | | - Filippo Lipparini
- Univerisita di Pisa , Dipartimento di Chimica e ChimicaIndustriale , Pisa , Italy
| | - Benedetta Mennucci
- Univerisita di Pisa , Dipartimento di Chimica e ChimicaIndustriale , Pisa , Italy
| | - Jean-Philip Piquemal
- Sorbonne Université , CNRS , Laboratoire de Chimie Théorique, LCT , Paris , France . ;
- Institut Universitaire de France, IUF , Paris , France
- The University of Texas at Austin , Department of Biomedical Engineering , TX , USA
| |
Collapse
|
41
|
Kroonblawd MP, Lindsey RK, Goldman N. Synthesis of functionalized nitrogen-containing polycyclic aromatic hydrocarbons and other prebiotic compounds in impacting glycine solutions. Chem Sci 2019; 10:6091-6098. [PMID: 31360414 PMCID: PMC6585877 DOI: 10.1039/c9sc00155g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/19/2019] [Indexed: 01/09/2023] Open
Abstract
Proteinogenic amino acids can be produced on or delivered to a planet via impacting abiotic sources and consequently were likely present before the emergence of life on Earth. However, the role that these materials played in prebiotic scenarios remains an open question, in part because little is known about the survivability and reactivity of astrophysical organic compounds upon impact with a planetary surface. To this end, we use a force-matched semi-empirical quantum simulation method to study impacts of aqueous proteinogenic amino acids at conditions reaching 48 GPa and 3000 K. Here, we probe a relatively unstudied mechanism for prebiotic synthesis where sudden heating and pressurization causes condensation of complex carbon-rich structures from mixtures of glycine, the simplest protein-forming amino acid. These carbon-containing clusters are stable on short timescales and undergo a fundamental structural transition upon expansion and cooling from predominantly sp3-bonded tetrahedral-like moieties to those that are more sp2-bonded and planar. The recovered sp2-bonded structures include large nitrogen containing polycyclic aromatic hydrocarbons (NPAHs) with a number of different functional groups and embedded bonded regions akin to oligo-peptides. A number of small organic molecules with prebiotic relevance are also predicted to form. This work presents an alternate route to gas-phase synthesis for the formation of NPAHs of high complexity and highlights the significance of both the thermodynamic path and local chemical self-assembly in forming prebiotic species during shock synthesis. Our results help determine the role of comets and other celestial bodies in both the delivery and synthesis of potentially significant life building compounds on early Earth.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , CA 94550 , USA .
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , CA 94550 , USA .
| | - Nir Goldman
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , CA 94550 , USA .
- Department of Chemical Engineering , University of California , Davis , California 95616 , USA
| |
Collapse
|
42
|
Martínez E, Perriot R, Kober EM, Bowlan P, Powell M, McGrane S, Cawkwell MJ. Parallel replica dynamics simulations of reactions in shock compressed liquid benzene. J Chem Phys 2019; 150:244108. [PMID: 31255087 DOI: 10.1063/1.5092209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of the long-term evolution of slow chemical reactions is challenging because quantum-based reactive molecular dynamics simulation times are typically limited to hundreds of picoseconds. Here, the extended Lagrangian Born-Oppenheimer molecular dynamics formalism is used in conjunction with parallel replica dynamics to obtain an accurate tool to describe the long-term chemical dynamics of shock-compressed benzene. Langevin dynamics has been employed at different temperatures to calculate the first reaction times in liquid benzene at pressures and temperatures consistent with its unreacted Hugoniot. Our coupled engine runs for times on the order of nanoseconds (one to two orders of magnitude longer than traditional techniques) and is capable of detecting reactions that are characterized by rates significantly slower than we could study before. At lower pressures and temperatures, we mainly observe Diels-Alder metastable reactions, whereas at higher pressures and temperatures we observe stable polymerization reactions.
Collapse
Affiliation(s)
- E Martínez
- Theoretical Division, T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R Perriot
- Theoretical Division, T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - E M Kober
- Theoretical Division, T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - P Bowlan
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M Powell
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S McGrane
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M J Cawkwell
- Theoretical Division, T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
43
|
de la Lande A, Alvarez-Ibarra A, Hasnaoui K, Cailliez F, Wu X, Mineva T, Cuny J, Calaminici P, López-Sosa L, Geudtner G, Navizet I, Garcia Iriepa C, Salahub DR, Köster AM. Molecular Simulations with in-deMon2k QM/MM, a Tutorial-Review. Molecules 2019; 24:molecules24091653. [PMID: 31035516 PMCID: PMC6539060 DOI: 10.3390/molecules24091653] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
deMon2k is a readily available program specialized in Density Functional Theory (DFT) simulations within the framework of Auxiliary DFT. This article is intended as a tutorial-review of the capabilities of the program for molecular simulations involving ground and excited electronic states. The program implements an additive QM/MM (quantum mechanics/molecular mechanics) module relying either on non-polarizable or polarizable force fields. QM/MM methodologies available in deMon2k include ground-state geometry optimizations, ground-state Born-Oppenheimer molecular dynamics simulations, Ehrenfest non-adiabatic molecular dynamics simulations, and attosecond electron dynamics. In addition several electric and magnetic properties can be computed with QM/MM. We review the framework implemented in the program, including the most recently implemented options (link atoms, implicit continuum for remote environments, metadynamics, etc.), together with six applicative examples. The applications involve (i) a reactivity study of a cyclic organic molecule in water; (ii) the establishment of free-energy profiles for nucleophilic-substitution reactions by the umbrella sampling method; (iii) the construction of two-dimensional free energy maps by metadynamics simulations; (iv) the simulation of UV-visible absorption spectra of a solvated chromophore molecule; (v) the simulation of a free energy profile for an electron transfer reaction within Marcus theory; and (vi) the simulation of fragmentation of a peptide after collision with a high-energy proton.
Collapse
Affiliation(s)
- Aurélien de la Lande
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Aurelio Alvarez-Ibarra
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Karim Hasnaoui
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Fabien Cailliez
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Xiaojing Wu
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, 75005 Paris, France.
| | - Tzonka Mineva
- Matériaux Avancés pour la Catalyse et la Santé, UMR 5253 CNRS/UM/ENSCM, Institut Charles Gerhardt de Montpellier (ICGM) Montpellier CEDEX 5, 34090 Montpellier, France.
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 4, France.
| | - Patrizia Calaminici
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, Mexico.
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| | - Luis López-Sosa
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| | - Gerald Geudtner
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Échelle, Université Paris-Est, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| | - Cristina Garcia Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle, Université Paris-Est, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| | - Dennis R Salahub
- Department of Chemistry, Centre for Molecular Simulation, Institute for Quantum Science and Technology and Quantum Alberta, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada.
- College of Chemistry and Chemical Engineering, Henan University of Technology, No. 100, Lian Hua Street, High-Tech Development Zone, Zhengzhou 450001, China.
| | - Andreas M Köster
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, Mexico.
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| |
Collapse
|
44
|
Dietschreit JCB, Peters LDM, Kussmann J, Ochsenfeld C. Identifying Free Energy Hot-Spots in Molecular Transformations. J Phys Chem A 2019; 123:2163-2170. [DOI: 10.1021/acs.jpca.8b12309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Johannes C. B. Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5−13, D-81377 München, Germany
| | - Laurens D. M. Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5−13, D-81377 München, Germany
| | - Jörg Kussmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5−13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5−13, D-81377 München, Germany
| |
Collapse
|
45
|
Cawkwell MJ, Perriot R. Transferable density functional tight binding for carbon, hydrogen, nitrogen, and oxygen: Application to shock compression. J Chem Phys 2019; 150:024107. [DOI: 10.1063/1.5063385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. J. Cawkwell
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R. Perriot
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
46
|
Hinton JK, Clarke SM, Steele BA, Kuo IFW, Greenberg E, Prakapenka VB, Kunz M, Kroonblawd MP, Stavrou E. Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study. CrystEngComm 2019. [DOI: 10.1039/c8ce02123f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This concomitant experimental and theoretical study provides a definitive EOS for α-glycine up to the record pressure of 50 GPa.
Collapse
Affiliation(s)
- Jasmine K. Hinton
- Lawrence Livermore National Laboratory
- Physical and Life Sciences Directorate
- Livermore
- USA
- University of Nevada, Las Vegas
| | - Samantha M. Clarke
- Lawrence Livermore National Laboratory
- Physical and Life Sciences Directorate
- Livermore
- USA
| | - Brad A. Steele
- Lawrence Livermore National Laboratory
- Physical and Life Sciences Directorate
- Livermore
- USA
| | - I-Feng W. Kuo
- Lawrence Livermore National Laboratory
- Physical and Life Sciences Directorate
- Livermore
- USA
| | - Eran Greenberg
- Center for Advanced Radiation Sources
- University of Chicago
- Chicago
- USA
| | | | - Martin Kunz
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Matthew P. Kroonblawd
- Lawrence Livermore National Laboratory
- Physical and Life Sciences Directorate
- Livermore
- USA
| | - Elissaios Stavrou
- Lawrence Livermore National Laboratory
- Physical and Life Sciences Directorate
- Livermore
- USA
| |
Collapse
|
47
|
Force Matching Approaches to Extend Density Functional Theory to Large Time and Length Scales. COMPUTATIONAL APPROACHES FOR CHEMISTRY UNDER EXTREME CONDITIONS 2019. [DOI: 10.1007/978-3-030-05600-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Leven I, Head-Gordon T. Inertial extended-Lagrangian scheme for solving charge equilibration models. Phys Chem Chem Phys 2019; 21:18652-18659. [DOI: 10.1039/c9cp02979f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inertial EL/SCF method is developed to solve charge equilibration models for molecular dynamics, reducing the number of SCFs by 50–80% at each time step when compared to a conjugate gradient SCF solver and tested on diverse reactive systems.
Collapse
Affiliation(s)
- Itai Leven
- Kenneth S. Pitzer Center for Theoretical Chemistry
- University of California Berkeley
- Berkeley
- USA
- Department of Chemistry
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry
- University of California Berkeley
- Berkeley
- USA
- Department of Chemistry
| |
Collapse
|
49
|
Kroonblawd MP, Goldman N, Lewicki JP. Chemical Degradation Pathways in Siloxane Polymers Following Phenyl Excitations. J Phys Chem B 2018; 122:12201-12210. [PMID: 30482015 DOI: 10.1021/acs.jpcb.8b09636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use ensembles of quantum-based molecular dynamics simulations to predict the chemical reactions that follow radiation-induced excitations of phenyl groups in a model copolymer of polydimethylsiloxane and polydiphenylsiloxane. Our simulations span a wide range of highly porous and condensed phase densities and include both wet and dry conditions. We observe that in the absence of water, excited phenyl groups tend to abstract hydrogen from other methyl or phenyl side groups to produce benzene, with the under-hydrogenated group initiating subsequent intrachain cyclization reactions. These systems also yield minor products of diphenyl moieties formed by the complete abstraction of both phenyl groups from a single polydiphenylsiloxane subunit. In contrast, we find that the presence of water promotes the formation of free benzene and silanol side groups, reduces the likelihood for intrachain cyclization reactions, and completely suppresses the formation of diphenyl species. In addition, we predict that water plays a critical role in chain scission reactions, which indicates a possible synergistic effect between environmental moisture and radiation that could promote alterations of a larger polymer network. These results could have impact in interpreting accelerated aging experiments, where polymer decomposition reactions and network rearrangements are thought to have a significant effect on the ensuing mechanical properties.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Nir Goldman
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States.,Department of Chemical Engineering , University of California, Davis , Davis , California 95616 , United States
| | - James P Lewicki
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| |
Collapse
|
50
|
Sahoo SK, Nair NN. Interfacing the Core-Shell or the Drude Polarizable Force Field With Car-Parrinello Molecular Dynamics for QM/MM Simulations. Front Chem 2018; 6:275. [PMID: 30042939 PMCID: PMC6048201 DOI: 10.3389/fchem.2018.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
We report a quantum mechanics/polarizable–molecular mechanics (QM/p–MM) potential based molecular dynamics (MD) technique where the core–shell (or the Drude) type polarizable MM force field is interfaced with the plane-wave density functional theory based QM force field which allows Car–Parrinello MD for the QM subsystem. In the QM/p-MM Lagrangian proposed here, the shell (or the Drude) MM variables are treated as extended degrees of freedom along with the Kohn–Sham (KS) orbitals describing the QM wavefunction. The shell and the KS orbital degrees of freedom are then adiabatically decoupled from the nuclear degrees of freedom. In this respect, we also present here the Nosé–Hoover Chain thermostat implementation for the dynamical subsystems. Our approach is then used to investigate the effect of MM polarization on the QM/MM results. Especially, the consequence of MM polarization on reaction free energy barriers, defect formation energy, and structural and dynamical properties are investigated. A low point charge polarizable potential (p–MZHB) for pure siliceous systems is also reported here.
Collapse
Affiliation(s)
- Sudhir K Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|