1
|
SureshKumar H, Iyer SS, Banerjee A, Poduval P, Lyman E, Srivastava A. Signatures of glassy dynamics in highly ordered lipid bilayers with emergence of soft dynamic channels. J Chem Phys 2025; 162:145103. [PMID: 40197587 DOI: 10.1063/5.0250190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/15/2025] [Indexed: 04/10/2025] Open
Abstract
Over the last few decades, extensive investigations on spatial and dynamic heterogeneity have been performed on carefully reconstituted biological lipid membranes. Characterizing the molecular features in heterogeneous membranes is extremely challenging due to the experimentally inaccessible time- and length-scales of these emergent systems. In this context, simulations can provide important insights into molecular-level interactions leading to membrane heterogeneity and associated functions. To that end, we use the non-affine displacement (NAD) framework (a concept borrowed from the physics of granular materials) to faithfully capture molecular-scale local membrane order in simulated heterogeneous bilayers. In our latest application of NAD, we investigate the temperature-dependent spatial and temporal organization on microsecond trajectories of liquid-ordered bilayer systems at all-atom resolution (DPPC/DOPC/CHOL: 0.55:0.15:0.30; 40 × 40 nm2 with a total of 5600 lipids and 2 × 106 atoms). Lateral organization in these large bilayer patches shows noticeable dynamic heterogeneity despite their liquid-ordered nature. Moreover, our NAD analyses reveal soft fluid channels within the tightly packed membrane reminiscent of the classical two-component Kob-Andersen glass-forming binary mixture. Hence, we characterized these systems using classical glass physics markers for dynamic heterogeneities such as overlap, four-point susceptibility, Van Hove, and intermediate scattering functions to quantify the multiple time scales underlying the lipid dynamics. Our analyses reveal that highly ordered membrane systems can have glass-like dynamics with distinct soft fluid channels inside them. Biologically, these dynamic channels could act as conduits for facilitating molecular encounters for biological functions even in highly ordered phases such as lipid nanodomains and rafts.
Collapse
Affiliation(s)
- Harini SureshKumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, KA 560012, India
| | - Sahithya S Iyer
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Atreyee Banerjee
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- FRIAS, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Prathyush Poduval
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Edward Lyman
- Department of Physics and Astronomy, and Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, KA 560012, India
| |
Collapse
|
2
|
Athanasiou T, Mei B, Schweizer KS, Petekidis G. Probing cage dynamics in concentrated hard-sphere suspensions and glasses with high frequency rheometry. SOFT MATTER 2025; 21:2607-2622. [PMID: 40071557 DOI: 10.1039/d4sm01428f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The cage concept, a central microscopic mechanism for glassy dynamics, has been utilized in concentrated colloidal suspensions to describe a number of phenomena. Here, we probe the evolution of cage formation and shear elasticity with increasing volume fraction in hard sphere suspensions, with emphasis on the short-time dynamics. To this end, we utilize linear viscoelastic (LVE) measurements, by means of conventional rotational rheometers and a home-made HF piezo-rheometer, to probe the dynamic response over a broad range of volume fractions up to the very dense glassy regime in proximity to random close packing. We focus on the LVE spectra and times shorter than those corresponding to the dynamic shear modulus G' plateau, where the system approaches transient localization and cage confinement. At these short times (higher frequencies), a dynamic cage has not yet fully developed and particles are not (strictly) transiently localized. This corresponds to an effective solid-to-liquid transition in the LVE spectrum (dynamic moduli) marked by a high frequency (HF) crossover. On the other hand, as the volume fraction increases caging becomes tighter, particles become more localized, and the onset of the localization time scale becomes shorter. This onset of transient localization to shorter times shifts the HF crossover to higher values. Therefore, the study of the dependence of the HF crossover properties (frequency and moduli) on volume fractions provides direct insights concerning the onset of particle in-cage motion and allows direct comparison with current theoretical models. We compare the experimental data with predictions of a microscopic statistical mechanical theory where qualitative and quantitative agreements are found. Findings include the discovery of microscopic mechanisms for the crossover between the two exponential dependences of the onset of the localization time scale and the elastic shear modulus at high volume fractions as a consequence of emergent many body structural correlations and their consequences on dynamic constraints. Moreover, an analytic derivation of the relationship between the high frequency localized short-time scale and the elastic shear modulus is provided which offers new physical insights and explains why these two variables are experimentally observed to exhibit nearly-identical behaviors.
Collapse
Affiliation(s)
- Thanasis Athanasiou
- Institute of Electronic Structure & Laser, FORTH, Heraklion, 70013, Greece.
- Department of Materials Science and Engineering, University of Crete, Heraklion, 70013, Greece
| | - Baicheng Mei
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kenneth S Schweizer
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Department of Chemistry and Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - George Petekidis
- Institute of Electronic Structure & Laser, FORTH, Heraklion, 70013, Greece.
- Department of Materials Science and Engineering, University of Crete, Heraklion, 70013, Greece
| |
Collapse
|
3
|
Hung JH, Simmons DS. Does the Naı̈ve Mode-Coupling Power Law Divergence Provide an Objective Determination of the Crossover Temperature in Glass Formation Behavior? J Phys Chem B 2025; 129:3018-3027. [PMID: 40053913 DOI: 10.1021/acs.jpcb.4c06623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The glass formation temperature range is commonly divided into a weakly supercooled regime at higher temperatures and a deeply supercooled regime at lower temperatures, with a change in the physical mechanisms that govern dynamics often postulated to occur at the crossover between these regimes. This crossover temperature Tc is widely determined based on a fit of relaxation time vs temperature data to a power law divergence form predicted by the naı̈ve mode coupling theory (MCT). Here, we show, based on simulation data spanning polymeric, small molecule organic, metallic, and inorganic glass formers, that this approach does not yield an objective measure of a crossover temperature. Instead, the value of Tc is determined by the lowest temperature Tmin employed in the fit, and no regime of stationary or convergent Tc value is generally observed as Tmin is varied. Nor does the coefficient of determination R2 provide any robust means of selecting a fit range and thus a value of Tc. These results may require a re-evaluation of published results that have employed the fit MCT Tc value as a metric of temperature-dependent dynamics or a benchmark for depth of supercooling, and they highlight a need for the field to converge on a more objective determination of any posited crossover temperature between high and low temperature regimes of glass formation.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - David S Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33544, United States
| |
Collapse
|
4
|
Mutneja A, Karmakar S. Length-scale dependence of Stokes-Einstein breakdown in active glass-forming liquids. Phys Rev E 2025; 111:035409. [PMID: 40247515 DOI: 10.1103/physreve.111.035409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
The Stokes-Einstein (SE) relation, which relates diffusion constants with the viscosity of a liquid at high temperatures in equilibrium, is violated in the supercooled temperature regime. Whether this relation is obeyed in nonequilibrium active liquids is a question of significant current interest to the statistical physics community trying to develop the theoretical framework of nonequilibrium statistical mechanics. Via extensive computer simulations of model active glass-forming liquids in three dimensions, we show that SE is obeyed at a high temperature similar to the equilibrium behavior, and it gets violated in the supercooled temperature regimes. The degree of violation increases systematically with the increasing activity which quantifies the amount the system is driven out of equilibrium. First passage-time (FPT) distributions helped us to gain insights into this enhanced breakdown from the increased short-time peak, depicting hoppers. Subsequently, we study the wave vector dependence of SE relation and show that it gets restored at a wave vector that decreases with increasing activity, and the crossover wave vector is found to be proportional to the inverse of the dynamical heterogeneity length scale in the system. Our work showed how SE violation in active supercooled liquids could be rationalized using the growth of dynamic length scale, which is found to grow enormously with increasing activity in these systems.
Collapse
Affiliation(s)
- Anoop Mutneja
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| |
Collapse
|
5
|
Loidl A, Lunkenheimer P, Samwer K. Prigogine-Defay ratio of glassy freezing scales with liquid fragility. Phys Rev E 2025; 111:035407. [PMID: 40247531 DOI: 10.1103/physreve.111.035407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
A detailed study of published experimental data for a variety of materials on the incremental variation of heat capacity, thermal expansion, and compressibility at glassy freezing reveals a striking dependence of the Prigogine-Defay ratio R on the fragility index m. At high m, R approaches values of ∼1, the Ehrenfest expectation for second-order continuous phase transitions, while R reaches values >20 for low fragilities. We explain this correlation by the degree of separation of the glassy freezing temperature from a hidden phase transition into an ideal low-temperature glass.
Collapse
Affiliation(s)
- A Loidl
- University of Augsburg, Experimental Physics V, 86135 Augsburg, Germany
| | - P Lunkenheimer
- University of Augsburg, Experimental Physics V, 86135 Augsburg, Germany
| | - K Samwer
- University of Göttingen, I. Physikalisches Institut, Göttingen, Germany
| |
Collapse
|
6
|
Tanaka H. Structural Origin of Dynamic Heterogeneity in Supercooled Liquids. J Phys Chem B 2025; 129:789-813. [PMID: 39793974 PMCID: PMC11770765 DOI: 10.1021/acs.jpcb.4c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
As a liquid is supercooled toward the glass transition point, its dynamics slow significantly, provided that crystallization is avoided. With increased supercooling, the particle dynamics become more spatially heterogeneous, a phenomenon known as dynamic heterogeneity. Since its discovery, this characteristic of metastable supercooled liquids has garnered considerable attention in glass science. However, the precise physical origins of dynamic heterogeneity remain elusive and widely debated. In this perspective, we examine the relationship between dynamic heterogeneity and structural order, based on numerical simulations of fragile liquids with isotropic potentials and strong liquids with directional interactions. We demonstrate that angular ordering, arising from many-body steric interactions, plays a crucial role in the slow dynamics and dynamic cooperativity of fragile liquids. Additionally, we explore how the growth of static order correlates with slower dynamics. In fragile liquids exhibiting super-Arrhenius behavior, the spatial extent of regions with high angular order grows upon cooling, and the sequential propagation of particle rearrangements within these ordered regions increases the activation energy for particle motion. In contrast, strong liquids with spatially constrained local ordering display a distinct "two-state" dynamic characteristic, marked by a transition between two Arrhenius-type behaviors. We argue that dynamic heterogeneity, irrespective of a liquid's fragility, arises from underlying structural order, with its spatial extent determined by static ordering. This perspective aims to deepen our understanding of the interplay between structural and dynamic properties in metastable supercooled liquids.
Collapse
Affiliation(s)
- Hajime Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Institute
of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
7
|
Karakus K, Ginzburg VV, Promislow K, Rakesh L. Modeling the structure and relaxation in glycerol-silica nanocomposites. SOFT MATTER 2025; 21:376-388. [PMID: 39584194 DOI: 10.1039/d4sm00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the α-relaxation time of a glycerol-silica nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis ("naïve" free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems.
Collapse
Affiliation(s)
- Koksal Karakus
- Department of Mathematics, Center for Applied Mathematics and Polymer Fluid Dynamics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
- Doctoral Program in Mathematical Sciences, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Valeriy V Ginzburg
- Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, Michigan 48824, USA
| | - Keith Promislow
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Leela Rakesh
- Department of Mathematics, Center for Applied Mathematics and Polymer Fluid Dynamics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
- Doctoral Program in Mathematical Sciences, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| |
Collapse
|
8
|
Wang J, Song L, Chen X, Jin X, Gao M, Huo J, Wang JQ. Fluctuating Spinodal-like Structure in the Glacial Phase of d-Mannitol. J Phys Chem B 2025; 129:540-545. [PMID: 39714627 DOI: 10.1021/acs.jpcb.4c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The glacial phase can be formed from supercooled liquid (SCL) in certain systems, which is called liquid-liquid transition (LLT). Revealing the nature of the glacial phase especially in a single-component system is crucial for understanding the LLT process. Here, by using flash differential scanning calorimetry and cold-field transmission electron microscopy, the structure of the d-mannitol glacial phase and the phase transition kinetics between the glacial phase and SCL were studied. We found that the glacial phase is a fluctuating spinodal-like structure. And the glacial phase displays a first-order melting characteristic when it transforms into the SCL. Furthermore, the LLT diagram in the enthalpy-temperature coordinate system is constructed based on the nucleation-growth and spinodal-decomposition transitions. Our findings provide new insight into the LLT process of the glass forming liquids.
Collapse
Affiliation(s)
- Jianing Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijian Song
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Chen
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Jin
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Attwood M, Li Y, Nevjestic I, Diggle P, Collauto A, Betala M, White AJP, Oxborrow M. Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications. ACS MATERIALS LETTERS 2025; 7:286-294. [PMID: 39790740 PMCID: PMC11707738 DOI: 10.1021/acsmaterialslett.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene. We find that the extent and position of acetylation control the degree of charge-transfer and the optical band gap by modifying crystal packing and electronic structure. We further reveal that while the spin polarization of the triplet state is slightly reduced compared to prototypical Anthracene:TCNB, the phase memory (T m) and, for 9-acetylanthracene:TCNB spin-lattice relaxation (T 1) time, could be enhanced up to 2.4 times. Our findings are discussed in the context of quantum microwave amplifiers, known as masers, and show that acetylation could be a powerful tool for improving organic materials for quantum sensing applications.
Collapse
Affiliation(s)
- Max Attwood
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Yingxu Li
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Irena Nevjestic
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Phil Diggle
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Alberto Collauto
- Department
of Chemistry and Centre for Pulse EPR spectroscopy, Imperial College
London, Molecular Sciences Research Hub, W12 0BZ London, United Kingdom
| | - Muskaan Betala
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Andrew J. P. White
- Department
of Chemistry and Centre for Pulse EPR spectroscopy, Imperial College
London, Molecular Sciences Research Hub, W12 0BZ London, United Kingdom
| | - Mark Oxborrow
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
10
|
Eltareb A, Zhou Y, Lopez GE, Giovambattista N. Potential energy landscape formalism for quantum molecular liquids. Commun Chem 2024; 7:289. [PMID: 39632951 PMCID: PMC11618503 DOI: 10.1038/s42004-024-01342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The potential energy landscape (PEL) formalism is a powerful tool within statistical mechanics to study the thermodynamic properties of classical low-temperature liquids and glasses. Recently, the PEL formalism has been extended to liquids/glasses that obey quantum mechanics, but applications have been limited to atomistic model liquids. In this work, we extend the PEL formalism to liquid/glassy water using path-integral molecular dynamics (PIMD) simulations, where nuclear quantum effects (NQE) are included. Our PIMD simulations, based on the q-TIP4P/F water model, show that the PEL of quantum water is both Gaussian and anharmonic. Importantly, the ring-polymers associated to the O/H atoms in the PIMD simulations, collapse at the local minima of the PEL (inherent structures, IS) for both liquid and glassy states. This allows us to calculate, analytically, the IS vibrational density of states (IS-VDOS) of the ring-polymer system using the IS-VDOS of classical water (obtained from classical MD simulations). The role of NQE on the structural properties of liquid/glassy water at various pressures are discussed in detail. Overall, our results demonstrate that the PEL formalism can effectively describe the behavior of molecular liquids at low temperatures and in the glass states, regardless of whether the liquid/glass obeys classical or quantum mechanics.
Collapse
Grants
- SC3 GM139673 NIGMS NIH HHS
- 1SC3GM139673 U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
- HRD-1547380, HRD-2112550, 2329339, CHE-2223461, 2138259, 2138286, 2138307, 2137603,2138296 National Science Foundation (NSF)
- U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Yang Zhou
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY, 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Noirat DB, Frick B, Jakobsen B, Appel M, Niss K. Density scaling and isodynes in glycerol-water mixtures. Phys Chem Chem Phys 2024; 26:29003-29014. [PMID: 39552335 DOI: 10.1039/d4cp02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This paper presents dielectric and neutron spectroscopy data on two different glycerol-water mixtures at elevated pressures. Glycerol-water liquid mixtures have a high concentration of hydrogen bonds which usually is expected to lead to complex dynamics. However, with regard to the pressure dependence of the dynamics we reveal a surprisingly simple picture. Different aspects of the dynamics have the same pressure dependence, in other words the phase diagram of the liquids have so-called isodynes, density scaling is also observed to hold reasonably well and there is even some reminiscence of isochronal superposition. This suggests that these aspect of liquid dynamics are very general and hold for different types of intermolecular interactions.
Collapse
Affiliation(s)
- David B Noirat
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bo Jakobsen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
| | - Markus Appel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Kristine Niss
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
| |
Collapse
|
12
|
Mei B, Schweizer KS. Medium-Range Structural Order as the Driver of Activated Dynamics and Complexity Reduction in Glass-Forming Liquids. J Phys Chem B 2024; 128:11293-11312. [PMID: 39481127 DOI: 10.1021/acs.jpcb.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We analyze in depth the Elastically Collective Nonlinear Langevin Equation theory of activated dynamics in metastable liquids to establish that the predicted inter-relationships between the alpha relaxation time, local cage and collective elastic barriers, dynamic localization length, and shear modulus are causally related within the theory to the medium range order (MRO) static correlation length. The latter grows exponentially with density for metastable hard sphere fluids and as a nonuniversal inverse power law with temperature for supercooled liquids under isobaric conditions. The physical origin of predicted connections between the alpha time and other metrics of cage order and the thermodynamic inverse dimensionless compressibility is fully established. It is discovered that although kinetic constraints from the real space first coordination shell are important for the alpha time, they are of secondary importance compared to the consequences of the more universal MRO correlations in both the modestly and deeply metastable regimes. This understanding sheds new light on the theoretical basis for, and prior successes of, the predictive mapping of chemically complex thermal liquids to effective hard sphere fluids based on matching their dimensionless compressibilities, a scheme we call "complexity reduction". In essence, the latter is equivalent to the physical requirement that the thermal liquid MRO correlation equals that of its effective hard sphere analog. The mapping alone is shown to provide a remarkable level of quantitative predictive power for the glass transition temperature Tg of 21 molecular and polymer liquids. Predictions for the chemically specific absolute magnitude and growth with cooling of the MRO correlation length are obtained and lie in the window of 2-6 nm at Tg. Dynamic heterogeneity, elastic facilitation, and beyond pair structure issues are briefly discussed. Future opportunities to theoretically analyze the equilibrated deep glass regime are outlined.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Glova A, Karttunen M. Learning glass transition temperatures via dimensionality reduction with data from computer simulations: Polymers as the pilot case. J Chem Phys 2024; 161:184902. [PMID: 39513447 DOI: 10.1063/5.0229161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Machine learning methods provide an advanced means for understanding inherent patterns within large and complex datasets. Here, we employ the principal component analysis (PCA) and the diffusion map (DM) techniques to evaluate the glass transition temperature (Tg) from low-dimensional representations of all-atom molecular dynamic simulations of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB). Four molecular descriptors were considered: radial distribution functions (RDFs), mean square displacements (MSDs), relative square displacements (RSDs), and dihedral angles (DAs). By applying Gaussian Mixture Models (GMMs) to analyze the PCA and DM projections and by quantifying their log-likelihoods as a density-based metric, a distinct separation into two populations corresponding to melt and glass states was revealed. This separation enabled the Tg evaluation from a cooling-induced sharp increase in the overlap between log-likelihood distributions at different temperatures. Tg values derived from the RDF and MSD descriptors using DM closely matched the standard computer simulation-based dilatometric and dynamic Tg values for both PLA and PHB models. This was not the case for PCA. The DM-transformed DA and RSD data resulted in Tg values in agreement with experimental ones. Overall, the fusion of atomistic simulations and DMs complemented with the GMMs presents a promising framework for computing Tg and studying the glass transition in a unified way across various molecular descriptors for glass-forming materials.
Collapse
Affiliation(s)
- Artem Glova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Mikko Karttunen
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Ngai KL. Importance of Experiments That Can Test Theories Critically. J Phys Chem B 2024; 128:10709-10726. [PMID: 39413288 DOI: 10.1021/acs.jpcb.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
General dynamic and thermodynamic properties of complex materials, including amorphous polymers and molecular glass-formers, have been established from the wealth of experimental data accumulated over the years. Naturally, these general properties attract researchers to construct theories and models to address and explain them. Often more than one theory with contrasting or even conflicting theoretical bases can equally explain a general property rather well. The correct explanation becomes unclear, and progress is stopped. The resolution of the problem comes when an innovative experiment is performed with insightful results that can critically test the premise and assumptions of each theory. This important role played by experimentalists is exemplified by the contributions of Mark Ediger in several general properties considered in this paper: (1) dynamics of the components in binary polymer blends; (2) breakdown of the Stokes-Einstein and the Debye-Stokes-Einstein relations; (3) enhancement of surface mobility and in relation to formation of ultrastable glasses; and (4) the Johari-Goldstein β-relaxation in ultrastable glasses. Different theories proposed to explain these properties are discussed, including the Coupling Model of the author.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Institute for Chemical and Physical Processes, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
15
|
Nath S, Sengupta S. Is the glassy dynamics same in 2D as in 3D? The Adam Gibbs relation test. J Chem Phys 2024; 161:034504. [PMID: 39012814 DOI: 10.1063/5.0174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
It has been recognized of late that even amorphous, glass-forming materials in two dimensions (2D) are affected by Mermin-Wagner-type long wavelength thermal fluctuation, which is inconsequential in three dimensions (3D). We consider the question of whether the effect of spatial dimension on dynamics is only limited to such fluctuations or if the nature of glassy dynamics is intrinsically different in 2D. To address it, we study the relationship between dynamics and thermodynamics using the Adam-Gibbs (AG) relation and the random first order transition (RFOT) theory. Using two model glass-forming liquids, we find that even after removing the effect of long wavelength fluctuations, the AG relation breaks down in two dimensions. Next, we consider the effect of anharmonicity of vibrational entropy-a second factor that affects the thermodynamics but not dynamics. Using the potential energy landscape formalism, we explicitly compute the configurational entropy, both with and without the anharmonic correction. We show that even with both the corrections, the AG relation still breaks down in 2D. The extent of deviation from the AG relation crucially depends on the attractive vs repulsive nature of interparticle interactions, choice of representative timescale (diffusion coefficient vs α-relaxation time), and implies that the RFOT scaling exponents also depend on these factors. Thus, our results suggest that some differences in the nature of glassy dynamics between 2D and 3D remain that are not explained by long wavelength fluctuations.
Collapse
Affiliation(s)
- Santu Nath
- Department of Physics, Indian Institute of Technology Roorkee 247667, India
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | |
Collapse
|
16
|
Eliasen KL, Gabriel J, Blochowicz T, Gainaru CP, Christensen TE, Niss K. What is the origin of slow relaxation modes in highly viscous ionic liquids? J Chem Phys 2024; 161:034506. [PMID: 39012811 DOI: 10.1063/5.0215661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Room temperature ionic liquids (RTILs) are molten salts consisting entirely of ions and have over the past decades gained increased interest due to their high potential in applications. These structurally complex systems often display multiple relaxation modes in the response functions at lower frequencies, hinting to complex underlying mechanisms. While the existence of these multimodal spectra in the shear mechanical, dielectric, and light scattering response of RTILs has been confirmed multiple times, controversy still surrounds the origin. This paper, therefore, aims to provide additional insights into the multimodal spectra seen in RTILs by presenting new shear mechanical results on seven different RTILs: Pyr1n-TFSI with n = 4, 6, and 8; Pyr18-TFSI mixed with Li-TFSI in two high concentrations; and Cn-mim-BF4 with n = 3 and 8. Dynamic depolarized light scattering was also measured on one of the Pyr18-TFSI Li-salt mixtures. These specific cases were analyzed in detail and put into a bigger perspective together with an overview of the literature. Recent literature offers two specific explanations for the origin of the multimodal shear mechanical spectra: (1) cation-anion time scale separation or (2) combined cation-anion relaxation in addition to a dynamic signal from mesoscale aggregates at lower frequencies. However, neither of these two pictures can consistently explain all the results on different ionic liquids. Instead, we conclude that the origin of the multimodal spectrum is system specific. This underlines the complexity of this class of liquids and shows that great care must be taken when making general conclusions based on specific cases.
Collapse
Affiliation(s)
- Kira L Eliasen
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Jan Gabriel
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt 64289, Germany
| | - Catalin P Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Tage E Christensen
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Kristine Niss
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| |
Collapse
|
17
|
Grzybowski A, Koperwas K, Paluch M. Role of anisotropy in understanding the molecular grounds for density scaling in dynamics of glass-forming liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084501. [PMID: 38861964 DOI: 10.1088/1361-6633/ad569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| |
Collapse
|
18
|
Yasuda I, Endo K, Arai N, Yasuoka K. In-layer inhomogeneity of molecular dynamics in quasi-liquid layers of ice. Commun Chem 2024; 7:117. [PMID: 38811834 PMCID: PMC11136980 DOI: 10.1038/s42004-024-01197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Quasi-liquid layers (QLLs) are present on the surface of ice and play a significant role in its distinctive chemical and physical properties. These layers exhibit considerable heterogeneity across different scales ranging from nanometers to millimeters. Although the formation of partially ice-like structures has been proposed, the molecular-level understanding of this heterogeneity remains unclear. Here, we examined the heterogeneity of molecular dynamics on QLLs based on molecular dynamics simulations and machine learning analysis of the simulation data. We demonstrated that the molecular dynamics of QLLs do not comprise a mixture of solid- and liquid water molecules. Rather, molecules having similar behaviors form dynamical domains that are associated with the dynamical heterogeneity of supercooled water. Nonetheless, molecules in the domains frequently switch their dynamical state. Furthermore, while there is no observable characteristic domain size, the long-range ordering strongly depends on the temperature and crystal face. Instead of a mixture of static solid- and liquid-like regions, our results indicate the presence of heterogeneous molecular dynamics in QLLs, which offers molecular-level insights into the surface properties of ice.
Collapse
Affiliation(s)
- Ikki Yasuda
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Katsuhiro Endo
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, Japan.
| |
Collapse
|
19
|
Tripathy M, Srivastava A. Non-affine deformation analysis and 3D packing defects: A new way to probe membrane heterogeneity in molecular simulations. Methods Enzymol 2024; 701:541-577. [PMID: 39025582 DOI: 10.1016/bs.mie.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here, we discuss a new framework developed over the last 5 years in our group to probe nanoscale membrane heterogeneity. The framework is based on the idea of characterizing lateral heterogeneity through non-affine deformation (NAD) measurements, transverse heterogeneity through three dimensional (3D) lipid packing defects, and using these approaches to formalize the seemingly trivial correlation between lateral organization and lipid packing in biological membranes. We find that measurements from NAD analysis, a prescription which is borrowed from Physics of glasses and granular material, can faithfully distinguish between liquid-ordered and disordered phases in membranes at molecular length scales and, can also be used to identify phase boundaries with high precision. Concomitantly, 3D-packing defects can not only distinguish between the two co-existing fluid phases based on their molecular scale packing (or membrane free volume), but also provide a route to connect the membrane domains to their functionality, such as exploring the molecular origins of inter-leaflet domain registration and peptide partitioning. The correlation between lateral membrane order and transverse packing presents novel molecular design-level features that can explain functions such as protein/peptide partitioning and small-molecule permeation dynamics in complex and heterogeneous membranes with high-fidelity. The framework allows us to explore the nature of lateral organization and molecular packing as a manifestation of intricate molecular interactions among a chemically rich variety of lipids and other molecules in a membrane with complex membrane composition and asymmetry across leaflets.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany.
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India.
| |
Collapse
|
20
|
Zhou Y, Lopez GE, Giovambattista N. The Harmonic and Gaussian Approximations in the Potential Energy Landscape Formalism for Quantum Liquids. J Chem Theory Comput 2024; 20:1847-1861. [PMID: 38323779 PMCID: PMC11166017 DOI: 10.1021/acs.jctc.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The potential energy landscape (PEL) formalism has been used in the past to describe the behavior of classical low-temperature liquids and glasses. Here, we extend the PEL formalism to describe the behavior of liquids and glasses that obey quantum mechanics. In particular, we focus on the (i) harmonic and (ii) Gaussian approximations of the PEL, which have been commonly used to describe classical systems, and show how these approximations can be applied to quantum liquids/glasses. Contrary to the case of classical liquids/glasses, the PEL of quantum liquids is temperature-dependent, and hence, the main expressions resulting from approximations (i) and (ii) depend on the nature (classical vs quantum) of the system. The resulting theoretical expressions from the PEL formalism are compared with results from path-integral Monte Carlo (PIMC) simulations of a monatomic model liquid. In the PIMC simulations, every atom of the quantum liquid is represented by a ring-polymer. Our PIMC simulations show that at the local minima of the PEL (inherent structures, or IS), sampled over a wide range of temperatures and volumes, the ring-polymers are collapsed. This considerably facilitates the description of quantum liquids using the PEL formalism. Specifically, the normal modes of the ring-polymer system/quantum liquid at an IS can be calculated analytically if the normal modes of the classical liquid counterpart are known (as obtained, e.g., from classical MC or molecular dynamics simulations of the corresponding atomic liquid).
Collapse
Affiliation(s)
- Yang Zhou
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
21
|
Tung CH, Chang SY, Yip S, Wang Y, Carrillo JMY, Sumpter BG, Shinohara Y, Do C, Chen WR. Viscoelastic relaxation and topological fluctuations in glass-forming liquids. J Chem Phys 2024; 160:094506. [PMID: 38445839 DOI: 10.1063/5.0189938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
A method for characterizing the topological fluctuations in liquids is proposed. This approach exploits the concept of the weighted gyration tensor of a collection of particles and permits the definition of a local configurational unit (LCU). The first principal axis of the gyration tensor serves as the director of the LCU, which can be tracked and analyzed by molecular dynamics simulations. Analysis of moderately supercooled Kob-Andersen mixtures suggests that orientational relaxation of the LCU closely follows viscoelastic relaxation and exhibits a two-stage behavior. The slow relaxing component of the LCU corresponds to the structural, Maxwellian mechanical relaxation. Additionally, it is found that the mean curvature of the LCUs is approximately zero at the Maxwell relaxation time with the Gaussian curvature being negative. This observation implies that structural relaxation occurs when the configurationally stable and destabilized regions interpenetrate each other in a bicontinuous manner. Finally, the mean and Gaussian curvatures of the LCUs can serve as reduced variables for the shear stress correlation, providing a compelling proof of the close connection between viscoelastic relaxation and topological fluctuations in glass-forming liquids.
Collapse
Affiliation(s)
- Chi-Huan Tung
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shou-Yi Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Sidney Yip
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
22
|
Moratalla M, Rodríguez-López M, Rodríguez-Tinoco C, Rodríguez-Viejo J, Jiménez-Riobóo RJ, Ramos MA. Depletion of two-level systems in highly stable glasses with different molecular ordering. COMMUNICATIONS PHYSICS 2023; 6:274. [DOI: 10.1038/s42005-023-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 01/03/2025]
Abstract
AbstractRecent findings of structural glasses with extremely high kinetic and thermodynamic stability have attracted much attention. The question has been raised as to whether the well-known, low-temperature “glassy anomalies” (attributed to the presence of two-level systems [TLS] and the “boson peak”) persist or not in these ultrastable glasses of much lower configurational entropy. To resolve previous contradictory results, we study a particular type of ultrastable glass, TPD, which can be prepared by physical vapor deposition in a highly-stable state with different degrees of layering and molecular orientation, and also as a conventional glass and in crystalline state. After a thorough characterization of the different samples prepared, we have measured their specific heat down to 0.4 K. Whereas the conventional glass exhibits the typical glassy behaviour and the crystal the expected Debye cubic dependence at very low temperatures, a strong depletion of the TLS contribution is found in both kinds of ultrastable glass, regardless of their layering and molecular ordering.
Collapse
|
23
|
New Kinetics Equation for Stress Relaxation of Semi-crystalline Polymers below Glass Transition Temperature. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-022-2749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Ma XJ, Zhang R. Cooperative activated hopping dynamics in binary glass-forming liquids: effects of the size ratio, composition, and interparticle interactions. SOFT MATTER 2023. [PMID: 37317997 DOI: 10.1039/d3sm00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Slow dynamics in supercooled and glassy liquids is an important research topic in soft matter physics. Compared to the traditionally focused one-component systems, glassy dynamics in mixture systems adds in a rich set of new complexities, which are fundamentally interesting and also relevant for many technological applications. In this paper, we apply the recently developed self-consistent cooperative hopping theory (SCCHT) to systematically investigate the effects of the size ratio, composition and interparticle interactions on the cooperative activated hopping dynamics of matrix (in larger size) and penetrant (in smaller size) particles in varied binary sphere mixture model systems, with a specific focus on ultrahigh mixture packing fractions that mimic the deeply supercooled glass transition conditions for molecular/polymeric mixture materials. Analysis shows that in these high activation barrier cases, the long-range elastic distortion associated with a matrix particle hopping over its cage confinement always generates an elastic barrier of a nonnegligible magnitude, although the ratio between the elastic barrier and local barrier contribution is sensitively dependent on all three mixture-specific system factors considered in this work. SCCHT predicts two general scenarios of penetrant-matrix cooperative activated hopping dynamics: matrix/penetrant co-hopping (regime 1) or the penetrant mean barrier hopping time shorter than that of the matrix (regime 2). Increasing the penetrant-to-matrix size ratio or the penetrant-matrix cross-attraction strength is found to universally enlarge the composition window of regime 1. Diverse dynamical properties characterising different aspects of the cooperative activated hopping process, including the penetrant and matrix transient localization lengths, penetrant and matrix hopping jump distances, different types of local and elastic activated barriers, and matrix long-time diffusivity, relaxation time and dynamic fragility are quantitatively studied against a wide range of variations over the three system factors. Of particular interest is the universal "anti-plasticization" phenomenon achievable for sufficiently strong cross-attractive interactions. The prospects this work opens for the exploration of a wide variety of polymer-based mixture materials are briefly discussed at the end.
Collapse
Affiliation(s)
- Xiao-Juan Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Ghosh A. Importance of Many Particle Correlations to the Collective Debye-Waller Factor in a Single-Particle Activated Dynamic Theory of the Glass Transition. J Phys Chem B 2023. [PMID: 37229571 DOI: 10.1021/acs.jpcb.3c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We theoretically study the importance of many body correlations on the collective Debye-Waller (DW) factor in the context of the Nonlinear Langevin Equation (NLE) single-particle activated dynamics theory of glass transition and its extension to include collective elasticity (ECNLE theory). This microscopic force-based approach envisions structural alpha relaxation as a coupled local-nonlocal process involving correlated local cage and longer range collective barriers. The crucial question addressed here is the importance of the deGennes narrowing contribution versus a literal Vineyard approximation for the collective DW factor that enters the construction of the dynamic free energy in NLE theory. While the Vineyard-deGennes approach-based NLE theory and its ECNLE theory extension yields predictions that agree well with experimental and simulation results, use of a literal Vineyard approximation for the collective DW factor massively overpredicts the activated relaxation time. The current study suggests many particle correlations are crucial for a reliable description of activated dynamics theory of model hard sphere fluids.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
26
|
Arrese-Igor S, Alegría A, Colmenero J. Non-simple flow behavior in a polar van der Waals liquid: Structural relaxation under scrutiny. J Chem Phys 2023; 158:2888210. [PMID: 37139999 DOI: 10.1063/5.0145433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
The non-exponential character of the structural relaxation is considered one of the hallmarks of the glassy dynamics, and in this context, the relatively narrow shape observed by dielectric techniques for polar glass formers has attracted the attention of the community for long time. This work addresses the phenomenology and role of specific non-covalent interactions in the structural relaxation of glass-forming liquids by the study of polar tributyl phosphate. We show that dipole interactions can couple to shear stress and modify the flow behavior, preventing the occurrence of the simple liquid behavior. We discuss our findings in the general framework of glassy dynamics and the role of intermolecular interactions.
Collapse
Affiliation(s)
- S Arrese-Igor
- Centro de de Física de Materiales (MPC), Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| | - A Alegría
- Centro de de Física de Materiales (MPC), Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - J Colmenero
- Centro de de Física de Materiales (MPC), Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
27
|
Ortlieb L, Ingebrigtsen TS, Hallett JE, Turci F, Royall CP. Probing excitations and cooperatively rearranging regions in deeply supercooled liquids. Nat Commun 2023; 14:2621. [PMID: 37147284 PMCID: PMC10163050 DOI: 10.1038/s41467-023-37793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/28/2023] [Indexed: 05/07/2023] Open
Abstract
Upon approaching the glass transition, the relaxation of supercooled liquids is controlled by activated processes, which become dominant at temperatures below the so-called dynamical crossover predicted by Mode Coupling theory (MCT). Two of the main frameworks rationalising this behaviour are dynamic facilitation theory (DF) and the thermodynamic scenario which give equally good descriptions of the available data. Only particle-resolved data from liquids supercooled below the MCT crossover can reveal the microscopic mechanism of relaxation. By employing state-of-the-art GPU simulations and nano-particle resolved colloidal experiments, we identify the elementary units of relaxation in deeply supercooled liquids. Focusing on the excitations of DF and cooperatively rearranging regions (CRRs) implied by the thermodynamic scenario, we find that several predictions of both hold well below the MCT crossover: for the elementary excitations, their density follows a Boltzmann law, and their timescales converge at low temperatures. For CRRs, the decrease in bulk configurational entropy is accompanied by the increase of their fractal dimension. While the timescale of excitations remains microscopic, that of CRRs tracks a timescale associated with dynamic heterogeneity, [Formula: see text]. This timescale separation of excitations and CRRs opens the possibility of accumulation of excitations giving rise to cooperative behaviour leading to CRRs.
Collapse
Affiliation(s)
- Levke Ortlieb
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK.
| | - Trond S Ingebrigtsen
- DNRF Centre for Glass and Time, IMFUFA, Department of Science, Systems and Models, Roskilde University, Postbox 260, DK-4000, Roskilde, Denmark.
| | - James E Hallett
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6AD, UK.
| | - Francesco Turci
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
28
|
Kringle L, Kay BD, Kimmel GA. Dynamic Heterogeneity and Kovacs' Memory Effects in Supercooled Water. J Phys Chem B 2023; 127:3919-3930. [PMID: 37097190 DOI: 10.1021/acs.jpcb.3c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Understanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space. We used infrared spectroscopy and the fast time resolution obtained by transiently heating nanoscale water films to investigate relaxation kinetics (aging) in supercooled water. When the structural relaxation of the water films was followed using a temperature jump protocol analogous to the classic experiments of Kovacs, similar memory effects were observed. In particular, after suitable aging at one temperature, water's structure displayed an extremum versus the number of heat pulses upon changing to a second temperature before eventually relaxing to a steady-state structure characteristic of that temperature. A random double well model based on the idea of dynamic heterogeneity in supercooled water accounts for the observations.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
29
|
Xu WS, Sun ZY. A Thermodynamic Perspective on Polymer Glass Formation. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
30
|
Patil S, Sun R, Cheng S, Cheng S. Molecular Mechanism of the Debye Relaxation in Monohydroxy Alcohols Revealed from Rheo-Dielectric Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 130:098201. [PMID: 36930926 DOI: 10.1103/physrevlett.130.098201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Rheo-dielectric spectroscopy is employed to investigate the effect of external shear on Debye-like relaxation of a model monohydroxy alcohol, i.e., the 2-ethyl-1-hexanol (2E1H). Shear deformation leads to strong acceleration in the structural relaxation, the Debye relaxation, and the terminal relaxation of 2E1H. Moreover, the shear-induced reduction in structural relaxation time, τ_{α}, scales quadratically with that of Debye time, τ_{D}, and the terminal flow time, τ_{f}, suggesting a relationship of τ_{D}^{2}∼τ_{α}. Further analyses reveal τ_{D}^{2}/τ_{α} of 2E1H follows Arrhenius temperature dependence that applies remarkably well to many other monohydroxy alcohols with different molecular sizes, architectures, and alcohol types. These results cannot be understood by the prevailing transient chain model, and suggest a H-bonding breakage facilitated sub-supramolecular reorientation as the origin of Debye relaxation of monohydroxy alcohols, akin to the molecular mechanism for the terminal relaxation of unentangled "living" polymers.
Collapse
Affiliation(s)
- Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ruikun Sun
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shinian Cheng
- Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
31
|
Bonneau H, Arutkin M, Chen R, Forrest JA, Raphaël E, Salez T. On the bridge hypothesis in the glass transition of freestanding polymer films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:8. [PMID: 36856883 DOI: 10.1140/epje/s10189-023-00272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Freestanding thin polymer films with high molecular weights exhibit an anomalous decrease in the glass-transition temperature with film thickness. Specifically, in such materials, the measured glass-transition temperature evolves in an affine way with the film thickness, with a slope that weakly depends on the molecular weight. De Gennes proposed a sliding mechanism as the hypothetical dominant relaxation process in these systems, where stress kinks could propagate in a reptation-like fashion through so-called bridges, i.e. from one free interface to the other along the backbones of polymer macromolecules. Here, by considering the exact statistics of finite-sized random walks within a confined box, we investigate in details the bridge hypothesis. We show that the sliding mechanism cannot reproduce the basic features appearing in the experiments, and we exhibit the fundamental reasons behind such a fact.
Collapse
Affiliation(s)
- Haggai Bonneau
- Gulliver, CNRS UMR 7083, ESPCI Paris, Univ. PSL, 75005, Paris, France
| | - Maxence Arutkin
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Rainni Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - James A Forrest
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Elie Raphaël
- Gulliver, CNRS UMR 7083, ESPCI Paris, Univ. PSL, 75005, Paris, France
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France.
| |
Collapse
|
32
|
Chu W, Yu J, Ren N, Wang Z, Hu L. A fractal structural feature related to dynamic crossover in metallic glass-forming liquids. Phys Chem Chem Phys 2023; 25:4151-4160. [PMID: 36655679 DOI: 10.1039/d2cp04840j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The dynamic crossover in supercooled liquids initially predicted by model coupling theory has been widely accepted, but its underlying structural origin is still an open issue for glass-forming liquids. By molecular dynamics simulations of binary CuZr liquids, the present work verifies that high pressure could enhance this crossover, facilitating the studies on the structural features at the crossover temperature Tc. We discover that the topological connectivity of icosahedral clusters is responsible for this dynamic crossover, rather than all clusters. Tc is the temperature at which the connectivity degree between these clusters reaches a maximum and the dynamic heterogeneity begins to keep stable. Below Tc, the fractal topological structures appear in the medium-range order scale. The icosahedral clusters with a certain connectivity pattern can be regarded as a fractal structural unit. By employing the established fractal analysis method, the fractal dimension D of the icosahedral network is calculated. Our results indicate that the D value increases monotonically with increasing pressure and the fractal behavior of the icosahedral network is an inherent feature of metallic glasses. We also find similar fractal behavior in clusters with high local five-fold symmetry. Our findings shed light on the origin of a dynamic crossover in the deep supercooled region of metallic glasses and also demonstrate the important role of icosahedral clusters in uncovering the fractal behavior of metallic glass.
Collapse
Affiliation(s)
- Wei Chu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jinhua Yu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Nannan Ren
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, 243032, Anhui Provence, China
| | - Zheng Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lina Hu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| |
Collapse
|
33
|
Absorption of pressurized methane in normal and supercooled p-xylene revealed via high-resolution neutron imaging. Sci Rep 2023; 13:136. [PMID: 36599907 DOI: 10.1038/s41598-022-27142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Supercooling of liquids leads to peculiarities which are scarcely studied under high-pressure conditions. Here, we report the surface tension, solubility, diffusivity, and partial molar volume for normal and supercooled liquid solutions of methane with p-xylene. Liquid bodies of perdeuterated p-xylene (p-C8D10), and, for comparison, o-xylene (o-C8D10), were exposed to pressurized methane (CH4, up to 101 bar) at temperatures ranging 7.0-30.0 °C and observed at high spatial resolution (pixel size 20.3 μm) using a non-tactile neutron imaging method. Supercooling led to the increase of diffusivity and partial molar volume of methane. Solubility and surface tension were insensitive to supercooling, the latter substantially depended on methane pressure. Overall, neutron imaging enabled to reveal and quantify multiple phenomena occurring in supercooled liquid p-xylene solutions of methane under pressures relevant to the freeze-out in the production of liquefied natural gas.
Collapse
|
34
|
Malewski A, Kozłowski M, Podwórny J, Środa M, Sumelka W. Developments on Constitutive Material Model for Architectural Soda-Lime Silicate (SLS) Glass and Evaluation of Key Modelling Parameters. MATERIALS (BASEL, SWITZERLAND) 2023; 16:397. [PMID: 36614739 PMCID: PMC9822069 DOI: 10.3390/ma16010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Architectural soda-lime silicate glass (SLS) is increasingly taking on complex shapes that require more detailed numerical analysis. Glass modeling is a thoroughly described topic with validated constitutive models. However, these models require a number of precise material parameters for SLS glass, and these are very sensitive to changes in glass composition. The currently available information is based on SLS glass tested in the late 1990s. As a result, most current publications are based on the above data. The object of this work was to analyze the available sources and update the information on selected key parameters for modeling. Using the currently utilized SLS glass in construction, the coefficient of thermal expansion (CTE), glass transition temperature, and the Young's modulus have been experimentally investigated. The updated material parameters will allow for more accurate modeling of the SLS glass currently used in construction, and in consequence will make the prototyping process for glass with complex geometries possible to be transferred from the production stage to the design stage, resulting in shorter production times.
Collapse
Affiliation(s)
- Andrzej Malewski
- Institute of Structural Analysis, Poznan University of Technology, 61-138 Poznan, Poland
| | - Marcin Kozłowski
- Department of Structural Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Jacek Podwórny
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Refractory Materials Lab, 44-100 Gliwice, Poland
| | - Marcin Środa
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Wojciech Sumelka
- Institute of Structural Analysis, Poznan University of Technology, 61-138 Poznan, Poland
| |
Collapse
|
35
|
Li YL, Jia XM, Zhang XZ, Lu ZY, Qian HJ. Effect of the polar group content on the glass transition temperature of ROMP copolymers. SOFT MATTER 2022; 19:128-136. [PMID: 36477470 DOI: 10.1039/d2sm01229d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polar groups have long been recognized to greatly influence the glass transition temperature (Tg) of polymers, but understanding the underlying physical mechanism remains a challenge. Here, we study the glass formation of ring-opening metathesis polymerization (ROMP) copolymers containing polar groups by employing all-atom molecular dynamics simulations. We show that although the number of hydrogen bonds (NHB) and the cohesive energy density increase linearly as the content of polar groups (fpol) increases, the Tg of ROMP copolymers increases with the increase of fpol in a nonlinear fashion, and tends to plateau for sufficiently high fpol. Importantly, we find that the increase rate of Gibbs free energy for HB breaking gradually slows down with the increase of fpol, indicating that the HB is gradually stabilized. Therefore, Tg is jointly determined by NHB and the strength of HBs in the system, while the latter dominates. Although NHB increases linearly with increasing fpol, the HB strength increases slowly with increasing fpol, which leads to a decreasing rate of increase in Tg.
Collapse
Affiliation(s)
- Yi-Lin Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Xiang-Meng Jia
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Xu-Ze Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
36
|
Liu M, Slavney AH, Tao S, McGillicuddy RD, Lee CC, Wenny MB, Billinge SJL, Mason JA. Designing Glass and Crystalline Phases of Metal-Bis(acetamide) Networks to Promote High Optical Contrast. J Am Chem Soc 2022; 144:22262-22271. [PMID: 36441167 DOI: 10.1021/jacs.2c10449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Owing to their high tunability and predictable structures, metal-organic materials offer a powerful platform to study glass formation and crystallization processes and to design glasses with unique properties. Here, we report a novel series of glass-forming metal-ethylenebis(acetamide) networks that undergo reversible glass and crystallization transitions below 200 °C. The glass-transition temperatures, crystallization kinetics, and glass stability of these materials are readily tunable, either by synthetic modification or by liquid-phase blending, to form binary glasses. Pair distribution function (PDF) analysis reveals extended structural correlations in both single and binary metal-bis(acetamide) glasses and highlights the important role of metal-metal correlations during structural evolution across glass-crystal transitions. Notably, the glass and crystalline phases of a Co-ethylenebis(acetamide) binary network feature a large reflectivity contrast ratio of 4.8 that results from changes in the local coordination environment around Co centers. These results provide new insights into glass-crystal transitions in metal-organic materials and have exciting implications for optical switching, rewritable data storage, and functional glass ceramics.
Collapse
Affiliation(s)
- Mengtan Liu
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Adam H Slavney
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Songsheng Tao
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York10027, United States
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Cassia C Lee
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Malia B Wenny
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Simon J L Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York10027, United States.,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| |
Collapse
|
37
|
Grossi J, Pisarev V. Two-temperature molecular dynamics simulations of crystal growth in a tungsten supercooled melt. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 51:015401. [PMID: 36317364 DOI: 10.1088/1361-648x/ac9ef6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In this work we use the two-temperature model (TTM) coupled to molecular dynamics (MD) with sinks at the boundaries of the electronic subsystem to study crystal-growth rate in a quasi-one-dimensional tungsten crystal into a supercooled melt. The possibility of varying the extension of the electronic grid along with the sinks allows a more realistic description of the electronic thermal transport away from the system, providing a considerable heat dissipation from the crystallization front. Based on this approach, our results regarding crystal-growth rates are not affected even if the size of the system is changed. Moreover, comparisons are established with respect to MD and standard TTM simulations. For these comparisons between models, something remarkable is found, and it is that the temperature and the value of the maximum growth rate are the same. In contrast, the inclusion of sinks has a great impact with respect to the standard approaches specially reflected at low temperatures, where a frustration of the liquid-crystal interface dynamics is seen until a state of zero crystal growth is reached, which is not possible to characterize quantitatively since a kind of stochastic behavior is present.
Collapse
Affiliation(s)
- Joás Grossi
- National Research University Higher School of Economics, 20 Myasnitskaya str., 101000 Moscow, Russia
| | - Vasily Pisarev
- National Research University Higher School of Economics, 20 Myasnitskaya str., 101000 Moscow, Russia
- Joint Institute for High Temperatures of RAS, 13/2 Izhorskaya str., 125412 Moscow, Russia
| |
Collapse
|
38
|
Lewis JS, Gaunt AP, Comment A. Photochemistry of pyruvic acid is governed by photo-induced intermolecular electron transfer through hydrogen bonds. Chem Sci 2022; 13:11849-11855. [PMID: 36320913 PMCID: PMC9580485 DOI: 10.1039/d2sc03038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Despite more than 85 years of research, the mechanism behind the photodecarboxylation of pyruvic acid remains elusive. Most studies focused on the gas and liquid phase of diluted solutions of pyruvic acid to understand the impact of sun light on the degradation of this molecule in the atmosphere. By analyzing concentrated supercooled solutions at 77 K, we demonstrate that instead of decarboxylating, the pyruvic acid molecule plays the role of electron donor and transfers an electron to an acceptor molecule that subsequently degrades to form CO2. We show that this electron transfer occurs via hydrogen bonding and that in aqueous solutions of pyruvic acid, the hydrated form is the electron acceptor. These findings demonstrate that photo-induced electron transfer via hydrogen bonding can occur between two simple carboxylic acids and that this mechanism governs the photochemistry of pyruvic acid, providing unexplored alternative pathways for the decarboxylation of photo-inactive molecules. When supercooled pyruvic acid is photo-irradiated, a radical detectable by ESR forms following the transfer of an electron from a molecule in its keto form to a molecule in its hydrated form. The latter subsequently degrades to CO2 and acetic acid.![]()
Collapse
Affiliation(s)
- Jennifer S. Lewis
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Adam P. Gaunt
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK,General Electric HealthcarePollards Wood, Nightingales Lane, Chalfont St GilesHP8 4SPUK
| |
Collapse
|
39
|
Louzguine-Luzgin DV. Structural Changes in Metallic Glass-Forming Liquids on Cooling and Subsequent Vitrification in Relationship with Their Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7285. [PMID: 36295350 PMCID: PMC9610435 DOI: 10.3390/ma15207285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The present review is related to the studies of structural changes observed in metallic glass-forming liquids on cooling and subsequent vitrification in terms of radial distribution function and its analogues. These structural changes are discussed in relationship with liquid's properties, especially the relaxation time and viscosity. These changes are found to be directly responsible for liquid fragility: deviation of the temperature dependence of viscosity of a supercooled liquid from the Arrhenius equation through modification of the activation energy for viscous flow. Further studies of this phenomenon are necessary to provide direct mathematical correlation between the atomic structure and properties.
Collapse
Affiliation(s)
- D. V. Louzguine-Luzgin
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Aoba-Ku, Sendai 980-8577, Japan;
- MathAM-OIL, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan
| |
Collapse
|
40
|
Lee H, Son D, Lee S, Eun K, Kim M, Paeng K. Utilization of Polymer-Tethered Probes for the Assessment of Segmental Polymer Dynamics near the Glass Transition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyangseok Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongwan Son
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyunghyun Eun
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Keewook Paeng
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Das P, Parmar ADS, Sastry S. Annealing glasses by cyclic shear deformation. J Chem Phys 2022; 157:044501. [DOI: 10.1063/5.0100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A major challenge in simulating glassy systems is the ability to generate configurations that may be found in equilibrium at sufficiently low temperatures, in order to probe static and dynamic behavior close to the glass transition. A variety of approaches have recently explored ways of surmounting this obstacle. Here, we explore the possibility of employing mechanical agitation, in the form of cyclic shear deformation, to generate low energy configurations in a model glass former. We perform shear deformation simulations over a range of temperatures, shear rates, and strain amplitudes. We find that shear deformation induces faster relaxation toward low energy configurations, or overaging, in simulations at sufficiently low temperatures, consistently with previous results for athermal shear. However, for temperatures at which simulations can be run until a steady state is reached with or without shear deformation, we find that the inclusion of shear deformation does not result in any speed up of the relaxation toward low energy configurations. Although we find the configurations from shear simulations to have properties indistinguishable from an equilibrium ensemble, the cyclic shear procedure does not guarantee that we generate an equilibrium ensemble at a desired temperature. In order to ensure equilibrium sampling, we develop a hybrid Monte Carlo algorithm that employs cyclic shear as a trial generation step and has acceptance probabilities that depend not only on the change in internal energy but also on the heat dissipated (equivalently, work done). We show that such an algorithm, indeed, generates an equilibrium ensemble.
Collapse
Affiliation(s)
- Pallabi Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Anshul D. S. Parmar
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
42
|
Andersson O, B Brant Carvalho PH, Häussermann U, Hsu YJ. Evidence suggesting kinetic unfreezing of water mobility in two distinct processes in pressure-amorphized clathrate hydrates. Phys Chem Chem Phys 2022; 24:20064-20072. [PMID: 35856694 DOI: 10.1039/d2cp01993k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Type II clathrate hydrates (CHs) with tetrahydrofuran (THF), cyclobutanone (CB) or 1,3-dioxolane (DXL) guest molecules collapse to an amorphous state near 1 GPa on pressurization below 140 K. On subsequent heating in the 0.2-0.7 GPa range, thermal conductivity and heat capacity results of the homogeneous amorphous solid show two glass transitions, first a thermally weak glass transition, GT1, near 130 K; thereafter a thermally strong glass transition, GT2, which implies a transformation to an ultraviscous liquid on heating. Here we compare the GTs of normal and deuterated samples and samples with different guest molecules. The results show that GT1 and GT2 are unaffected by deuteration of the THF guest and exchange of THF with CB or DXL, whereas the glass transition temperatures (Tgs) shift to higher temperatures on deuteration of water; Tg of GT2 increases by 2.5 K. These results imply that both GTs are associated with the water network. This is corroborated by the fact that GT2 is detected only in the state which is the amorphized CH's counterpart of expanded high density amorphous ice. The results suggest a rare transition sequence of an orientational glass transition followed by a glass to liquid transition, i.e., kinetic unfreezing of H2O reorientational and translational mobility in two distinct processes.
Collapse
Affiliation(s)
- Ove Andersson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden.
| | - Paulo H B Brant Carvalho
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Ulrich Häussermann
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Ying-Jui Hsu
- Department of Physics, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
43
|
Niss K. A density scaling conjecture for aging glasses. J Chem Phys 2022; 157:054503. [DOI: 10.1063/5.0090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aging rate of glasses has traditionally been modeled as a function of temperature, T , andfictive temperature, while density, ρ, is not explicitly included as a parameter. However, this de-scription does not naturally connect to the modern understanding of what governs the relaxationrate in equilibrium. In equilibrium it is well known that the relaxation rate, γeq , depends on tem-perature and density. In addition a large class of systems obey density scaling which means therate specifically depends on the scaling parameter, Γ = e(ρ)/T , where e(ρ) is a system specificfunction. This paper present a generalization of the fictive temperature concept in terms of a fic-tive scaling paramter, Γfic , and a density scaling conjecture for aging glasses in which the agingrate depends on Γ and Γfic .
Collapse
|
44
|
Unni AB, Winkler R, Duarte DM, Tu W, Chat K, Adrjanowicz K. Vapor-Deposited Thin Films: Studying Crystallization and α-relaxation Dynamics of the Molecular Drug Celecoxib. J Phys Chem B 2022; 126:3789-3798. [PMID: 35580265 PMCID: PMC9150116 DOI: 10.1021/acs.jpcb.2c01284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crystallization is one of the major challenges in using glassy solids for technological applications. Considering pharmaceutical drugs, maintaining a stable amorphous form is highly desirable for improved solubility. Glasses prepared by the physical vapor deposition technique got attention because they possess very high stability, taking thousands of years for an ordinary glass to achieve. In this work, we have investigated the effect of reducing film thickness on the α-relaxation dynamics and crystallization tendency of vapor-deposited films of celecoxib (CXB), a pharmaceutical substance. We have scrutinized its crystallization behavior above and below the glass-transition temperature (Tg). Even though vapor deposition of CXB cannot inhibit crystallization completely, we found a significant decrease in the crystallization rate with decreasing film thickness. Finally, we have observed striking differences in relaxation dynamics of vapor-deposited thin films above the Tg compared to spin-coated counterparts of the same thickness.
Collapse
Affiliation(s)
- Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Daniel Marques Duarte
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
45
|
Mei B, Zhuang B, Lu Y, An L, Wang ZG. Local-Average Free Volume Correlates with Dynamics in Glass Formers. J Phys Chem Lett 2022; 13:3957-3964. [PMID: 35481369 DOI: 10.1021/acs.jpclett.2c00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glass formers exhibit a pronounced slowdown in dynamics, accompanied by progressive heterogeneity as they approach the glass transition. There is intense debate over whether the dramatic slowdown is caused by dynamical heterogeneity and whether the enhanced dynamical heterogeneity originates from structural causes. However, the connection between dynamical heterogeneity and the spatial distribution of the single-particle free volume (a purely static structural quantity) was found to be rather weak, which raises the question of whether dynamic heterogeneity has a purely structural origin. Here, by introducing the concept of local-average free volume, we present numerical evidence that long-time dynamic heterogeneity shows significantly enhanced correlation with the average local free volume over a length scale of a few neighboring shells. Our results resolve the long-standing controversy about whether free volume plays an important role in particle rearrangements associated with the activated hopping relaxation. The concept of "local average" can be applied to other local structural descriptors to better correlate with dynamic heterogeneity in glass-forming liquids.
Collapse
Affiliation(s)
- Baicheng Mei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
46
|
Song S, Zhu F, Chen M. Universal scaling law of glass rheology. NATURE MATERIALS 2022; 21:404-409. [PMID: 35102307 DOI: 10.1038/s41563-021-01185-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The similarity in atomic/molecular structure between liquids and glasses has stimulated a long-standing hypothesis that the nature of glasses may be more fluid-like, rather than the apparent solid. In principle, the nature of glasses can be characterized by the dynamic response of their rheology in a wide rate range, but this has not been realized experimentally, to the best of our knowledge. Here we report the dynamic response of shear stress to the shear strain rate of metallic glasses over a timescale of nine orders of magnitude, equivalent to hundreds of years, by broadband stress relaxation experiments. The dynamic response of the metallic glasses, together with other 'glasses', follows a universal scaling law within the framework of fluid dynamics. The universal scaling law provides comprehensive validation of the conjecture on the jamming (dynamic) phase diagram by which the dynamic behaviours of a wide variety of 'glasses' can be unified under one rubric parameterized by the thermodynamic variables of temperature, volume and stress in the trajectory space.
Collapse
Affiliation(s)
- Shuangxi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Fan Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Materials Science, Fudan University, Shanghai, China
| | - Mingwei Chen
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.
- Department of Materials Science and Engineering, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
47
|
Heyes DM, Dini D. Intrinsic viscuit probability distribution functions for transport coefficients of liquids and solids. J Chem Phys 2022; 156:124501. [DOI: 10.1063/5.0083228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A reformulation of the Green–Kubo expressions for the transport coefficients of liquids in terms of a probability distribution function (PDF) of short trajectory contributions, which were named “viscuits,” has been explored in a number of recent publications. The viscuit PDF, P, is asymmetric on the two sides of the distribution. It is shown here using equilibrium 3D and 2D molecular dynamics simulations that the viscuit PDF of a range of simple molecular single component and mixture liquid and solid systems can be expressed in terms of the same intrinsic PDF ( P0), which is derived from P with the viscuit normalized by the standard deviation separately on each side of the distribution. P0 is symmetric between the two sides and can be represented for not very small viscuit values by the same gamma distribution formulated in terms of a single disposable parameter. P0 tends to an exponential in the large viscuit wings. Scattergrams of the viscuits and their associated single trajectory correlation functions are shown to distinguish effectively between liquids, solids, and glassy systems. The so-called viscuit square root method for obtaining the transport coefficients is shown to be a useful probe of small and statistically zero self-diffusion coefficients of molecules in the liquid and solid states, respectively. The results of this work suggest that the transport coefficients have a common underlying physical origin, reflecting at a coarse-grained level the traversal statistics of the system through its high-dimensioned potential energy landscape.
Collapse
Affiliation(s)
- D. M. Heyes
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - D. Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
48
|
Gasparotto P, Fitzner M, Cox SJ, Sosso GC, Michaelides A. How do interfaces alter the dynamics of supercooled water? NANOSCALE 2022; 14:4254-4262. [PMID: 35244128 DOI: 10.1039/d2nr00387b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structure of liquid water in the proximity of an interface can deviate significantly from that of bulk water, with surface-induced structural perturbations typically converging to bulk values at about ∼1 nm from the interface. While these structural changes are well established it is, in contrast, less clear how an interface perturbs the dynamics of water molecules within the liquid. Here, through an extensive set of molecular dynamics simulations of supercooled bulk and interfacial water films and nano-droplets, we observe the formation of persistent, spatially extended dynamical domains in which the average mobility varies as a function of the distance from the interface. This is in stark contrast with the dynamical heterogeneity observed in bulk water, where these domains average out spatially over time. We also find that the dynamical response of water to an interface depends critically on the nature of the interface and on the choice of interface definition. Overall these results reveal a richness in the dynamics of interfacial water that opens up the prospect of tuning the dynamical response of water through specific modifications of the interface structure or confining material.
Collapse
Affiliation(s)
- Piero Gasparotto
- Scientific Computing Division, Paul Scherrer Institute, Villigen 5232, Switzerland.
| | - Martin Fitzner
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Stephen James Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Gabriele Cesare Sosso
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
49
|
Peng Z, Ye L, Ade H. Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals. MATERIALS HORIZONS 2022; 9:577-606. [PMID: 34878458 DOI: 10.1039/d0mh00837k] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular packing and texture of semiconducting polymers are often critical to the performance of devices using these materials. Although frameworks exist to quantify the ordering, interpretations are often just qualitative, resulting in imprecise use of terminology. Here, we reemphasize the significance of quantifying molecular ordering in terms of degree of crystallinity (volume fractions that are ordered) and quality of ordering and their relation to the size scale of an ordered region. We are motivated in part by our own imprecise and inconsistent use of terminology in the past, as well as the need to have a primer or tutorial reference to teach new group members. We strive to develop and use consistent terminology with regards to crystallinity, semicrystallinity, paracrystallinity, and related characteristics. To account for vastly different quality of ordering along different directions, we classify paracrystals into 2D and 3D paracrystals and use paracrystallite to describe the spatial extent of molecular ordering in 1-10 nm. We show that a deeper understanding of molecular ordering can be achieved by combining grazing-incidence wide-angle X-ray scattering and differential scanning calorimetry, even though not all aspects of these measurements are consistent, and some classification appears to be method dependent. We classify a broad range of representative polymers under common processing conditions into five categories based on the quantitative analysis of the paracrystalline disorder parameter (g) and thermal transitions. A small database is presented for 13 representative conjugated and insulating polymers ranging from amorphous to semi-paracrystalline. Finally, we outline the challenges to rationally design more perfect polymer crystals and propose a new molecular design approach that envisions conceptual molecular grafting that is akin to strained and unstrained hetero-epitaxy in classic (compound) semiconductors thin film growth.
Collapse
Affiliation(s)
- Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Long Ye
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
50
|
Sun W, Wu H, Luo Y, Li B, Mao L, Zhao X, Zhang L, Gao Y. Structure and dynamics behavior during the glass transition of the polyisoprene in the presence of pressure: A molecular dynamics simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|