1
|
Hanke T, Upterworth AL, Sebastiani D. Explicit Configurational Entropy of Mixing in Molecular Dynamics Simulations. J Phys Chem Lett 2024; 15:11320-11327. [PMID: 39498985 PMCID: PMC11571226 DOI: 10.1021/acs.jpclett.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024]
Abstract
The entropy of mixing of a multicomponent system of particles is a simple expression of the molar fractions for the equilibrium state, but its intermediate values for transient (nonequilibrium) states can not be calculated directly from the particle coordinates so far. We propose a simple expression for the configurational entropy of mixing based solely on the set of instantaneous coordinates, which is suitable for the on-the-fly determination of the degree of mixing along a molecular dynamics trajectory. We illustrate the applicability of our scheme with the example of several molecular mixtures that exhibit fast and slow mixing and demixing processes within a molecular dynamics simulation.
Collapse
Affiliation(s)
- T. Hanke
- Department of Chemistry, Martin
Luther University, 06120 Halle, Germany
| | - A. L. Upterworth
- Department of Chemistry, Martin
Luther University, 06120 Halle, Germany
| | - D. Sebastiani
- Department of Chemistry, Martin
Luther University, 06120 Halle, Germany
| |
Collapse
|
2
|
Chng CP, Gupta S, Huang C. Protonation State of a Bioactive Compound Regulates Its Release from Lamellar Gel-Phase Bilayers. J Phys Chem B 2024; 128:7180-7187. [PMID: 38993042 DOI: 10.1021/acs.jpcb.4c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Lamellar gel networks (LGNs) in personal care or pharmaceutical lotions and creams provide an opaque cream appearance and a creamy texture to these products. Within the LGNs, the lamellar gel (Lβ) phase composed of regularly spaced bilayers of surfactants and long-chain fatty alcohols is predominately responsible for the unique rheological properties of the LGNs. To extend the shelf life of LGN-containing products, bioactive compounds with antimicrobial properties are often incorporated into the formulation. However, how the protonation state of the bioactive compounds regulates their release from the Lβ-phase bilayers is currently unknown. Using molecular dynamics simulations, we found that the protonated (neutral) form of cinnamic acid, a common antimicrobial food additive, has a retention ratio higher than that of its deprotonated (charged) counterpart in the Lβ-phase bilayer. From free energy calculations, we determined that not only is the protonated molecule more stable in the hydrophobic interior of the bilayer but also the formation of hydrogen-bonded dimers significantly enhances its stability within the bilayer. Thus, the protonation state has a profound impact on bioavailability of the compounds. Our results also highlight the importance of considering possible oligomeric states of molecules when performing calculations to estimate the permeability of molecules within various bilayers.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Shikhar Gupta
- P&G Singapore Innovation Center (SgIC), 70 Biopolis Street, Singapore 138547, Republic of Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| |
Collapse
|
3
|
Mostofian B, Martin HJ, Razavi A, Patel S, Allen B, Sherman W, Izaguirre JA. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. J Chem Inf Model 2023; 63:5408-5432. [PMID: 37602861 PMCID: PMC10498452 DOI: 10.1021/acs.jcim.3c00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/22/2023]
Abstract
The therapeutic approach of targeted protein degradation (TPD) is gaining momentum due to its potentially superior effects compared with protein inhibition. Recent advancements in the biotech and pharmaceutical sectors have led to the development of compounds that are currently in human trials, with some showing promising clinical results. However, the use of computational tools in TPD is still limited, as it has distinct characteristics compared with traditional computational drug design methods. TPD involves creating a ternary structure (protein-degrader-ligase) responsible for the biological function, such as ubiquitination and subsequent proteasomal degradation, which depends on the spatial orientation of the protein of interest (POI) relative to E2-loaded ubiquitin. Modeling this structure necessitates a unique blend of tools initially developed for small molecules (e.g., docking) and biologics (e.g., protein-protein interaction modeling). Additionally, degrader molecules, particularly heterobifunctional degraders, are generally larger than conventional small molecule drugs, leading to challenges in determining drug-like properties like solubility and permeability. Furthermore, the catalytic nature of TPD makes occupancy-based modeling insufficient. TPD consists of multiple interconnected yet distinct steps, such as POI binding, E3 ligase binding, ternary structure interactions, ubiquitination, and degradation, along with traditional small molecule properties. A comprehensive set of tools is needed to address the dynamic nature of the induced proximity ternary complex and its implications for ubiquitination. In this Perspective, we discuss the current state of computational tools for TPD. We start by describing the series of steps involved in the degradation process and the experimental methods used to characterize them. Then, we delve into a detailed analysis of the computational tools employed in TPD. We also present an integrative approach that has proven successful for degrader design and its impact on project decisions. Finally, we examine the future prospects of computational methods in TPD and the areas with the greatest potential for impact.
Collapse
Affiliation(s)
- Barmak Mostofian
- OpenEye, Cadence Molecular Sciences, Boston, Massachusetts 02114 United States
| | - Holli-Joi Martin
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Asghar Razavi
- ENKO
Chem, Inc, Mystic, Connecticut 06355 United States
| | - Shivam Patel
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Bryce Allen
- Differentiated
Therapeutics, San Diego, California 92056 United States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Jesus A Izaguirre
- Differentiated
Therapeutics, San Diego, California 92056 United States
- Atommap
Corporation, New York, New York 10013 United States
| |
Collapse
|
4
|
Potter TD, Haywood N, Teixeira A, Hodges G, Barrett EL, Miller MA. Partitioning into phosphatidylcholine-cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37158124 DOI: 10.1039/d3em00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Nicola Haywood
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
5
|
Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Partitioning of Antioxidants in Edible Oil-Water Binary Systems and in Oil-in-Water Emulsions. Antioxidants (Basel) 2023; 12:828. [PMID: 37107202 PMCID: PMC10135117 DOI: 10.3390/antiox12040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, partitioning of antioxidants in oil-water two-phase systems has received great interest because of their potential in the downstream processing of biomolecules, their benefits in health, and because partition constant values between water and model organic solvents are closely related to important biological and pharmaceutical properties such as bioavailability, passive transport, membrane permeability, and metabolism. Partitioning is also of general interest in the oil industry. Edible oils such as olive oil contain a variety of bioactive components that, depending on their partition constants, end up in an aqueous phase when extracted from olive fruits. Frequently, waste waters are subsequently discarded, but their recovery would allow for obtaining extracts with antioxidant and/or biological activities, adding commercial value to the wastes and, at the same time, would allow for minimizing environmental risks. Thus, given the importance of partitioning antioxidants, in this manuscript, we review the background theory necessary to derive the relevant equations necessary to describe, quantitatively, the partitioning of antioxidants (and, in general, other drugs) and the common methods for determining their partition constants in both binary (PWOIL) and multiphasic systems composed with edible oils. We also include some discussion on the usefulness (or not) of extrapolating the widely employed octanol-water partition constant (PWOCT) values to predict PWOIL values as well as on the effects of acidity and temperature on their distributions. Finally, there is a brief section discussing the importance of partitioning in lipidic oil-in-water emulsions, where two partition constants, that between the oil-interfacial, POI, and that between aqueous-interfacial, PwI, regions, which are needed to describe the partitioning of antioxidants, and whose values cannot be predicted from the PWOIL or the PWOCT ones.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos Bravo-Díaz
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
6
|
Droge STJ, Hodges G, Bonnell M, Gutsell S, Roberts J, Teixeira A, Barrett EL. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:621-647. [PMID: 36779707 DOI: 10.1039/d2em00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The risk assessment of thousands of chemicals used in our society benefits from adequate grouping of chemicals based on the mode and mechanism of toxic action (MoA). We measure the phospholipid membrane-water distribution ratio (DMLW) using a chromatographic assay (IAM-HPLC) for 121 neutral and ionized organic chemicals and screen other methods to derive DMLW. We use IAM-HPLC based DMLW as a chemical property to distinguish between baseline narcosis and specific MoA, for reported acute toxicity endpoints on two separate sets of chemicals. The first set comprised 94 chemicals of US EPA's acute fish toxicity database: 47 categorized as narcosis MoA, 27 with specific MoA, and 20 predominantly ionic chemicals with mostly unknown MoA. The narcosis MoA chemicals clustered around the median narcosis critical membrane burden (CMBnarc) of 140 mmol kg-1 lipid, with a lower limit of 14 mmol kg-1 lipid, including all chemicals labelled Narcosis_I and Narcosis_II. This maximum 'toxic ratio' (TR) between CMBnarc and the lower limit narcosis endpoint is thus 10. For 23/28 specific MoA chemicals a TR >10 was derived, indicative of a specific adverse effect pathway related to acute toxicity. For 10/12 cations categorized as "unsure amines", the TR <10 suggests that these affect fish via narcosis MoA. The second set comprised 29 herbicides, including 17 dissociated acids, and evaluated the TR for acute toxic effect concentrations to likely sensitive aquatic plant species (green algae and macrophytes Lemna and Myriophyllum), and non-target animal species (invertebrates and fish). For 21/29 herbicides, a TR >10 indicated a specific toxic mode of action other than narcosis for at least one of these aquatic primary producers. Fish and invertebrate TRs were mostly <10, particularly for neutral herbicides, but for acidic herbicides a TR >10 indicated specific adverse effects in non-target animals. The established critical membrane approach to derive the TR provides for useful contribution to the weight of evidence to bin a chemical as having a narcosis MoA or less likely to have acute toxicity caused by a more specific adverse effect pathway. After proper calibration, the chromatographic assay provides consistent and efficient experimental input for both neutral and ionizable chemicals to this approach.
Collapse
Affiliation(s)
- Steven T J Droge
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam (UvA), Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Mark Bonnell
- Environment and Climate Change Canada, Ecological Assessment Division, Science and Risk Assessment Directorate, Gatineau, Quebec, Canada
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
7
|
Piasentin N, Lian G, Cai Q. In Silico Prediction of Stratum Corneum Partition Coefficients via COSMOmic and Molecular Dynamics Simulations. J Phys Chem B 2023; 127:2719-2728. [PMID: 36930176 PMCID: PMC10068742 DOI: 10.1021/acs.jpcb.2c08566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stratum corneum (SC) is the main barrier of human skin where the inter-corneocytes lipids provide the main pathway for transdermal permeation of functional actives of skin care and health. Molecular dynamics (MD) has been increasingly used to simulate the SC lipid bilayer structure so that the barrier property and its affecting factors can be elucidated. Among reported MD simulation studies, solute partition in the SC lipids, an important parameter affecting SC permeability, has received limited attention. In this work, we combine MD simulation with COSMOmic to predict the partition coefficients of dermatologically relevant solutes in SC lipid bilayer. Firstly, we run MD simulations to obtain equilibrated SC lipid bilayers with different lipid types, compositions, and structures. Then, the simulated SC lipid bilayer structures are fed to COSMOmic to calculate the partition coefficients of the solutes. The results show that lipid types and bilayer geometries play a minor role in the predicted partition coefficients. For the more lipophilic solutes, the predicted results of solute partition in SC lipid bilayers agree well with reported experimental values of solute partition in extracted SC lipids. For the more hydrophilic molecules, there is a systematical underprediction. Nevertheless, the MD/COSMOmic approach correctly reproduces the phenomenological correlation between the SC lipid/water partition coefficients and the octanol/water partition coefficients. Overall, the results show that the MD/COSMOmic approach is a fast and valid method for predicting solute partitioning into SC lipids and hence supporting the assessment of percutaneous absorption of skin care ingredients, dermatological drugs as well as environmental pollutants.
Collapse
Affiliation(s)
- Nicola Piasentin
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| |
Collapse
|
8
|
Ranaudo A, Greco C, Moro G, Zucchi A, Mattiello S, Beverina L, Cosentino U. Partition of the Reactive Species of the Suzuki-Miyaura Reaction between Aqueous and Micellar Environments. J Phys Chem B 2022; 126:9408-9416. [PMID: 36330777 PMCID: PMC9677424 DOI: 10.1021/acs.jpcb.2c04591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Suzuki-Miyaura reaction between the aryl halide (1) and the phenyl boronic acid (2), in the presence of the palladium(0) complex (3) as catalyst, gives the cross-coupling product (4) in quantitative yield when performed in basic aqueous solution of the nonionic surfactant Kolliphor-EL (K-EL). The partition between the aqueous and micellar environments of the species of this reaction has been investigated by means of Molecular Dynamics (MD) simulations. Starting from the K-EL molecules dispersed in water, a micelle model has been generated by MD simulations, adopting the 2016H66 force field. Reagent and product species have been described with the same force field, once the reliability of this force field has been tested comparing the n-octanol/water partition free energies calculated from the MD and Free Energy Perturbation (FEP) method with those obtained from the quantum-mechanical SMD method. The potential of mean force for the transfer process between water and the micellar phase of the different species has been calculated by the MD simulations and the Umbrella Sampling (US) method. The overall picture that emerges from these results confirms that the molecular species involved in this reaction prefers the micellar environment and concentrates in different but close zones of the micelle. This supports the experimental evidence that the use of suitable surfactant agents promotes reactivity, allowing micelles to behave as nanoreactors in which reactive species are solubilized and enhance their local concentration.
Collapse
Affiliation(s)
- Anna Ranaudo
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy,
| | - Claudio Greco
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Giorgio Moro
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Anita Zucchi
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan 20125, Italy
| | - Sara Mattiello
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan 20125, Italy
| | - Luca Beverina
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan 20125, Italy
| | - Ugo Cosentino
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| |
Collapse
|
9
|
Nencini R, Ollila OHS. Charged Small Molecule Binding to Membranes in MD Simulations Evaluated against NMR Experiments. J Phys Chem B 2022; 126:6955-6963. [PMID: 36063117 PMCID: PMC9483918 DOI: 10.1021/acs.jpcb.2c05024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions of charged molecules with biomembranes regulate many of their biological activities, but their binding affinities to lipid bilayers are difficult to measure experimentally and model theoretically. Classical molecular dynamics (MD) simulations have the potential to capture the complex interactions determining how charged biomolecules interact with membranes, but systematic overbinding of sodium and calcium cations in standard MD simulations raises the question of how accurately force fields capture the interactions between lipid membranes and charged biomolecules. Here, we evaluate the binding of positively charged small molecules, etidocaine, and tetraphenylphosphonium to a phosphatidylcholine (POPC) lipid bilayer using the changes in lipid head-group order parameters. We observed that these molecules behave oppositely to calcium and sodium ions when binding to membranes: (i) their binding affinities are not overestimated by standard force field parameters, (ii) implicit inclusion of electronic polarizability increases their binding affinity, and (iii) they penetrate into the hydrophobic membrane core. Our results can be explained by distinct binding mechanisms of charged small molecules with hydrophobic moieties and monoatomic ions. The binding of the former is driven by hydrophobic effects, while the latter has direct electrostatic interactions with lipids. In addition to elucidating how different kinds of charged biomolecules bind to membranes, we deliver tools for further development of MD simulation parameters and methodology.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Zhang N, Bittner JP, Fiedler M, Beretta T, de María PD, Jakobtorweihen S, Kara S. Unraveling Alcohol Dehydrogenase Catalysis in Organic–Aqueous Biphasic Systems Combining Experiments and Molecular Dynamics Simulations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ningning Zhang
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Marius Fiedler
- Institute of Process Systems Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany
| | - Thomas Beretta
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167 Hannover, Germany
| |
Collapse
|
11
|
Bravo-Díaz C. Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches †. Crit Rev Food Sci Nutr 2022; 63:6252-6284. [PMID: 35104177 DOI: 10.1080/10408398.2022.2029827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large efforts have been, and still are, devoted to minimize the harmful effects of lipid peroxidation. Much of the early work focused in understanding both the lipid oxidation mechanisms and the action of antioxidants in bulk solution. However, food-grade oils are mostly present in the form of oil-in-water emulsions, bringing up an increasing complexity because of the three-dimensional interfacial region. This review presents an overview of the kinetic approaches employed in controlling the oxidative stability of edible oil-in-water emulsions and of the main outcomes, with particular emphasis on the role of antioxidants and on the kinetics of the inhibition reaction. Application of physical-organic chemistry methods, such as the pseudophase models to investigate antioxidant partitioning, constitute a remarkable example on how kinetic methodologies contribute to model chemical reactivity in multiphasic systems and to rationalize the role of interfaces, opening new opportunities for designing novel antioxidants with tailored properties and new prospects for modulating environmental conditions in attempting to optimize their efficiency. Here we will summarize the main kinetic features of the inhibition reaction and will discuss on the main factors affecting its rate, including the determination of antioxidant efficiencies from kinetic profiles, structure-reactivity relationships, partitioning of antioxidants and concentration effects.
Collapse
Affiliation(s)
- Carlos Bravo-Díaz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Zhou M, Yang H, Li H, Gu L, Zhou Y, Li M. The effects of molecular weight and orientation on the membrane permeation and partitioning of polycyclic aromatic hydrocarbons: a computational study. Phys Chem Chem Phys 2022; 24:2158-2166. [PMID: 35005759 DOI: 10.1039/d1cp04777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane permeation and the partitioning of polycyclic aromatic hydrocarbons (PAHs) are crucial aspects affecting their carcinogenicity and mutagenicity. However, a clear understanding of these processes is still rare due to the difficulty of determining the details experimentally. Here, the interactions between PAHs and lipid bilayers were studied by molecular simulations, mainly to check the influence of molecular weight and orientation. The liposome-water partition coefficient (KLW), transmembrane time (τ), and permeability coefficient (P) of the PAHs were calculated by integrating free energy profiles from umbrella sampling. For selected PAHs, the membrane adsorption is a spontaneous process. The preferred location is near the CC bond and the orientation is related to the molecular structure. The P values of all the PAHs are basically the same order of magnitude, which means that the molecular weight contributes little to the process. As for KLW and τ, they show obvious increases with different molecular weights. Unconstrained simulations showed that a flat orientation on the membrane surface would prevent PAHs from being transported through the membrane. Highly hydrophobic driving forces are not always good for the absorption of PAHs, especially the formation of aggregates. In addition, the orientations and energetic barriers of PAHs near the midplane of the lipid bilayer explain the different transitions of high- and low-weight PAHs. This work provides molecular level details relating to the interactions of PAHs with lipid membranes, with significance for understanding the health effects of PAHs.
Collapse
Affiliation(s)
- Mi Zhou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.,Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Huarong Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Lingzhi Gu
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| |
Collapse
|
13
|
Mur R, Langa E, Pino-Otín MR, Urieta JS, Mainar AM. Concentration of Antioxidant Compounds from Calendula officinalis through Sustainable Supercritical Technologies, and Computational Study of Their Permeability in Skin for Cosmetic Use. Antioxidants (Basel) 2021; 11:antiox11010096. [PMID: 35052598 PMCID: PMC8773024 DOI: 10.3390/antiox11010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/09/2023] Open
Abstract
The growing interest in the cosmetic industry in using compounds of natural and sustainable origin that are safe for humans is encouraging the development of processes that can satisfy these needs. Chlorogenic acid (CHA), caffeic acid (CAF) and ferulic acid (FA) are three compounds widely used within the cosmetic industry due to their functionalities as antioxidants, collagen modifiers or even as radiation protectors. In this work, two advanced separation techniques with supercritical CO2 are used to obtain these three compounds from Calendula officinalis, and these are then evaluated using a computational skin permeability model. This model is encompassed by the COSMO-RS model, the calculations of which make it possible to study the behaviour of the compounds in the epidermis. The results show that both CAF and FA are retained in the stratum corneum, while CHA manages to penetrate to the stratum spinosum. These compounds were concentrated by antisolvent fractionation with super-critical CO2 using a Response Surface Methodology to study the effect of pressure and CO2 flow rate. CHA, CAF and FA were completely retained in the precipitation vessel, with concentrations between 40% and 70% greater than in the original extract. The conditions predicted that the optimal overall yield and enrichment achieved would be 153 bar and 42 g/min.
Collapse
Affiliation(s)
- Raquel Mur
- GATHERS Group, Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (R.M.); (J.S.U.)
| | - Elisa Langa
- Campus Universitario Villanueva de Gállego, Universidad San Jorge, Autovía A-23 Zaragoza-Huesca Km. 299, 50830 Villanueva de Gallego, Spain; (E.L.); (M.R.P.-O.)
| | - M. Rosa Pino-Otín
- Campus Universitario Villanueva de Gállego, Universidad San Jorge, Autovía A-23 Zaragoza-Huesca Km. 299, 50830 Villanueva de Gallego, Spain; (E.L.); (M.R.P.-O.)
| | - José S. Urieta
- GATHERS Group, Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (R.M.); (J.S.U.)
| | - Ana M. Mainar
- GATHERS Group, Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (R.M.); (J.S.U.)
- Correspondence: ; Tel.: +34-976761195
| |
Collapse
|
14
|
Warren DB, Haque S, McInerney MP, Corbett KM, Kastrati E, Ford L, Williams HD, Jannin V, Benameur H, Porter CJH, Chalmers DK, Pouton CW. Molecular Dynamics Simulations and Experimental Results Provide Insight into Clinical Performance Differences between Sandimmune® and Neoral® Lipid-Based Formulations. Pharm Res 2021; 38:1531-1547. [PMID: 34561814 DOI: 10.1007/s11095-021-03099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Molecular dynamics (MD) simulations provide an in silico method to study the structure of lipid-based formulations (LBFs) and the incorporation of poorly water-soluble drugs within such formulations. In order to validate the ability of MD to effectively model the properties of LBFs, this work investigates the well-known cyclosporine A formulations, Sandimmune® and Neoral®. Sandimmune® exhibits poor dispersibility and its absorption from the gastrointestinal tract is enhanced when administered after food, whereas Neoral® disperses comparatively well and shows no food effect. METHODS MD simulations were performed of both LBFs to investigate the differences observed in fasted and fed conditions. These conditions were also tested using an in vitro experimental model of dispersion and digestion. RESULTS These MD simulations were able to show that the food effect observed for Sandimmune® can be explained by large changes in drug solubilization on addition of bile. In contrast, Neoral® is well dispersed in water or in simulated fasted conditions, and this dispersion is relatively unchanged on moving to fed conditions. These differences were confirmed using dispersion and digestion in vitro experimental model. CONCLUSIONS The current data suggests that MD simulations are a potential method to model the fate of LBFs in the gastrointestinal tract, predict their dispersion and digestion, investigate behaviour of APIs within the formulations, and provide insights into the clinical performance of LBFs.
Collapse
Affiliation(s)
- Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| | - Shadabul Haque
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | | | - Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Endri Kastrati
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Leigh Ford
- Lonza Pharma, Biotech & Nutrition, Melbourne, Australia
| | | | | | | | | | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| |
Collapse
|
15
|
Potter T, Barrett EL, Miller MA. Automated Coarse-Grained Mapping Algorithm for the Martini Force Field and Benchmarks for Membrane-Water Partitioning. J Chem Theory Comput 2021; 17:5777-5791. [PMID: 34472843 PMCID: PMC8444346 DOI: 10.1021/acs.jctc.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/08/2023]
Abstract
With a view to high-throughput simulations, we present an automated system for mapping and parameterizing organic molecules for use with the coarse-grained Martini force field. The method scales to larger molecules and a broader chemical space than existing schemes. The core of the mapping process is a graph-based analysis of the molecule's bonding network, which has the advantages of being fast, general, and preserving symmetry. The parameterization process pays special attention to coarse-grained beads in aromatic rings. It also includes a method for building efficient and stable frameworks of constraints for molecules with structural rigidity. The performance of the method is tested on a diverse set of 87 neutral organic molecules and the ability of the resulting models to capture octanol-water and membrane-water partition coefficients. In the latter case, we introduce an adaptive method for extracting partition coefficients from free-energy profiles to take into account the interfacial region of the membrane. We also use the models to probe the response of membrane-water partitioning to the cholesterol content of the membrane.
Collapse
Affiliation(s)
- Thomas
D. Potter
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Elin L. Barrett
- Unilever
Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A. Miller
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| |
Collapse
|
16
|
Lopes-de-Campos D, Pereira-Leite C, Fontaine P, Coutinho A, Prieto M, Sarmento B, Jakobtorweihen S, Nunes C, Reis S. Interface-Mediated Mechanism of Action-The Root of the Cytoprotective Effect of Immediate-Release Omeprazole. J Med Chem 2021; 64:5171-5184. [PMID: 33847502 DOI: 10.1021/acs.jmedchem.1c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Omeprazole is usually administered under an enteric coating. However, there is a Food and Drug Administration-approved strategy that enables its release in the stomach. When locally absorbed, omeprazole shows a higher efficacy and a cytoprotective effect, whose mechanism was still unknown. Therefore, we aimed to assess the effect of the absorption route on the gastric mucosa. 2D and 3D models of dipalmitoylphosphatidylcholine (DPPC) at different pH values (5.0 and 7.4) were used to mimic different absorption conditions. Several experimental techniques, namely, fluorescence studies, X-ray scattering methodologies, and Langmuir monolayers coupled with microscopy, X-ray diffraction, and infrared spectroscopy techniques, were combined with molecular dynamics simulations. The results showed that electrostatic and hydrophobic interactions between omeprazole and DPPC rearranged the conformational state of DPPC. Omeprazole intercalates among DPPC molecules, promoting domain formation with untilted phospholipids. Hence, the local release of omeprazole enables its action as a phospholipid-like drug, which can reinforce and protect the gastric mucosa.
Collapse
Affiliation(s)
- Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Pereira-Leite
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Ana Coutinho
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IINFACTS, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
A novel approach to calculate protein adsorption isotherms by molecular dynamics simulations. J Chromatogr A 2020; 1620:460940. [PMID: 32183982 DOI: 10.1016/j.chroma.2020.460940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022]
Abstract
Protein adsorption plays a role in many fields, where in some it is desirable to maximize the amount adsorbed, in others it is important to avoid protein adsorption altogether. Therefore, theoretical methods are needed for a better understanding of the underlying processes and for the prediction of adsorption quantities. In this study, we present a proof-of-concept that the calculation of protein adsorption isotherms by molecular dynamics (MD) simulations is possible using the steric mass action (SMA) theory. Here we are investigating the adsorption of bovine/human serum albumin (BSA/HSA) and hemoglobin (bHb) on Q Sepharose FF. Protein adsorption isotherms were experimentally determined and modeled. Free energy profiles of protein adsorption were calculated by MD simulations to determine the Henry isotherms as a first step. Although each simulation contained only one protein, notably the calculated isotherms are in reasonably good agreement with the experimental isotherms. Hence, we could show that MD data can lead to protein adsorption data in good agreement with experimental data. The results were critically discussed and requirements for future applications are identified.
Collapse
|
18
|
Schwöbel JAH, Ebert A, Bittermann K, Huniar U, Goss KU, Klamt A. COSMOperm: Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence. J Phys Chem B 2020; 124:3343-3354. [DOI: 10.1021/acs.jpcb.9b11728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Andrea Ebert
- UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, 4020 Linz, Austria
| | - Kai Bittermann
- UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Uwe Huniar
- BIOVIA, Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, D-51379 Leverkusen, Germany
| | - Kai-Uwe Goss
- UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg, Kurt Mothes Str. 2, D-06120 Halle, Germany
| | - Andreas Klamt
- BIOVIA, Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, D-51379 Leverkusen, Germany
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
19
|
Turchi M, Kognole AA, Kumar A, Cai Q, Lian G, MacKerell AD. Predicting Partition Coefficients of Neutral and Charged Solutes in the Mixed SLES-Fatty Acid Micellar System. J Phys Chem B 2020; 124:1653-1664. [PMID: 31955574 DOI: 10.1021/acs.jpcb.9b11199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sodium laureth sulfate (SLES) and fatty acids are common ingredients in many cosmetic products. Understanding how neutral and charged fatty acid compounds partition between micellar and water phases is crucial to achieve the optimal design of the product formulation. In this paper, we first study the formation of mixed SLES and fatty acid micelles using molecular dynamics (MD) simulations. Micelle/water partition coefficients of neutral and charged fatty acids are then calculated using COSMOmic as well as a MD approach based on the potential of mean force (PMF) calculations performed using umbrella sampling (US). The combined US/PMF approach was performed with both the additive, non-polarizable CHARMM general force field (CGenFF) and the classical Drude polarizable force field. The partition coefficients for the neutral solutes are shown to be accurately calculated with the COSMOmic and additive CGenFF US/PMF approaches, while only the US/PMF approach with the Drude polarizable force field accurately calculated the experimental partition coefficient of the charged solute. These results indicate the utility of the Drude polarizable force field as a tool for the rational development of mixed micelles.
Collapse
Affiliation(s)
- Mattia Turchi
- Unilever Research Colworth, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.,Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| | - Abhishek A Kognole
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Anmol Kumar
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| | - Guoping Lian
- Unilever Research Colworth, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.,Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| | - Alexander D MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
20
|
Yang H, Li H, Zhou M, Wei T, Tang C, Liu L, Zhou Y, Long X. A relationship between membrane permeation and partitioning of nitroaromatic explosives and their functional groups. A computational study. Phys Chem Chem Phys 2020; 22:8791-8799. [DOI: 10.1039/d0cp00549e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitroaromatic explosives, such as 2,4,6-trinitrotoluene, are representative aromatic compounds, which are generally highly toxic.
Collapse
Affiliation(s)
- Hong Yang
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
- Institute of Chemical Materials
| | - Huarong Li
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| | - Mi Zhou
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| | - Tong Wei
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| | - Can Tang
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| | - Liu Liu
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| | - Yang Zhou
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| | - Xinping Long
- Institute of Chemical Materials
- China Academy of Engineering and Physics
- Mianyang 621900
- China
| |
Collapse
|
21
|
Ghysels A, Krämer A, Venable RM, Teague WE, Lyman E, Gawrisch K, Pastor RW. Permeability of membranes in the liquid ordered and liquid disordered phases. Nat Commun 2019; 10:5616. [PMID: 31819053 PMCID: PMC6901538 DOI: 10.1038/s41467-019-13432-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022] Open
Abstract
The functional significance of ordered nanodomains (or rafts) in cholesterol rich eukaryotic cell membranes has only begun to be explored. This study exploits the correspondence of cellular rafts and liquid ordered (Lo) phases of three-component lipid bilayers to examine permeability. Molecular dynamics simulations of Lo phase dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol show that oxygen and water transit a leaflet through the DOPC and cholesterol rich boundaries of hexagonally packed DPPC microdomains, freely diffuse along the bilayer midplane, and escape the membrane along the boundary regions. Electron paramagnetic resonance experiments provide critical validation: the measured ratio of oxygen concentrations near the midplanes of liquid disordered (Ld) and Lo bilayers of DPPC/DOPC/cholesterol is 1.75 ± 0.35, in very good agreement with 1.3 ± 0.3 obtained from simulation. The results show how cellular rafts can be structurally rigid signaling platforms while remaining nearly as permeable to small molecules as the Ld phase.
Collapse
Affiliation(s)
- An Ghysels
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Gent, Belgium.
| | - Andreas Krämer
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walter E Teague
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edward Lyman
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Delaware, Newark, 19716, DE, USA
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Tong X, Moradipour M, Novak B, Kamali P, Asare SO, Knutson BL, Rankin SE, Lynn BC, Moldovan D. Experimental and Molecular Dynamics Simulation Study of the Effects of Lignin Dimers on the Gel-to-Fluid Phase Transition in DPPC Bilayers. J Phys Chem B 2019; 123:8247-8260. [DOI: 10.1021/acs.jpcb.9b05525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xinjie Tong
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brian Novak
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Poorya Kamali
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Shardrack O. Asare
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Barbara L. Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Stephen E. Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bert C. Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dorel Moldovan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
23
|
Mechanistic skin penetration model by the COSMOperm method: Routes of permeation, vehicle effects and skin variations in the healthy and compromised skin. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Yang H, Li H, Liu L, Zhou Y, Long X. Molecular Simulation Studies on the Interactions of 2,4,6-Trinitrotoluene and Its Metabolites with Lipid Membranes. J Phys Chem B 2019; 123:6481-6491. [DOI: 10.1021/acs.jpcb.9b03033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hong Yang
- School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Huarong Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Liu Liu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Xinping Long
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
25
|
Lomize AL, Pogozheva ID. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J Chem Inf Model 2019; 59:3198-3213. [PMID: 31259555 DOI: 10.1021/acs.jcim.9b00224] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of permeability is a critical step in the drug development process for selection of drug candidates with favorable ADME properties. We have developed a novel physics-based method for fast computational modeling of passive permeation of diverse classes of molecules across lipid membranes. The method is based on heterogeneous solubility-diffusion theory and operates with all-atom 3D structures of solutes and the anisotropic solvent model of the lipid bilayer characterized by transbilayer profiles of dielectric and hydrogen bonding capacity parameters. The optimal translocation pathway of a solute is determined by moving an ensemble of representative conformations of the molecule through the dioleoyl-phosphatidylcholine (DOPC) bilayer and optimizing their rotational orientations in every point of the transmembrane trajectory. The method calculates (1) the membrane-bound state of the solute molecule; (2) free energy profile of the solute along the permeation pathway; and (3) the permeability coefficient obtained by integration over the transbilayer energy profile and assuming a constant size-dependent diffusivity along the membrane normal. The accuracy of the predictions was evaluated against experimental permeability coefficients measured in pure lipid membranes (for 78 compounds, R2 was 0.88 and rmse was 1.15 log units), PAMPA-DS (for 280 compounds, R2 was 0.75 and rmse was 1.59 log units), BBB (for 182 compounds, R2 was 0.69 and rmse was 0.87 log units), and Caco-2/MDCK assays (for 165 compounds, R2 was 0.52 and rmse was 0.89 log units).
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109-1065 , United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109-1065 , United States
| |
Collapse
|
26
|
Turchi M, Cai Q, Lian G. An evaluation of in-silico methods for predicting solute partition in multiphase complex fluids – A case study of octanol/water partition coefficient. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Hossain S, Kabedev A, Parrow A, Bergström CAS, Larsson P. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. Eur J Pharm Biopharm 2019; 137:46-55. [PMID: 30771454 PMCID: PMC6434319 DOI: 10.1016/j.ejpb.2019.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In this review we will discuss how computational methods, and in particular classical molecular dynamics simulations, can be used to calculate solubility of pharmaceutically relevant molecules and systems. To the extent possible, we focus on the non-technical details of these calculations, and try to show also the added value of a more thorough and detailed understanding of the solubilization process obtained by using computational simulations. Although the main focus is on classical molecular dynamics simulations, we also provide the reader with some insights into other computational techniques, such as the COSMO-method, and also discuss Flory-Huggins theory and solubility parameters. We hope that this review will serve as a valuable starting point for any pharmaceutical researcher, who has not yet fully explored the possibilities offered by computational approaches to solubility calculations.
Collapse
Affiliation(s)
- Shakhawath Hossain
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden.
| |
Collapse
|
28
|
Klamt A, Schwöbel J, Huniar U, Koch L, Terzi S, Gaudin T. COSMOplex: self-consistent simulation of self-organizing inhomogeneous systems based on COSMO-RS. Phys Chem Chem Phys 2019; 21:9225-9238. [PMID: 30994133 DOI: 10.1039/c9cp01169b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the past 20 years, the efficient combination of quantum chemical calculations with statistical thermodynamics by the COSMO-RS method has become an important alternative to force-field based simulations for the accurate prediction of free energies of molecules in liquid systems. While it was originally restricted to homogeneous liquids, it later has been extended to the prediction of the free energy of molecules in inhomogeneous systems such as micelles, biomembranes, or liquid interfaces, but these calculations were based on external input about the structure of the inhomogeneous system. Here we report the rigorous extension of COSMO-RS to a self-consistent prediction of the structure and the free energies of molecules in self-organizing inhomogeneous systems. This extends the application range to many new areas, such as the prediction of micellar structures and critical micelle concentrations, finite loading effects in micelles and biomembranes, the free energies and structure of liquid interfaces, microemulsions, and many more related topics, which often are of great practical importance.
Collapse
Affiliation(s)
- Andreas Klamt
- COSMOlogic GmbH & Co KG, Imbacher Weg 46, D-51379 Leverkusen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Tesei G, Vazdar M, Lund M. Coarse-grained model of titrating peptides interacting with lipid bilayers. J Chem Phys 2018; 149:244108. [PMID: 30599743 DOI: 10.1063/1.5058234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular-level computer simulations of peptide aggregation, translocation, and protonation at and in biomembranes are impeded by the large time and length scales involved. We present a computationally efficient, coarse-grained, and solvent-free model for the interaction between lipid bilayers and peptides. The model combines an accurate description of mechanical membrane properties with a new granular representation of the dielectric mismatch between lipids and the aqueous phase. All-atom force fields can be easily mapped onto the coarse-grained model, and parameters for coarse-grained monopeptides accurately extrapolate to membrane permeation free energies for the corresponding dipeptides and tripeptides. Acid-base equilibria of titratable amino acid residues are further studied using a constant-pH ensemble, capturing protonation state changes upon membrane translocation. Important differences between histidine, lysine, and arginine are observed, which are in good agreement with experimental observations.
Collapse
Affiliation(s)
- Giulio Tesei
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
30
|
Dickson CJ, Hornak V, Bednarczyk D, Duca JS. Using Membrane Partitioning Simulations To Predict Permeability of Forty-Nine Drug-Like Molecules. J Chem Inf Model 2018; 59:236-244. [DOI: 10.1021/acs.jcim.8b00744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Callum J. Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dallas Bednarczyk
- PK Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose S. Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Interaction of gabaergic ketones with model membranes: A molecular dynamics and experimental approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1563-1570. [DOI: 10.1016/j.bbamem.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
|
32
|
Menichetti R, Kanekal KH, Kremer K, Bereau T. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force. J Chem Phys 2018; 147:125101. [PMID: 28964031 DOI: 10.1063/1.4987012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The partitioning of small molecules in cell membranes-a key parameter for pharmaceutical applications-typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity-already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.
Collapse
Affiliation(s)
- Roberto Menichetti
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kiran H Kanekal
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
33
|
Metronidazole within phosphatidylcholine lipid membranes: New insights to improve the design of imidazole derivatives. Eur J Pharm Biopharm 2018; 129:204-214. [PMID: 29859282 DOI: 10.1016/j.ejpb.2018.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Metronidazole is a imidazole derivative with antibacterial and antiprotozoal activity. Despite its therapeutic efficacy, several studies have been developing new imidazole derivatives with lower toxicity. Considering that drug-membrane interactions are key factors for drugs pharmacokinetic and pharmacodynamic properties, the aim of this work is to provide new insights into the structure-toxicity relationship of metronidazole within phosphatidylcholine membranes. For that purpose, lipid membrane models (liposomes and monolayers) composed of dipalmitoylphosphatidylcholine were used. Experimental techniques (determination of partition coefficients and Langmuir isotherm measurements) were combined with molecular dynamics simulations. Different pHs and lipid phases were evaluated to enable a better extrapolation for in vivo conditions. The partition of metronidazole depends on the pH and on the biphasic system (octanol/water or DPPC/water system). At pH 1.2, metronidazole is hydrophilic. At pH 7.4, metronidazole disturbs the order and the packing of phospholipids. For this toxic effect, the hydroxyl group of the side chain of metronidazole is crucial by interacting with the water embedded in the membrane and with the phosphate group and the apolar chains of phospholipids.
Collapse
|
34
|
Koneva AS, Ritter E, Anufrikov YA, Lezov AA, Klestova AO, Smirnova NA, Safonova EA, Smirnova I. Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: Micellar properties, solutes' partitioning from micellar liquid chromatography and modelling with COSMOmic. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Loureiro DRP, Soares JX, Lopes D, Macedo T, Yordanova D, Jakobtorweihen S, Nunes C, Reis S, Pinto MMM, Afonso CMM. Accessing lipophilicity of drugs with biomimetic models: A comparative study using liposomes and micelles. Eur J Pharm Sci 2018; 115:369-380. [PMID: 29366962 DOI: 10.1016/j.ejps.2018.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/24/2022]
Abstract
Lipophilicity is a physicochemical property of crucial importance in drug discovery and drug design. Biomimetic models, such as liposomes and micelles, constitute a valuable tool for the assessment of lipophilicity through the determination of partition coefficients (log Kp). However, the lack of standardization hampers the judgment about which model or method has the best and broadest passive drug permeation predictive capacity. This work provides a comparative analysis between the methodologies based on biomimetic models to determine the partition coefficient (log Kp). For that purpose, a set of reference substances preconized by the Organization for Economic Cooperation and Development (OECD) guidelines was used. The biomimetic models employed were liposomes and micelles composed by 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) and hexadecylphosphocholine (HePC), respectively. Both lipids were used as representative phospholipids of natural membranes. The partition coefficients between biomimetic models and aqueous phases were determined by derivative spectroscopy at physiological conditions (37 °C and pH 7.4). The partition coefficients obtained using biomimetic models are quite different and more reliable than the ones obtained using an octanol/water system. Comparing the performance of the two biomimetic models, micelles revealed to be suitable only for substances with high molar absorption coefficient and log Kp > 3, but in general liposomes are the best model for accessing lipophilicity of drugs. Furthermore, a comparison between experimental data and the partition coefficients determined by the computational method COSMOmic is also provided and discussed. As a final summarizing result, a decision tree is provided in order to guide the selection of a tool for assessing the lipophilicity of drugs.
Collapse
Affiliation(s)
- Daniela R P Loureiro
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniela Lopes
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tiago Macedo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Denitsa Yordanova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Germany
| | - Cláudia Nunes
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M M Pinto
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Porto, Portugal
| | - Carlos M M Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Porto, Portugal.
| |
Collapse
|
36
|
Golius A, Gorb L, Isayev O, Leszczynski J. Diffusion of energetic compounds through biological membrane: Application of classical MD and COSMOmic approximations. J Biomol Struct Dyn 2018; 37:247-255. [PMID: 29301457 DOI: 10.1080/07391102.2018.1424037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Computational studies of the potential biological impact of several energetic compounds were performed. The most commonly used explosives were considered in the present studies: trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,4-dinitroanisole (DNAN), and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). The effect of such factors as ionic strength and presence of DMSO in the water solution on the structure of the membrane were considered using the POPC lipid bilayer as an example. Molecular dynamics (MD) simulations revealed that, even on a short-time scale, the influence of those additives is noticeable, and therefore those factors should always be taken into account. The MD and the COSMOmic approaches were used to elucidate the ability of the energetic compounds to penetrate the living cell. Calculated free energy profiles and partitioning coefficients revealed distributions of the compounds in the lipid bilayer as well as an overall ability to enter the cell. MD in this case provides a better representation of the free energy profile, while the COSMOmic approach works better to predict log(Klipw) values. The effect of the functional group was observed for the profiles that were obtained using the MD method.
Collapse
Affiliation(s)
- Anastasiia Golius
- a Department of Chemistry, Physics and Atmospheric Science , Jackson State University , Jackson , Mississippi , USA
| | - Leonid Gorb
- b Institute of Molecular Biology and Genetics , Kyiv , Ukraine
| | - Olexander Isayev
- c Division of Chemical Biology and Medicinal Chemistry , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , North Carolina , USA
| | - Jerzy Leszczynski
- a Department of Chemistry, Physics and Atmospheric Science , Jackson State University , Jackson , Mississippi , USA
| |
Collapse
|
37
|
Yordanova D, Ritter E, Smirnova I, Jakobtorweihen S. Micellization and Partition Equilibria in Mixed Nonionic/Ionic Micellar Systems: Predictions with Molecular Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12306-12316. [PMID: 28967760 DOI: 10.1021/acs.langmuir.7b02813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In practical applications, surfactant solutions are mostly used in mixtures of nonionic and ionic surfactants because they have improved characteristics compared to those of single surfactant solutions. By adjusting the composition of the micelles and the pH value, the solubilization of solutes can be enhanced. Nevertheless, the partitioning of solutes between nonionic/ionic mixed micelles and the aqueous phase is studied to a much lesser extent than for single surfactant solutions. Theoretical methods to predict partition equilibria in mixed micelles are of interest for screening studies. For those, the composition of the mixed micelle has to be known. Here we investigate mixtures of TX-114 (Triton X-114), Brij35 (C12E23), SDS (sodium dodecyl sulfate), and CTAB (cetyltrimethylammonium bromide). First, to investigate the surfactant compositions in the micelles, molecular dynamics (MD) self-assembly simulations were applied. Thereafter, the predictive COSMO-RS model, which applies the pseudophase approach, and its extension to anisotropic systems termed COSMOmic were compared for the prediction of partition equilibria in mixed micelles, where various molar ratios of the surfactants were considered. It could be demonstrated that both methods are applicable and lead to reasonable predictions for neutral molecules. However, taking into account the three-dimensional structure of the micelle is beneficial because the calculations with COSMOmic are in better agreement with experimental results. Because the partitioning behavior of ionizable molecules in mixed micelles is of particular interest, the partitioning of ionized isovanillin in mixed Brij35/CTAB micelles at different micelle compositions was calculated with COSMOmic. Using a thermodynamic cycle, the position-dependent pKa of isovanillin within the micelle is calculated on the basis of COSMOmic free energy profiles. As a result, the protolytic equilibrium of isovanillin within the micelles can be taken into account, which is crucial for the reliable prediction of partition coefficients.
Collapse
Affiliation(s)
- D Yordanova
- Hamburg University of Technology , Institute of Thermal Separation Processes, Eissendorfer Str. 38, 21073 Hamburg, Germany
| | - E Ritter
- Hamburg University of Technology , Institute of Thermal Separation Processes, Eissendorfer Str. 38, 21073 Hamburg, Germany
| | - I Smirnova
- Hamburg University of Technology , Institute of Thermal Separation Processes, Eissendorfer Str. 38, 21073 Hamburg, Germany
| | - S Jakobtorweihen
- Hamburg University of Technology , Institute of Thermal Separation Processes, Eissendorfer Str. 38, 21073 Hamburg, Germany
| |
Collapse
|
38
|
Predicting Critical Micelle Concentrations with Molecular Dynamics Simulations and COSMOmic. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Yordanova D, Ritter E, Gerlach T, Jensen JH, Smirnova I, Jakobtorweihen S. Solute Partitioning in Micelles: Combining Molecular Dynamics Simulations, COSMOmic, and Experiments. J Phys Chem B 2017; 121:5794-5809. [DOI: 10.1021/acs.jpcb.7b03147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- D. Yordanova
- Institute of Thermal Separation
Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - E. Ritter
- Institute of Thermal Separation
Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - T. Gerlach
- Institute of Thermal Separation
Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - J. H. Jensen
- Institute of Thermal Separation
Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - I. Smirnova
- Institute of Thermal Separation
Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - S. Jakobtorweihen
- Institute of Thermal Separation
Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| |
Collapse
|
40
|
Ritter E, Racheva R, Jakobtorweihen S, Smirnova I. Influence of d -glucose as additive on thermodynamics and physical properties of aqueous surfactant two-phase systems for the continuous micellar extraction. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
42
|
Pearlstein RA, Dickson CJ, Hornak V. Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:177-194. [PMID: 27836643 DOI: 10.1016/j.bbamem.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/28/2016] [Accepted: 11/06/2016] [Indexed: 01/27/2023]
Abstract
The membrane dipole potential (Ψd) constitutes one of three electrical potentials generated by cell membranes. Ψd arises from the unfavorable parallel alignment of phospholipid and water dipoles, and varies in magnitude both longitudinally and laterally across the bilayer according to membrane composition and phospholipid packing density. In this work, we propose that dynamic counter-balancing between Ψd and the transmembrane potential (ΔΨm) governs the conformational state transitions of voltage-gated ion channels. Ψd consists of 1) static outer, and dynamic inner leaflet components (Ψd(extra) and Ψd(intra), respectively); and 2) a transmembrane component (ΔΨd(inner-outer)), ariing from differences in intra- and extracellular leaflet composition. Ψd(intra), which transitions between high and low energy states (Ψd(intra, high) and Ψd(intra, low)) as a function of channel conformation, is transduced by the pore domain. ΔΨd(inner-outer) is transduced by the voltage-sensing (VS) domain in summation with ΔΨm. Potentiation of voltage-gated ion channels is of interest for the treatment of cardiac, neuronal, and other disorders arising from inherited/acquired ion channel dysfunction. Potentiators are widely believed to alter the rates and voltage-dependencies of channel gating transitions by binding to pockets in the membrane-facing and other regions of ion channel targets. Here, we propose that potentiators alter Ψd(intra) and/or Ψd(extra), thereby increasing or decreasing the energy barriers governing channel gating transitions. We used quantum mechanical and molecular dynamics (MD) simulations to predict the overall Ψd-modulating effects of a series of published positive hERG potentiators partitioned into model DOPC bilayers. Our findings suggest a strong correlation between the magnitude of Ψd-lowering and positive hERG potentiation across the series.
Collapse
Affiliation(s)
- Robert A Pearlstein
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139, USA.
| | - Callum J Dickson
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139, USA
| | - Viktor Hornak
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Nitschke N, Atkovska K, Hub JS. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs. J Chem Phys 2016; 145:125101. [DOI: 10.1063/1.4963192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Naomi Nitschke
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Kalina Atkovska
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Neale C, Pomès R. Sampling errors in free energy simulations of small molecules in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2539-2548. [PMID: 26952019 DOI: 10.1016/j.bbamem.2016.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022]
Abstract
Free energy simulations are a powerful tool for evaluating the interactions of molecular solutes with lipid bilayers as mimetics of cellular membranes. However, these simulations are frequently hindered by systematic sampling errors. This review highlights recent progress in computing free energy profiles for inserting molecular solutes into lipid bilayers. Particular emphasis is placed on a systematic analysis of the free energy profiles, identifying the sources of sampling errors that reduce computational efficiency, and highlighting methodological advances that may alleviate sampling deficiencies. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Chris Neale
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, New York 12180-3590, USA
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
45
|
Bittermann K, Spycher S, Goss KU. Comparison of different models predicting the phospholipid-membrane water partition coefficients of charged compounds. CHEMOSPHERE 2016; 144:382-91. [PMID: 26383265 DOI: 10.1016/j.chemosphere.2015.08.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
A large fraction of commercially used chemicals is ionizable. This results in the need for mechanistic models to describe the physicochemical properties of ions, like the membrane-water partition coefficient (K(mw)), which is related to toxicity and bioaccumulation. In this work we compare 3 different and already existing modelling approaches to describe the liposome-water partition coefficient (K(lipw)) of organic ions, including 36 cations, 56 anions, 2 divalent cations and 2 zwitterions (plus 207 neutral compounds for ensuring model consistency). 1) The empirical correlation with the octanol-water partition coefficient of the corresponding neutral species yielded better results for the prediction of anions (RMSE = 0.79) than for cations (RMSE = 1.14). Though describing most anions reasonably well, the lack of mechanistic basis and the poor performance for cations constrain the usage of this model. 2) The polyparameter linear free energy relationship (pp-LFER) model performs worse (RMSE = 1.26/1.12 for anions/cations). The different physicochemical environments, due to different sorption depths into the membrane of the different species, cannot be described with a single pp-LFER model. 3) COSMOmic is based on quantum chemistry and fluid phase thermodynamics and has the widest applicability domain. It was the only model applicable for multiply charged ions and gave the best results for anions (RMSE = 0.66) and cations (RMSE = 0.71). We expect COSMOmic to contribute to a better estimation of the environmental risk of ionizable emerging pollutants.
Collapse
Affiliation(s)
- Kai Bittermann
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Simon Spycher
- ELPR Ltd., Litzibuch, CH-8966 Oberwil-Lieli, Switzerland.
| | - Kai-Uwe Goss
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; University of Halle-Wittenberg, Institute of Chemistry, Kurt Mothes Str. 2, D-06120 Halle, Germany.
| |
Collapse
|
46
|
Bereau T, Kremer K. Automated parametrization of the coarse-grained Martini force field for small organic molecules. J Chem Theory Comput 2015; 11:2783-91. [PMID: 26575571 DOI: 10.1021/acs.jctc.5b00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The systematic exploration of chemical compound space holds many promises toward structure-function relationships and material design. In the context of computer simulations, progress is hampered by both the sheer number of compounds and the efforts associated with parametrizing a force field for every new molecule. A coarse-grained (CG) representation provides not only a reduced phase space but also a smaller number of compounds, due to the redundancy of CG representations mapping to the same structure. Though many CG models require the explicit force-field parametrization of a molecule with all others, others assume transferability by means of mixing rules, such as the Martini force field. To alleviate the burden associated with tedious parametrizations for each new compound, the present work aims at automating the mapping and parametrization of common small organic molecules for Martini. We test the method by analyzing the water/octanol partitioning of more than 650 neutral molecules, the hydration free energy of 354 others, and the free energies of hydration and solvation in octanol of another 69 compounds. Last, we compare with all-atom simulations the thermodynamics of insertion of four individual solute molecules in a phospholipid membrane. The protocol demonstrates the feasibility of an automated parametrization scheme for Martini and provides prospects for high-throughput simulation methodologies.
Collapse
Affiliation(s)
- Tristan Bereau
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
47
|
Yordanova D, Smirnova I, Jakobtorweihen S. Molecular Modeling of Triton X Micelles: Force Field Parameters, Self-Assembly, and Partition Equilibria. J Chem Theory Comput 2015; 11:2329-40. [DOI: 10.1021/acs.jctc.5b00026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Yordanova
- Hamburg University of Technology, Institute
of Thermal Separation Processes, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - I. Smirnova
- Hamburg University of Technology, Institute
of Thermal Separation Processes, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - S. Jakobtorweihen
- Hamburg University of Technology, Institute
of Thermal Separation Processes, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| |
Collapse
|
48
|
Padilla-Chavarría HI, Guizado TRC, Pimentel AS. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp01443c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dibenz[a,h]anthracene and its metabolite may form aggregates, which have implications in the clearance process of the lung surfactant phospholipid bilayers.
Collapse
Affiliation(s)
- Helmut I. Padilla-Chavarría
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| | - Teobaldo R. C. Guizado
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| | - Andre S. Pimentel
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| |
Collapse
|
49
|
Bittermann K, Spycher S, Endo S, Pohler L, Huniar U, Goss KU, Klamt A. Prediction of Phospholipid–Water Partition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMOmic. J Phys Chem B 2014; 118:14833-42. [DOI: 10.1021/jp509348a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Shen L, Zhang X, Liu M, Wang Z. Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|