1
|
Hoffman MP, Xantheas SS. Competition between Hydrogen and Chalcogen Bonding in Homodimers of Chalcogen Hydrides (H 2X) 2, X = O, S, Se, Te. J Am Chem Soc 2025; 147:11152-11171. [PMID: 40116453 DOI: 10.1021/jacs.4c17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The structural and chemical bonding motifs manifested by the competition between hydrogen and chalcogen bonding in the homodimers of chalcogen hydrides (H2X)2, where X = O, S, Se, Te have been characterized using high-level electronic structure calculations and analysis of the electron density based on Quasi-atomic orbital (QUAO) and the Symmetry-adapted perturbation theory (SAPT) methods. The QUAO analysis clearly identifies a three-center interaction responsible for either hydrogen or chalcogen bonds: in the former, the σ-bond connecting the donor and hydrogen atom participating in the hydrogen bond interacts with the lone pair on the nucleophile acceptor via the hydrogen atom, while in the latter this same σ-bond interacts with the nucleophile lone pair via the donor chalcogen. The number of minimum energy structures increase dramatically from one for (H2O)2, three for (H2S)2, four for (H2Se)2, and finally six for (H2Te)2. The emergence of the chalcogen-bonded arrangements appears for (H2S)2 with their subsequent energetic stabilization over the hydrogen-bonded minima manifesting in (H2Se)2 and (H2Te)2. In particular, one of the (H2S)2 , two of the (H2Se)2, and three of the (H2Te)2 dimers are chalcogen bonded. Induction plays a small but important role in stabilizing hydrogen over chalcogen-bonded structures, while dispersion is more important for chalcogen bonds.
Collapse
Affiliation(s)
- Maxwell P Hoffman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States
- Computational and Theoretical Chemistry Institute (CTCI), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Skurski P, Brzeski J. Carbonless DNA. Phys Chem Chem Phys 2025; 27:2343-2362. [PMID: 39801399 DOI: 10.1039/d4cp04410j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δMP2. Carbonless analogs of DNA components, including cytosine, thymine, guanine, adenine, and deoxyribose, were investigated, showing strong resemblance to the carbon-based versions in terms of spatial structure, polarity, and molecular interaction capabilities. Complementary base pairs of the carbonless analogs exhibited a similar number and length of hydrogen bonds as those found in their carbon-containing counterparts, with binding energies for A-T and G-C analogs remaining comparable. Carbonless DNA fragments containing two and six base pairs were studied, revealing double-helix structures analogous to natural DNA. Structural parameters such as fragment size, hydrogen bond lengths, and rise per base pair were consistent with those observed in unmodified DNA. Docking simulations with a 12 base pair fragment and netropsin as a ligand indicated a slight shift in binding preference for the carbonless DNA through the minor groove, with an approximate 25% increase in binding affinity compared to natural DNA.
Collapse
Affiliation(s)
- Piotr Skurski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
- QSAR Lab Ltd., Trzy Lipy 3, 80-172, Poland
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
- QSAR Lab Ltd., Trzy Lipy 3, 80-172, Poland
| |
Collapse
|
3
|
Martín-Fernández C, Elguero J, Alkorta I. Beryllium as a Base: Complexes of Be(CO) 3 with HX (X=F, Cl, Br, CN, NC, CCH, OH). Chemphyschem 2024; 25:e202400608. [PMID: 38950128 DOI: 10.1002/cphc.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Beryllium chemistry is typically governed by its electron deficient character, but in some compounds it can act as a base. In order to understand better the unusual basicity of Be, we have systematically explored the complexes of one such compound, Be(CO)3, towards several hydrogen bond donors HX (X=F, Cl, Br, CN, NC, CCH, OH). For all complexes we find three different minima, two hydrogen bonded minima (to the Be or O atoms), and one weak beryllium bonded minimum. Further characterization of the interactions using a topological analysis of the electron density and Symmetry Adapted Perturbation Theory (SAPT) provide insight into the nature of these interactions. Overall these results highlight the capability of certain beryllium compounds to act as either a weak Lewis acid or, unconventionally, a Lewis base whose basicity towards hydrogen bonding is comparable to that of π systems.
Collapse
Affiliation(s)
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
4
|
Giovannini T. Kohn-Sham fragment energy decomposition analysis. J Chem Phys 2024; 161:104110. [PMID: 39268825 DOI: 10.1063/5.0216596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
We introduce the concept of Kohn-Sham fragment localized molecular orbitals (KS-FLMOs), which are Kohn-Sham molecular orbitals (MOs) localized in specific fragments constituting a generic molecular system. In detail, we minimize the local electronic energies of various fragments, while maximizing the repulsion between them, resulting in the effective localization of the MOs. We use the developed KS-FLMOs to propose a novel energy decomposition analysis, which we name Kohn-Sham fragment energy decomposition analysis, which allows for rationalizing the main non-covalent interactions occurring in interacting systems both in vacuo and in solution, providing physical insights into non-covalent interactions. The method is validated against state-of-the-art energy decomposition analysis techniques and with high-level calculations.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
5
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
6
|
Rock CA, Tschumper GS. Insight into the Binding of Argon to Cyclic Water Clusters from Symmetry-Adapted Perturbation Theory. Int J Mol Sci 2023; 24:17480. [PMID: 38139311 PMCID: PMC10744083 DOI: 10.3390/ijms242417480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This work systematically examines the interactions between a single argon atom and the edges and faces of cyclic H2O clusters containing three-five water molecules (Ar(H2O)n=3-5). Full geometry optimizations and subsequent harmonic vibrational frequency computations were performed using MP2 with a triple-ζ correlation consistent basis set augmented with diffuse functions on the heavy atoms (cc-pVTZ for H and aug-cc-pVTZ for O and Ar; denoted as haTZ). Optimized structures and harmonic vibrational frequencies were also obtained with the two-body-many-body (2b:Mb) and three-body-many-body (3b:Mb) techniques; here, high-level CCSD(T) computations capture up through the two-body or three-body contributions from the many-body expansion, respectively, while less demanding MP2 computations recover all higher-order contributions. Five unique stationary points have been identified in which Ar binds to the cyclic water trimer, along with four for (H2O)4 and three for (H2O)5. To the best of our knowledge, eleven of these twelve structures have been characterized here for the first time. Ar consistently binds more strongly to the faces than the edges of the cyclic (H2O)n clusters, by as much as a factor of two. The 3b:Mb electronic energies computed with the haTZ basis set indicate that Ar binds to the faces of the water clusters by at least 3 kJ mol-1 and by nearly 6 kJ mol-1 for one Ar(H2O)5 complex. An analysis of the interaction energies for the different binding motifs based on symmetry-adapted perturbation theory (SAPT) indicates that dispersion interactions are primarily responsible for the observed trends. The binding of a single Ar atom to a face of these cyclic water clusters can induce perturbations to the harmonic vibrational frequencies on the order of 5 cm-1 for some hydrogen-bonded OH stretching frequencies.
Collapse
Affiliation(s)
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| |
Collapse
|
7
|
Yamada Y, Kawao T, Urayoshi S, Nakayama K, Nibu Y. Isomer Stability Dependence of Hydrogen-Bonded Benzoxazole Clusters on Solvent Molecules. J Phys Chem A 2023; 127:2536-2544. [PMID: 36919254 DOI: 10.1021/acs.jpca.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The structures of hydrogen-bonded benzoxazole clusters with methanol and ammonia, BO-(CH3OH)n (n = 1-3) and BO-(NH3)n (n = 1, 2), in a supersonic jet have been investigated by measuring the S1-S0 electronic spectra and isomer-selected vibrational spectra with the aid of quantum chemical calculations. Similar to BO-(H2O)1, two isomers of BO-(NH3)1 were observed, which form two types of hydrogen bond networks starting from the CH bond at the 2-/7-position to the nitrogen atom of BO (C2HN/C7HN). The relative stability of these isomers strongly depends on solvent molecules. Natural bond orbital analysis reveals that the OH···N hydrogen bond is dominant in BO-(H2O)1 and that intermolecular interaction between the CH group and the nitrogen atom of ammonia, especially C2H···N, is significantly enhanced, resulting in a more stable C2HN isomer. Symmetry-adapted perturbation theory calculations indicate that the dispersion interaction between the methyl group of methanol and π electron cloud on the BO ring is responsible for the extreme stability of the C7HN of BO-(CH3OH)1. Furthermore, using time-dependent density functional theory calculations, the isomer tendency of the electronic transition shifts from the monomer origin is reproduced and it is proposed that the significant blue shift in C2HN is due to the shortened C2H bond length upon electronic excitation.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tomoya Kawao
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saeka Urayoshi
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kyojun Nakayama
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yoshinori Nibu
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
8
|
Yu F. Origin of the Microsolvation Effect on the Central Barriers of S N2 Reactions. J Phys Chem A 2022; 126:4342-4348. [PMID: 35785958 DOI: 10.1021/acs.jpca.2c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have quantitatively analyzed the microsolvation effect on the central barriers of microsolvated bimolecular nucleophilic substitution (SN2) reactions by means of a two-step energy decomposition procedure. According to the first energy decompositions, an obvious increase in the central barrier for a microsolvated SN2 reaction against its unsolvated counterpart can be mainly ascribed to the fact that the interaction between the solute and the conjunct solvent becomes less attractive from the reactant complex to the transition state. On the basis of the second energy decompositions with symmetry-adapted perturbation theory, this less attractive interaction in the transition state is primarily due to the interplay of the changes in the electrostatic, exchange, and induction components. However, the contribution of the change for the dispersion component is relatively small. A distinct linear correlation has also been observed between the changes of the total interaction energies and those of the corresponding electrostatic components for the microsolvated SN2 reactions studied in this work. Moreover, the two-step energy decomposition procedure employed in this work is expected to be extensively applied to the gas phase reactions mediated by molecules or clusters.
Collapse
Affiliation(s)
- Feng Yu
- Department of Physics, School of Freshmen, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
9
|
Yang Q, Carlson CD, Jäger W, Xu Y. Conformational Landscape of the Hydrogen-Bonded 1-Phenyl-2,2,2-Trilfuoroethanol···1,4-Dioxane Complex: Dispersion Interactions and Conformational Conversion. J Phys Chem A 2022; 126:2942-2949. [PMID: 35507825 DOI: 10.1021/acs.jpca.2c01667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rotational spectrum of the hydrogen-bonded complex between 1-phenyl-2,2,2-trilfuoroethanol (PhTFE), a chiral fluoroalcohol, and 1,4-dioxane, a common solvent for organic reactions, was measured using a chirped pulse Fourier transform microwave spectrometer. Initial theoretical conformational searches were carried out using CREST, a recently developed conformational searching tool. Subsequent geometry optimization and harmonic frequency calculations at the B3LYP-D3(BJ)/def2-TZVP level of theory yielded nearly 30 binary conformers of which 13 are within an energy window of ∼5 kJ mol-1. Interestingly, while the O-H···O hydrogen bond dominates the attractive binary interactions, the complex conformational landscape is mainly controlled by subtle dispersion interactions between the phenyl and 1,4-dioxane rings. Two sets of rotational transitions were assigned in the experimental spectrum and attributed to the two most stable conformers of PhTFE···1,4-dioxane. The quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI), and symmetry-adapted perturbation theory (SAPT) analyses were employed in order to appreciate how the phenyl ring and O-H functional groups influence the intermolecular interaction and conformational distribution of the binary complex. The main PhTFE conformation within the complex, identified experimentally, is different from that of the isolated PhTFE monomer reported previously.
Collapse
Affiliation(s)
- Qian Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Colton D Carlson
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Hill JG, Legon AC. Radial Potential Energy Functions of Linear Halogen-Bonded Complexes YX···ClF (YX = FB, OC, SC, N 2) and the Effects of Substituting X by Second-Row Analogues: Mulliken Inner and Outer Complexes. J Phys Chem A 2022; 126:2511-2521. [PMID: 35426668 PMCID: PMC9097511 DOI: 10.1021/acs.jpca.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Energies
of linear, halogen-bonded complexes in the isoelectronic
series YX···ClF (YX = FB, OC, or N2) are
calculated at several levels of theory as a function of the intermolecular
distance r(X···Cl) to yield radial
potential energy functions. When YX = OC, a secondary minimum is observed
corresponding to lengthened and shortened distances r(ClF) and r(CCl), respectively, relative to the
primary minimum, suggesting a significant contribution from the Mulliken
inner complex structure [O=C–Cl]+···F–. A conventional weak, halogen-bond complex OC···ClF
occurs at the primary minimum. For YX = FB, the primary minimum corresponds
to the inner complex [F=B–Cl]+···F–, while the outer complex FB···ClF is
at the secondary minimum. The effects on the potential energy function
of systematic substitution of Y and X by second-row congeners and
of reversing the order of X and Y are also investigated. Symmetry-adapted
perturbation theory and natural population analyses are applied to
further understand the nature of the various halogen-bond interactions.
Collapse
Affiliation(s)
- J Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Anthony C Legon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
11
|
Rostkowski M, Schürner HKV, Sowińska A, Vasquez L, Przydacz M, Elsner M, Dybala-Defratyka A. Isotope Effects on the Vaporization of Organic Compounds from an Aqueous Solution-Insight from Experiment and Computations. J Phys Chem B 2021; 125:13868-13885. [PMID: 34908428 PMCID: PMC8724799 DOI: 10.1021/acs.jpcb.1c05574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
An isotope fractionation
analysis of organic groundwater pollutants
can assess the remediation at contaminated sites yet needs to consider
physical processes as potentially confounding factors. This study
explores the predictability of water–air partitioning isotope
effects from experiments and computational predictions for benzene
and trimethylamine (both H-bond acceptors) as well as chloroform (H-bond
donor). A small, but significant, isotope fractionation of different
direction and magnitude was measured with ε = −0.12‰
± 0.07‰ (benzene), εC = 0.49‰
± 0.23‰ (triethylamine), and εH = 1.79‰
± 0.54‰ (chloroform) demonstrating that effects do not
correlate with expected hydrogen-bond functionalities. Computations
revealed that the overall isotope effect arises from contributions
of different nature and extent: a weakening of intramolecular vibrations
in the condensed phase plus additional vibrational modes from a complexation
with surrounding water molecules. Subtle changes in benzene contrast
with a stronger coupling between intra- and intermolecular modes in
the chloroform–water system and a very local vibrational response
with few atoms involved in a specific mode of triethylamine. An energy
decomposition analysis revealed that each system was affected differently
by electrostatics and dispersion, where dispersion was dominant for
benzene and electrostatics dominated for chloroform and triethylamine.
Interestingly, overall stabilization patterns in all studied systems
originated from contributions of dispersion rather than other energy
terms.
Collapse
Affiliation(s)
- Michał Rostkowski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Heide K V Schürner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martyna Przydacz
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
12
|
Hapka M, Przybytek M, Pernal K. Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers. J Chem Theory Comput 2021; 17:5538-5555. [PMID: 34517707 PMCID: PMC8444344 DOI: 10.1021/acs.jctc.1c00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a formulation
of the multiconfigurational (MC) wave
function symmetry-adapted perturbation theory (SAPT). The method is
applicable to noncovalent interactions between monomers which require
a multiconfigurational description, in particular when the interacting
system is strongly correlated or in an electronically excited state.
SAPT(MC) is based on one- and two-particle reduced density matrices
of the monomers and assumes the single-exchange approximation for
the exchange energy contributions. Second-order terms are expressed
through response properties from extended random phase approximation
(ERPA). The dispersion components of SAPT(MC) have been introduced
in our previous works [HapkaM.J. Chem. Theory Comput.2019, 15, 1016−102730525591; HapkaM.J. Chem. Theory Comput.2019, 15, 6712–672331670950]. SAPT(MC) is applied either with generalized valence
bond perfect pairing (GVB) or with complete active space self-consistent
field (CASSCF) treatment of the monomers. We discuss two model multireference
systems: the H2 ··· H2 dimer
in out-of-equilibrium geometries and interaction between the argon
atom and excited state of ethylene. Using the C2H4* ··· Ar complex as an example, we examine second-order
terms arising from negative transitions in the linear response function
of an excited monomer. We demonstrate that the negative-transition
terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their
computation. Factors limiting the accuracy of SAPT(MC) are discussed
in comparison with other second-order SAPT schemes on a data set of
small single-reference dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
13
|
Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, Khalifa SAM, Alhumaydhi FA, Alrumaihi F, Abidi SH, Allemailem KS, Efferth T, Soliman ME, Paré PW, El-Seedi HR, Hegazy MEF. Blue Biotechnology: Computational Screening of Sarcophyton Cembranoid Diterpenes for SARS-CoV-2 Main Protease Inhibition. Mar Drugs 2021; 19:391. [PMID: 34356816 PMCID: PMC8308023 DOI: 10.3390/md19070391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < -33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of -43.8 and -34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia; or
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (F.A.); (K.S.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (F.A.); (K.S.A.)
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (F.A.); (K.S.A.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Mahmoud E. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
14
|
Affiliation(s)
- Thiemo Arndt
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Philip K. Wagner
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| | - Martin Breugst
- Department of Chemistry University of Cologne Greinstraße 4 50939 Köln Germany
| |
Collapse
|
15
|
Elgengehi SM, El-Taher S, Ibrahim MA, El-Kelany KE. Unexpected favourable noncovalent interaction between chlorine oxyanions (ClO−; x = 1–4) and benzene: Benchmarking DFT and SAPT methods with respect to CCSD(T). COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Kodrycka M, Patkowski K. Efficient Density-Fitted Explicitly Correlated Dispersion and Exchange Dispersion Energies. J Chem Theory Comput 2021; 17:1435-1456. [PMID: 33606539 DOI: 10.1021/acs.jctc.0c01158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The leading-order dispersion and exchange-dispersion terms in symmetry-adapted perturbation theory (SAPT), Edisp(20) and Eexch-disp(20), suffer from slow convergence to the complete basis set limit. To alleviate this problem, explicitly correlated variants of these corrections, Edisp(20)-F12 and Eexch-disp(20)-F12, have been proposed recently. However, the original formalism (M., Kodrycka , J. Chem. Theory Comput. 2019, 15, 5965-5986), while highly successful in terms of improving convergence, was not competitive to conventional orbital-based SAPT in terms of computational efficiency due to the need to manipulate several kinds of two-electron integrals. In this work, we eliminate this need by decomposing all types of two-electron integrals using robust density fitting. We demonstrate that the error of the density fitting approximation is negligible when standard auxiliary bases such as aug-cc-pVXZ/MP2FIT are employed. The new implementation allowed us to study all complexes in the A24 database in basis sets up to aug-cc-pV5Z, and the Edisp(20)-F12 and Eexch-disp(20)-F12 values exhibit vastly improved basis set convergence over their conventional counterparts. The well-converged Edisp(20)-F12 and Eexch-disp(20)-F12 numbers can be substituted for conventional Edisp(20) and Eexch-disp(20) ones in a calculation of the total SAPT interaction energy at any level (SAPT0, SAPT2+3, ...). We show that the addition of F12 terms does not improve the accuracy of low-level SAPT treatments. However, when the theory errors are minimized in high-level SAPT approaches such as SAPT2+3(CCD)δMP2, the reduction of basis set incompleteness errors thanks to the F12 treatment substantially improves the accuracy of small-basis calculations.
Collapse
Affiliation(s)
- Monika Kodrycka
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
Modrzejewski M, Yourdkhani S, Śmiga S, Klimeš J. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. J Chem Theory Comput 2021; 17:804-817. [PMID: 33445879 DOI: 10.1021/acs.jctc.0c00966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The many-body expansion (MBE) of energies of molecular clusters or solids offers a way to detect and analyze errors of theoretical methods that could go unnoticed if only the total energy of the system was considered. In this regard, the interaction between the methane molecule and its enclosing dodecahedral water cage, CH4···(H2O)20, is a stringent test for approximate methods, including density functional theory (DFT) approximations. Hybrid and semilocal DFT approximations behave erratically for this system, with three- and four-body nonadditive terms having neither the correct sign nor magnitude. Here, we analyze to what extent these qualitative errors in different MBE contributions are conveyed to post-Kohn-Sham random-phase approximation (RPA), which uses approximate Kohn-Sham orbitals as its input. The results reveal a correlation between the quality of the DFT input states and the RPA results. Moreover, the renormalized singles energy (RSE) corrections play a crucial role in all orders of the many-body expansion. For dimers, RSE corrects the RPA underbinding for every tested Kohn-Sham model: generalized-gradient approximation (GGA), meta-GGA, (meta-)GGA hybrids, as well as the optimized effective potential at the correlated level. Remarkably, the inclusion of singles in RPA can also correct the wrong signs of three- and four-body nonadditive energies as well as mitigate the excessive higher-order contributions to the many-body expansion. The RPA errors are dominated by the contributions of compact clusters. As a workable method for large systems, we propose to replace those compact contributions with CCSD(T) energies and to sum up the remaining many-body contributions up to infinity with supermolecular or periodic RPA. As a demonstration of this approach, we show that for RPA(PBE0)+RSE it suffices to apply CCSD(T) to dimers and 30 compact, hydrogen-bonded trimers to get the methane-water cage interaction energy to within 1.6% of the reference value.
Collapse
Affiliation(s)
- Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteura 1, Poland.,Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - Sirous Yourdkhani
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| | - Jiří Klimeš
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
18
|
Carvalho FM, Kiametis AS, de Araújo Oliveira AL, Pirani F, Gargano R. Spectroscopy, lifetime, and charge-displacement of the methanol-noble gas complexes: An integrated experimental-theoretical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119049. [PMID: 33080517 DOI: 10.1016/j.saa.2020.119049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 05/26/2023]
Abstract
An integrated experimental-theoretical investigation was employed to determine rovibrational energies, spectroscopic constants, lifetime as a function of temperature in gas phase complexes of methanol with noble gas (NgHe, Ne, Ar, Kr, Xe, and Rn). Beside that, a parallel effort has been addressed to theoretically characterize the nature of intermolecular interactions determining the dissociation energy and equilibrium distance of the formed adducts. Dynamics and lifetime results reveal that, except for the CH3OH-He aggregate, all other methanol-Ng compounds are sufficiently stable under thermal conditions. Their lifetimes are larger than 1 ps for the temperature of the bulk in the range between 200 and 500 K. In addition, the current lifetime results suggest that the aggregates formed by methanol and Ng are globally more stable than corresponding complexes formed by water with Ng. From the point of view of the CCSD(T)/aug-cc-pVTZ level calculation, in all compounds, the electron densities of Ng partners are weakly polarized in the presence of CH3OH molecule. The charge-displacement curves and NBO analysis indicate that the charge transfer from Ng to methanol molecule, in general, plays a minor role, being appreciable only in the aggregate involving Ar. Finally, it was verified from the SAPT2 + (CCD)-δMP2/aug-cc-pVTZ calculations and NCI analysis that the dispersion is the essential long-range attractive contribution to the interaction energy for all studied complexes. This feature strongly suggests that these compounds are held bonded substantially by van der Waals forces. Then non-covalent intermolecular bonds are effectively formed in the gas phase, which is disturbed by small stabilizing charge-transfer contributions.
Collapse
Affiliation(s)
- Fernando M Carvalho
- Institute of Physics, University of Braslia, Campus Darcy Ribeiro, Braslia, DF, Brazil
| | | | | | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli studi di Perugia, via Elce di Sotto 8, Perugia, Italy; Istituto CNR di Scienze e Tecnologie Chimiche (CNR-SCITEC), via Elce di Sotto 8, Perugia, Italy
| | - Ricardo Gargano
- Institute of Physics, University of Braslia, Campus Darcy Ribeiro, Braslia, DF, Brazil.
| |
Collapse
|
19
|
Ibrahim MAA, Ahmed OAM, El-Taher S, Al-Fahemi JH, Moussa NAM, Moustafa H. Cospatial σ-Hole and Lone Pair Interactions of Square-Pyramidal Pentavalent Halogen Compounds with π-Systems: A Quantum Mechanical Study. ACS OMEGA 2021; 6:3319-3329. [PMID: 33553949 PMCID: PMC7860235 DOI: 10.1021/acsomega.0c05795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
In the spirit of the mounting interest in noncovalent interactions, the present study was conducted to scrutinize a special type that simultaneously involved both σ-hole and lone pair (lp) interactions with aromatic π-systems. Square-pyramidal pentavalent halogen-containing molecules, including X-Cl-F4, F-Y-F4, and F-I-X4 compounds (where X = F, Cl, Br, and I and Y = Cl, Br, and I) were employed as σ-hole/lp donors. On the other hand, benzene (BZN) and hexafluorobenzene (HFB) were chosen as electron-rich and electron-deficient aromatic π-systems, respectively. The investigation relied upon a variety of quantum chemical calculations that complement each other. The results showed that (i) the binding energy of the X-Y-F4···BZN complexes increased (i.e., more negative) as the Y atom had a larger magnitude of σ-hole, contrary to the pattern of X-Y-F4···HFB complexes; (ii) the interaction energies of X-Y-F4···BZN complexes were dominated by both dispersion and electrostatic contributions, while dispersive interactions dominated X-Y-F4···HFB complexes; and (iii) the X4 atoms in F-I-X4···π-system complexes governed the interaction energy pattern: the larger the X4 atoms were, the greater the interaction energies were, for the same π-system. The results had illuminating facets in regard to the rarely addressed cases of the σ-hole/lp contradictory scene.
Collapse
Affiliation(s)
| | - Ossama A. M. Ahmed
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Sabry El-Taher
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nayra A. M. Moussa
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hussein Moustafa
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
20
|
Chojecki M, Rutkowska-Zbik D, Korona T. Description of Chiral Complexes within Functional-Group Symmetry-Adapted Perturbation Theory-The Case of (S/R)-Carvone with Derivatives of (-)-Menthol. J Phys Chem A 2020; 124:7735-7748. [PMID: 32856904 PMCID: PMC7520888 DOI: 10.1021/acs.jpca.0c06266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Indexed: 11/29/2022]
Abstract
Symmetry-adapted perturbation theory (SAPT) and functional-group SAPT (F-SAPT) are applied to examine differences in interaction energies of diastereoisomeric complexes of two chiral molecules of natural origin: (S/R)-carvone with (-)-menthol. The study is extended by including derivatives of menthol with its hydroxy group exchanged by another functional group, thus examining the substituent effect of the interaction and the interaction differences between diastereoisomers. The partitioning of the interaction energy into functional-group components allows one to explain this phenomenon by the mutual cancellation of attractive and repulsive interactions between functional groups. In some cases, one can identify dominant chiral interactions between groups of atoms of carvone and menthol derivatives, while in many other instances, no major interaction can be distinguished and the net chiral difference results from subtle near cancellation of several smaller terms. Our results indicate that the F-SAPT method can be faithfully utilized for such analyses.
Collapse
Affiliation(s)
- Michał Chojecki
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Dorota Rutkowska-Zbik
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland
| | - Tatiana Korona
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
21
|
Ibrahim MAA, Telb EMZ. σ-Hole and Lone-Pair Hole Interactions in Chalcogen-Containing Complexes: A Comparative Study. ACS OMEGA 2020; 5:21631-21640. [PMID: 32905338 PMCID: PMC7469375 DOI: 10.1021/acsomega.0c02362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 05/07/2023]
Abstract
The potentiality of sp3-hybridized chalcogen-containing molecules to participate in lone-pair (lp) hole interactions was reported for the first time. lp hole interactions were characterized and compared to σ-hole ones for OF2 and SF2 molecules as a case study. Various quantum mechanical calculations, including molecular electrostatic potential (MEP), maximum positive electrostatic potential (V s,max), point of charge (PoC), symmetry-adapted perturbation theory (SAPT), quantum theory of atoms in molecule (QTAIM), and reduced density gradient-noncovalent interaction (RDG-NCI) calculations, were carried out. The more significant findings to emerge from this study are the following: (i) the V s,max calculation was proved to be an unreliable method to determine the precise σ-hole and lp hole locations. (ii) The maximum positive electrostatic potential of the σ hole and lp hole was found to be at the F-Chal···PoC angle (θ) of 180° and at the centroid of XYlp plane, respectively. (iii) Lewis basicity has a significant effect on the strength of σ-hole and lp hole interactions. (iv) The studied molecules more favorably interact with Lewis bases via the σ hole compared to the lp hole, and (v) stabilization of the σ-hole and lp hole interactions stems from the electrostatic and dispersion forces, respectively.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory,
Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ebtisam M. Z. Telb
- Computational Chemistry Laboratory,
Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
22
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
23
|
Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James AM, Lehtola S, Misiewicz JP, Scheurer M, Shaw RA, Schriber JB, Xie Y, Glick ZL, Sirianni DA, O’Brien JS, Waldrop JM, Kumar A, Hohenstein EG, Pritchard BP, Brooks BR, Schaefer HF, Sokolov AY, Patkowski K, DePrince AE, Bozkaya U, King RA, Evangelista FA, Turney JM, Crawford TD, Sherrill CD. Psi4 1.4: Open-source software for high-throughput quantum chemistry. J Chem Phys 2020; 152:184108. [PMID: 32414239 PMCID: PMC7228781 DOI: 10.1063/5.0006002] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
PSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSCHEMA data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs.
Collapse
Affiliation(s)
| | - Lori A. Burns
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Andrew C. Simmonett
- National Institutes of Health – National Heart,
Lung and Blood Institute, Laboratory of Computational Biology, Bethesda,
Maryland 20892, USA
| | - Robert M. Parrish
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Matthew C. Schieber
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | | | - Peter Kraus
- School of Molecular and Life Sciences, Curtin
University, Kent St., Bentley, Perth, Western Australia 6102,
Australia
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of
Sciences, Královopolská 135, 612 65 Brno, Czech
Republic
| | - Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical
and Computational Chemistry, UiT, The Arctic University of Norway, N-9037
Tromsø, Norway
| | - Asem Alenaizan
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Andrew M. James
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, USA
| | - Susi Lehtola
- Department of Chemistry, University of
Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki,
Finland
| | - Jonathon P. Misiewicz
- Center for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602, USA
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific
Computing, Heidelberg University, D-69120 Heidelberg,
Germany
| | - Robert A. Shaw
- ARC Centre of Excellence in Exciton Science,
School of Science, RMIT University, Melbourne, VIC 3000,
Australia
| | - Jeffrey B. Schriber
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Yi Xie
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Zachary L. Glick
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Dominic A. Sirianni
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Joseph Senan O’Brien
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Jonathan M. Waldrop
- Department of Chemistry and Biochemistry, Auburn
University, Auburn, Alabama 36849, USA
| | - Ashutosh Kumar
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, USA
| | - Edward G. Hohenstein
- SLAC National Accelerator Laboratory, Stanford
PULSE Institute, Menlo Park, California 94025,
USA
| | | | - Bernard R. Brooks
- National Institutes of Health – National Heart,
Lung and Blood Institute, Laboratory of Computational Biology, Bethesda,
Maryland 20892, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602, USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The
Ohio State University, Columbus, Ohio 43210, USA
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn
University, Auburn, Alabama 36849, USA
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry,
Florida State University, Tallahassee, Florida 32306-4390,
USA
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe
University, Ankara 06800, Turkey
| | - Rollin A. King
- Department of Chemistry, Bethel
University, St. Paul, Minnesota 55112, USA
| | | | - Justin M. Turney
- Center for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602, USA
| | | | - C. David Sherrill
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| |
Collapse
|
24
|
Abstract
This work examines the suitability of meta-GGA functionals for symmetry-adapted perturbation theory (SAPT) calculations. The assessment is based on the term-by-term comparison with the benchmark SAPT variant based on coupled-cluster singles and doubles description of monomers, SAPT(CCSD). Testing systems include molecular complexes ranging from strong to weak and the He dimer. The following nonempirical meta-GGAs are examined: TPSS, revTPSS, MVS, SCAN, and SCAN0 with and without the asymptotic correction (AC) of the exchange-correlation potential. One range-separated meta-GGA functional, LC-PBETPSS, is also included. The AC-corrected pure meta-GGAs (with the exception of MVS) represent a definite progress in SAPT(DFT) compared to pure GGA, such as PBEAC, with their more consistent predictions of energy components. However, none of the meta-GGAs is better than the hybrid GGA approach SAPT(PBE0AC). The SAPT(DFT) electrostatic energy offers the most sensitive probe of the quality of the underlying DFT density. Both SCAN- and TPSS-based electrostatic energies agree with reference to within 5% or better which is an excellent result. We find that SCAN0 can be used in SAPT without the AC correction. The long-range corrected LC-PBETPSS is a reliable performer both for the components and total interaction energies.
Collapse
|
25
|
Robalo JR, Mendes de Oliveira D, Imhof P, Ben-Amotz D, Vila Verde A. Quantifying how step-wise fluorination tunes local solute hydrophobicity, hydration shell thermodynamics and the quantum mechanical contributions of solute–water interactions. Phys Chem Chem Phys 2020; 22:22997-23008. [DOI: 10.1039/d0cp04205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Locally tuning solute–water interactions with fluorination.
Collapse
Affiliation(s)
- João R. Robalo
- Department of Theory & Bio-Systems
- Max Planck Institute for Colloids and Interfaces
- Science Park
- Potsdam 14476
- Germany
| | | | - Petra Imhof
- Institute for Theoretical Physics
- Free University of Berlin
- 14195 Berlin
- Germany
| | - Dor Ben-Amotz
- Purdue University
- Department of Chemistry
- West Lafayette
- USA
| | - Ana Vila Verde
- Department of Theory & Bio-Systems
- Max Planck Institute for Colloids and Interfaces
- Science Park
- Potsdam 14476
- Germany
| |
Collapse
|
26
|
Patkowski K. Recent developments in symmetry‐adapted perturbation theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konrad Patkowski
- Department of Chemistry and Biochemistry Auburn University Auburn Alabama
| |
Collapse
|
27
|
Loipersberger M, Lee J, Mao Y, Das AK, Ikeda K, Thirman J, Head-Gordon T, Head-Gordon M. Energy Decomposition Analysis for Interactions of Radicals: Theory and Implementation at the MP2 Level with Application to Hydration of Halogenated Benzene Cations and Complexes between CO2–· and Pyridine and Imidazole. J Phys Chem A 2019; 123:9621-9633. [DOI: 10.1021/acs.jpca.9b08586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Robalo JR, Streacker LM, Mendes de Oliveira D, Imhof P, Ben-Amotz D, Verde AV. Hydrophobic but Water-Friendly: Favorable Water–Perfluoromethyl Interactions Promote Hydration Shell Defects. J Am Chem Soc 2019; 141:15856-15868. [DOI: 10.1021/jacs.9b06862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- João R. Robalo
- Department of Theory & Bio-systems, Max Planck Institute for Colloids and Interfaces, Science Park, Potsdam 14476, Germany
| | - Louis M. Streacker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Petra Imhof
- Institute for Theoretical Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana Vila Verde
- Department of Theory & Bio-systems, Max Planck Institute for Colloids and Interfaces, Science Park, Potsdam 14476, Germany
| |
Collapse
|
29
|
Derricotte WD. Symmetry-Adapted Perturbation Theory Decomposition of the Reaction Force: Insights into Substituent Effects Involved in Hemiacetal Formation Mechanisms. J Phys Chem A 2019; 123:7881-7891. [PMID: 31429558 DOI: 10.1021/acs.jpca.9b06865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decomposition of the reaction force based on symmetry-adapted perturbation theory (SAPT) has been proposed. This approach was used to investigate the substituent effects along the reaction coordinate pathway for the hemiacetal formation mechanism between methanol and substituted aldehydes of the form CX3CHO (X = H, F, Cl, and Br), providing a quantitative evaluation of the reaction-driving and reaction-retarding force components. Our results highlight the importance of more favorable electrostatic and induction effects in the reactions involving halogenated aldehydes that leads to lower activation energy barriers. These substituent effects are further elucidated by applying the functional-group partition of symmetry-adapted perturbation theory (F-SAPT). The results show that the reaction is largely driven by favorable direct noncovalent interactions between the CX3 group on the aldehyde and the OH group on methanol.
Collapse
Affiliation(s)
- Wallace D Derricotte
- Department of Chemistry , Morehouse College , Atlanta , Georgia 30314 , United States
| |
Collapse
|
30
|
Yourdkhani S, Jabłoński M. Physical nature of silane⋯carbene dimers revealed by state-of-the-art ab initio calculations. J Comput Chem 2019; 40:2643-2652. [PMID: 31441520 DOI: 10.1002/jcc.26043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/06/2022]
Abstract
Using the SAPT2 + 3(CCD)δMP2 method in complete basis set (CBS) limit, it is shown that the interactions in the recently studied silane⋯carbene dimers are mainly dispersive in nature. Consequently, slow convergence of dispersion energy also forces slow convergence of the interaction energy. Therefore, obtaining very accurate values requires extrapolation of the correlation part to the CBS limit. The most accurate values obtained at the CCSD(T)/CBS level of theory show that the studied silane⋯carbene dimers are rather weakly bound, with interaction energies ranging from about -1.9 to -1.3 kcal/mol. Comparing to CCSD(T)/CBS, it will be shown that SCS-MP2 and MP2C methods clearly underestimate and methods based on SAPT2+ and having some third-order corrections, as well as the MP2 method, overestimate values of interaction energies. Popular SAPT(DFT) method performs better than SCS-MP2 and MP2C; nevertheless, underestimation is still considerable. The underestimation is slightly quenched if third-order dispersion energy and its exchange counterpart is added to the SAPT(DFT). The closest value of CCSD(T)/CBS has been given by the SAPT2 + (3)(CCD)δMP2 method in quadruple-ζ basis set. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3,CZ-12116, Prague 2, Czech Republic
| | - Mirosław Jabłoński
- Department of Quantum Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7-Gagarina St, 87-100, Toruń, Poland
| |
Collapse
|
31
|
Abstract
Symmetry Adapted Perturbation Theory (SAPT) has become an important tool when predicting and analyzing intermolecular interactions. Unfortunately, Density Functional Theory (DFT)-SAPT, which uses DFT for the underlying monomers, has some arbitrariness concerning the exchange-correlation potential and the exchange-correlation kernel involved. By using ab initio Brueckner Doubles densities and constructing Kohn-Sham orbitals via the Zhao-Morrison-Parr (ZMP) method, we are able to lift the dependence of DFT-SAPT on DFT exchange-correlation potential models in first order. This way, we can compute the monomers at the coupled-cluster level of theory and utilize SAPT for the intermolecular interaction energy. The resulting ZMP-SAPT approach is tested for small dimer systems involving rare gas atoms, cations, and anions and shown to compare well with the Tang-Toennies model and coupled cluster results.
Collapse
Affiliation(s)
- A Daniel Boese
- Institute of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria
| | - Georg Jansen
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| |
Collapse
|
32
|
Townsend J, Braunscheidel NM, Vogiatzis KD. Understanding the Nature of Weak Interactions between Functionalized Boranes and N2/O2, Promising Functional Groups for Gas Separations. J Phys Chem A 2019; 123:3315-3325. [DOI: 10.1021/acs.jpca.9b00912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob Townsend
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Nicole M. Braunscheidel
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | | |
Collapse
|
33
|
Hapka M, Przybytek M, Pernal K. Second-Order Dispersion Energy Based on Multireference Description of Monomers. J Chem Theory Comput 2019; 15:1016-1027. [PMID: 30525591 DOI: 10.1021/acs.jctc.8b01058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We propose a method for calculating a second-order dispersion energy for weakly interacting multireference systems in arbitrary electronic states. It is based on response properties obtained from extended random phase approximation equations. The introduced formalism is general and requires only one- and two-particle reduced density matrices of monomers. We combine the new method with either generalized valence bond perfect pairing (GVB) or complete active space (CAS) self-consistent field description of the interacting systems. In addition to a general scheme, three approximations, leading to significant reduction of the computational cost, are developed by exploiting Dyall partitioning of the monomer Hamiltonians. For model multireference systems (H2···H2 and Be···Be) the method is accurate, unlike its single-reference-based counterpart. Neither GVB nor CAS description of single-reference monomers improves the dispersion energy with respect to the Hartree-Fock-based results.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland.,Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Michał Przybytek
- Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Katarzyna Pernal
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| |
Collapse
|
34
|
Abstract
Even though (H2O)2 and (HF)2 are arguably the most thoroughly characterized prototypes for hydrogen bonding, their heterogeneous analogue H2O···HF has received relatively little attention. Here we report that the experimental dissociation energy ( D0) of this important paradigm for heterogeneous hydrogen bonding is too large by 2 kcal mol-1 or 30% relative to our computed value of 6.3 kcal mol-1. For reference, computational procedures similar to those employed here to compute D0 (large basis set CCSD(T) computations with anharmonic corrections from second-order vibrational perturbation theory) provide results within 0.1 kcal mol-1 of the experimental values for (H2O)2 and (HF)2. Near the CCSD(T) complete basis set limit, the electronic dissociation energy for H2O···HF is ∼4 kcal mol-1 larger than those for (H2O)2 and (HF)2 (∼9 kcal mol-1 for the heterogeneous dimer vs ∼5 kcal mol-1 for the homogeneous dimers). Results reported here from symmetry-adapted perturbation theory computations suggest that this large difference is primarily due to the induction contribution to the interaction energy.
Collapse
Affiliation(s)
- Thomas More Sexton
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677-1848 , United States
| | - J Coleman Howard
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677-1848 , United States
| |
Collapse
|
35
|
Lao KU, Herbert JM. Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes. J Chem Theory Comput 2018; 14:2955-2978. [DOI: 10.1021/acs.jctc.8b00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Heßelmann A. DFT-SAPT Intermolecular Interaction Energies Employing Exact-Exchange Kohn–Sham Response Methods. J Chem Theory Comput 2018; 14:1943-1959. [DOI: 10.1021/acs.jctc.7b01233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Heßelmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen, Germany
| |
Collapse
|
37
|
Parrish RM, Thompson KC, Martínez TJ. Large-Scale Functional Group Symmetry-Adapted Perturbation Theory on Graphical Processing Units. J Chem Theory Comput 2018; 14:1737-1753. [DOI: 10.1021/acs.jctc.7b01053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert M. Parrish
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Keiran C. Thompson
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
38
|
Shirkov L, Sladek V. Benchmark CCSD-SAPT study of rare gas dimers with comparison to MP-SAPT and DFT-SAPT. J Chem Phys 2017; 147:174103. [DOI: 10.1063/1.4997569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leonid Shirkov
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Vladimir Sladek
- Institute of Chemistry–Centre for Glycomics, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
39
|
Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J Chem Theory Comput 2017; 13:3185-3197. [PMID: 28489372 PMCID: PMC7495355 DOI: 10.1021/acs.jctc.7b00174] [Citation(s) in RCA: 811] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods. Conversion of the top-level code to a Python module means that Psi4 can now be used in complex workflows alongside other Python tools. Several new features have been added with the aid of libraries providing easy access to techniques such as density fitting, Cholesky decomposition, and Laplace denominators. The build system has been completely rewritten to simplify interoperability with independent, reusable software components for quantum chemistry. Finally, a wide range of new theoretical methods and analyses have been added to the code base, including functional-group and open-shell symmetry adapted perturbation theory, density-fitted coupled cluster with frozen natural orbitals, orbital-optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-LCCD), density-fitted multiconfigurational self-consistent field, density cumulant functional theory, algebraic-diagrammatic construction excited states, improvements to the geometry optimizer, and the "X2C" approach to relativistic corrections, among many other improvements.
Collapse
Affiliation(s)
- Robert M Parrish
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Daniel G A Smith
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Andrew C Simmonett
- National Institutes of Health , National Heart, Lung and Blood Institute, Laboratory of Computational Biology, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, United States
| | - Edward G Hohenstein
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University , Ankara 06800, Turkey
| | - Alexander Yu Sokolov
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, UiT, The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Ryan M Richard
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Jérôme F Gonthier
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Andrew M James
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Harley R McAlexander
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Ashutosh Kumar
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Masaaki Saitow
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University , 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Xiao Wang
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Benjamin P Pritchard
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Prakash Verma
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | - Rollin A King
- Department of Chemistry, Bethel University , St. Paul, Minnesota 55112, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
40
|
Chen Y, Wang YB, Zhang Y, Wang W. Accurate calculations of the noncovalent systems with flat potential energy surfaces: Naphthalene dimer and azulene dimer. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Schneider WB, Bistoni G, Sparta M, Saitow M, Riplinger C, Auer AA, Neese F. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. J Chem Theory Comput 2016; 12:4778-4792. [DOI: 10.1021/acs.jctc.6b00523] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wolfgang B. Schneider
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Giovanni Bistoni
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Manuel Sparta
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Masaaki Saitow
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Christoph Riplinger
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Alexander A. Auer
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
42
|
Azar RJ, Head-Gordon M. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions. J Chem Phys 2015; 142:204101. [DOI: 10.1063/1.4921377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard Julian Azar
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Parrish RM, Sherrill CD. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition. J Chem Phys 2015; 141:044115. [PMID: 25084889 DOI: 10.1063/1.4889855] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in systems with up to 220 atoms and 2845 basis functions.
Collapse
Affiliation(s)
- Robert M Parrish
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
44
|
Lao KU, Schäffer R, Jansen G, Herbert JM. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory. J Chem Theory Comput 2015; 11:2473-86. [PMID: 26575547 DOI: 10.1021/ct5010593] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new data sets for intermolecular interactions, AHB21 for anion-neutral dimers, CHB6 for cation-neutral dimers, and IL16 for ion pairs, are assembled here, with complete-basis CCSD(T) results for each. These benchmarks are then used to evaluate the accuracy of the single-exchange approximation that is used for exchange energies in symmetry-adapted perturbation theory (SAPT), and the accuracy of SAPT based on wave function and density-functional descriptions of the monomers is evaluated. High-level SAPT calculations afford poor results for these data sets, and this includes the recently proposed "gold", "silver", and "bronze standards" of SAPT, namely, SAPT2+(3)-δMP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ, respectively [ Parker , T. M. , et al. , J. Chem. Phys. 2014 , 140 , 094106 ]. Especially poor results are obtained for symmetric shared-proton systems of the form X(-)···H(+)···X(-), for X = F, Cl, or OH. For the anionic data set, the SAPT2+(CCD)-δMP2/aug-cc-pVTZ method exhibits the best performance, with a mean absolute error (MAE) of 0.3 kcal/mol and a maximum error of 0.7 kcal/mol. For the cationic data set, the highest-level SAPT method, SAPT2+3-δMP2/aug-cc-pVQZ, outperforms the rest of the SAPT methods, with a MAE of 0.2 kcal/mol and a maximum error of 0.4 kcal/mol. For the ion-pair data set, the SAPT2+3-δMP2/aug-cc-pVTZ performs the best among all SAPT methods with a MAE of 0.3 kcal/mol and a maximum error of 0.9 kcal/mol. Overall, SAPT2+3-δMP2/aug-cc-pVTZ affords a small and balanced MAE (<0.5 kcal/mol) for all three data sets, with an overall MAE of 0.4 kcal/mol. Despite the breakdown of perturbation theory for ionic systems at short-range, SAPT can still be saved given two corrections: a "δHF" correction, which requires a supermolecular Hartree-Fock calculation to incorporate polarization effects beyond second order, and a "δMP2" correction, which requires a supermolecular MP2 calculation to account for higher-order induction-dispersion coupling. These corrections serve to remove artifacts introduced by the single exchange approximation in the exchange-induction and exchange-dispersion interactions, and obviate the need for ad hoc scaling of the first- and second-order exchange energies. Finally, some density-functional and MP2-based electronic structure methods are assessed as well, and we find that the best density-functional method for computing binding energies in these data sets is B97M-V/aug-cc-pVTZ, which affords a MAE of 0.4 kcal/mol, whereas complete-basis MP2 affords an MAE of 0.3 kcal/mol.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Rainer Schäffer
- Fakultät für Chemie, Universität Duisburg-Essen , 45117 Essen, Germany
| | - Georg Jansen
- Fakultät für Chemie, Universität Duisburg-Essen , 45117 Essen, Germany
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Lao KU, Herbert JM. Accurate and Efficient Quantum Chemistry Calculations for Noncovalent Interactions in Many-Body Systems: The XSAPT Family of Methods. J Phys Chem A 2014; 119:235-52. [DOI: 10.1021/jp5098603] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
46
|
Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J Chem Phys 2014; 140:094106. [PMID: 24606352 DOI: 10.1063/1.4867135] [Citation(s) in RCA: 545] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A systematic examination of the computational expense and accuracy of Symmetry-Adapted Perturbation Theory (SAPT) for the prediction of non-covalent interaction energies is provided with respect to both method [SAPT0, DFT-SAPT, SAPT2, SAPT2+, SAPT2+(3), and SAPT2+3; with and without CCD dispersion for the last three] and basis set [Dunning cc-pVDZ through aug-cc-pV5Z wherever computationally tractable, including truncations of diffuse basis functions]. To improve accuracy for hydrogen-bonded systems, we also include two corrections based on exchange-scaling (sSAPT0) and the supermolecular MP2 interaction energy (δMP2). When considering the best error performance relative to computational effort, we recommend as the gold, silver, and bronze standard of SAPT: SAPT2+(3)δMP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ. Their respective mean absolute errors in interaction energy across the S22, HBC6, NBC10, and HSG databases are 0.15 (62.9), 0.30 (4.4), and 0.49 kcal mol(-1) (0.03 h for adenine·thymine complex).
Collapse
Affiliation(s)
- Trent M Parker
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Robert M Parrish
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Alden G Ryno
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|