1
|
Ugandi M, Roemelt M. Analytical SA-HCISCF Nuclear Gradients from Spin-Adapted Heat-Bath Configuration Interaction. J Chem Theory Comput 2025; 21:3930-3944. [PMID: 40193170 PMCID: PMC12020362 DOI: 10.1021/acs.jctc.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
This work reports an implementation of the analytical nuclear gradients and nonadiabatic couplings with state-averaged SCF wave functions from a spin-pure selected configuration interaction (SCI) method. At the core of the implementation lies the evaluation of the Lagrange multipliers required for the variational calculation of the nuclear gradient. Using the same code infrastructure, we developed a fully CI-coupled second-order orbital optimization method. Both the calculation of the nuclear gradient and the second-order orbital optimization make use of density fitting in order to accelerate the calculation of the two-electron integrals. We demonstrate the use of analytical nuclear gradients in excited-state geometry optimizations for conjugated molecules. In addition, the first triplet excited-state geometry of a transition-metal catalyst, Fe(PDI), was optimized with up to 30 orbitals in the active space. Our results outline the capabilities of the implemented methods as well as directions for future work.
Collapse
Affiliation(s)
- Mihkel Ugandi
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin D-12489, Germany
| | - Michael Roemelt
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin D-12489, Germany
| |
Collapse
|
2
|
Ahmed SB, Kan HW, Lam KC, Yip CT. Charge-induced isomerization in alkyl imine molecular motors: a reduced energy barrier approach. RSC Adv 2025; 15:8053-8059. [PMID: 40098693 PMCID: PMC11911998 DOI: 10.1039/d4ra06792d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Molecular motors offer promising applications in the fields of nanodevices and biological systems, as the accurate control of directional rotation at the molecular scale holds great potential. In this context, it is highly relevant to study a new class of molecular motors that can undergo isomerization. Since the first report of the chiral N-alkyl imine-based motors, most investigations have focused on the unidirectional rotation process induced by light and heat. However, this work explores an alternative mechanism - the electron-induced stimulating mechanism of the molecular motor. We theoretically investigate how charge injection and extraction can influence molecular rotation. The rotation occurs around the central axle, which is measured as the torsion angle between the rotor and the stator fragments of the molecule against the C[double bond, length as m-dash]N double bond. Our computational study reveals that the introduction of charge reduces the energy barrier, facilitating more favourable molecular rotation than in the neutral singlet state. The charged molecule in a quartet spin state can rotate internally, while that in the doublet state cannot. Our findings provide a molecular scale understanding of the reaction pathways and highlight the significant role of charge in promoting the isomerization and rotational behaviour of the molecular motor.
Collapse
Affiliation(s)
- Syed Bilal Ahmed
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hei Wun Kan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - King-Cheong Lam
- Division of Science, Engineering and Health Studies, The School of Professional Education and Executive Development, Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Cho-Tung Yip
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
3
|
Blaschke S, Kitsaras MP, Stopkowicz S. Finite-field Cholesky decomposed coupled-cluster techniques (ff-CD-CC): theory and application to pressure broadening of Mg by a He atmosphere and a strong magnetic field. Phys Chem Chem Phys 2024; 26:28828-28848. [PMID: 39540271 DOI: 10.1039/d4cp03103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
For the interpretation of spectra of magnetic stellar objects such as magnetic white dwarfs (WDs), highly accurate quantum chemical predictions for atoms and molecules in finite magnetic field are required. Especially the accurate description of electronically excited states and their properties requires established methods such as those from coupled-cluster (CC) theory. However, respective calculations are computationally challenging even for medium-sized systems. Cholesky decomposition (CD) techniques may be used to alleviate memory bottlenecks. In finite magnetic field computations, the latter are increased due to the reduction of permutational symmetry within the electron-repulsion-integrals (ERIs) as well as the need for complex-valued data types. CD enables a memory-efficient, approximate description of the ERIs with rigorous error control and thus the treatment of larger systems at the CC level becomes feasible. In order to treat molecules in a finite magnetic field, we present in this work the working equations of the left and right-hand side equations for finite field (ff)-EOM-CD-CCSD for various EOM flavours as well as for the approximate ff-EOM-CD-CC2 method. The methods are applied to the study of the modification of the spectral lines of a magnesium transition by a helium atmosphere that can be found on magnetic WD stars.
Collapse
Affiliation(s)
- Simon Blaschke
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Fachrichtung Chemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany.
| | - Marios-Petros Kitsaras
- Fachrichtung Chemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany.
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany.
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway
| |
Collapse
|
4
|
Pokhilko P, Yeh CN, Morales MA, Zgid D. Tensor hypercontraction for fully self-consistent imaginary-time GF2 and GWSOX methods: Theory, implementation, and role of the Green's function second-order exchange for intermolecular interactions. J Chem Phys 2024; 161:084108. [PMID: 39185845 DOI: 10.1063/5.0215954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
We present an efficient MPI-parallel algorithm and its implementation for evaluating the self-consistent correlated second-order exchange term (SOX), which is employed as a correction to the fully self-consistent GW scheme called scGWSOX (GW plus the SOX term iterated to achieve full Green's function self-consistency). Due to the application of the tensor hypercontraction (THC) in our computational procedure, the scaling of the evaluation of scGWSOX is reduced from O(nτnAO5) to O(nτN2nAO2). This fully MPI-parallel and THC-adapted approach enabled us to conduct the largest fully self-consistent scGWSOX calculations with over 1100 atomic orbitals with only negligible errors attributed to THC fitting. Utilizing our THC implementation for scGW, scGF2, and scGWSOX, we evaluated energies of intermolecular interactions. This approach allowed us to circumvent issues related to reference dependence and ambiguity in energy evaluation, which are common challenges in non-self-consistent calculations. We demonstrate that scGW exhibits a slight overbinding tendency for large systems, contrary to the underbinding observed with non-self-consistent RPA. Conversely, scGWSOX exhibits a slight underbinding tendency for such systems. This behavior is both physical and systematic and is caused by exclusion-principle violating diagrams or corresponding corrections. Our analysis elucidates the role played by these different diagrams, which is crucial for the construction of rigorous, accurate, and systematic methods. Finally, we explicitly show that all perturbative fully self-consistent Green's function methods are size-extensive and size-consistent.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Nan Yeh
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Miguel A Morales
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Cuéllar-Zuquin J, Pepino AJ, Fdez. Galván I, Rivalta I, Aquilante F, Garavelli M, Lindh R, Segarra-Martí J. Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size. J Chem Theory Comput 2023; 19:8258-8272. [PMID: 37882796 PMCID: PMC10851440 DOI: 10.1021/acs.jctc.3c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.
Collapse
Affiliation(s)
- Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Ana Julieta Pepino
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Francesco Aquilante
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
6
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, et alLi Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Show More Authors] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
7
|
Wang SY, Zhang JR, Guo M, Hua W. Interpreting the Cu-O 2 Antibonding Nature in Two Cu-O 2 Complexes from Cu L-Edge X-ray Absorption Spectra. Inorg Chem 2023; 62:17115-17125. [PMID: 37828769 DOI: 10.1021/acs.inorgchem.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cu-O2 structures play important roles in bioinorganic chemistry and enzyme catalysis, where the bonding between the Cu and O2 parts serves as a fundamental research concern. Here, we performed a multiconfigurational study on the copper L2,3-edge X-ray absorption spectra (XAS) of two copper enzyme model complexes to gain a better understanding of the antibonding nature from the clearly interpreted structure-spectroscopy relation. We obtained spectra in good agreement with the experiments by using the restricted active space second-order perturbation theory (RASPT2) method, which facilitated reliable chemical analysis. Spectral feature interpretations were supported by computing the spin-orbit natural transition orbitals. All major features were assigned to be mainly from Cu 2p to antibonding orbitals between Cu 3d and O2 π*, Cu 3d-πO-O* (type A), and a few also to mixed antibonding/bonding orbitals between Cu 3d and O2 π, Cu 3d ± πO-O (type M). Our calculations provided a clear illustration of the interactions between Cu 3d and O2 π*/π orbitals that are carried in the metal L-edge XAS.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Meiyuan Guo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75105, Sweden
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
8
|
Hohenstein EG, Oumarou O, Al-Saadon R, Anselmetti GLR, Scheurer M, Gogolin C, Parrish RM. Efficient quantum analytic nuclear gradients with double factorization. J Chem Phys 2023; 158:114119. [PMID: 36948843 DOI: 10.1063/5.0137167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Efficient representations of the Hamiltonian, such as double factorization, drastically reduce the circuit depth or the number of repetitions in error corrected and noisy intermediate-scale quantum (NISQ) algorithms for chemistry. We report a Lagrangian-based approach for evaluating relaxed one- and two-particle reduced density matrices from double factorized Hamiltonians, unlocking efficiency improvements in computing the nuclear gradient and related derivative properties. We demonstrate the accuracy and feasibility of our Lagrangian-based approach to recover all off-diagonal density matrix elements in classically simulated examples with up to 327 quantum and 18 470 total atoms in QM/MM simulations with modest-sized quantum active spaces. We show this in the context of the variational quantum eigensolver in case studies, such as transition state optimization, ab initio molecular dynamics simulation, and energy minimization of large molecular systems.
Collapse
|
9
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
10
|
Blaschke S, Stopkowicz S. Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields. J Chem Phys 2022; 156:044115. [DOI: 10.1063/5.0076588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simon Blaschke
- Department Chemie, Johannes Gutenberg-Unversität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Unversität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
11
|
Segarra‐Martí J, Bearpark MJ. Modelling Photoionisation in Isocytosine: Potential Formation of Longer-Lived Excited State Cations in its Keto Form. Chemphyschem 2021; 22:2172-2181. [PMID: 34370368 PMCID: PMC8597144 DOI: 10.1002/cphc.202100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Studying the effects of UV and VUV radiation on non-canonical DNA/RNA nucleobases allows us to compare how they release excess energy following absorption with respect to their canonical counterparts. This has attracted much research attention in recent years because of its likely influence on the origin of our genetic lexicon in prebiotic times. Here we present a CASSCF and XMS-CASPT2 theoretical study of the photoionisation of non-canonical pyrimidine nucleobase isocytosine in both its keto and enol tautomeric forms. We analyse their lowest energy cationic excited states including 2 π + , 2 n O + and 2 n N + and compare these to the corresponding electronic states in cytosine. Investigating lower-energy decay pathways we find - unexpectedly - that keto-isocytosine+ presents a sizeable energy barrier potentially inhibiting decay to its cationic ground state, whereas enol-isocytosine+ features a barrierless and consequently ultrafast pathway analogous to the one previously found for the canonical (keto) form of cytosine+ . Dynamic electron correlation reduces the energy barrier in the keto form substantially (by ∼1 eV) but it is nevertheless still present. We additionally compute the UV/Vis absorption signals of the structures encountered along these decay channels to provide spectroscopic fingerprints to assist future experiments in monitoring these intricate photo-processes.
Collapse
Affiliation(s)
- Javier Segarra‐Martí
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Present address: Instituto de Ciencia MolecularUniversitat de ValenciaP.O. Box 22085ES-46071ValenciaSpain
| | - Michael J. Bearpark
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
12
|
Scott TR, Oakley MS, Hermes MR, Sand AM, Lindh R, Truhlar DG, Gagliardi L. Analytic gradients for multiconfiguration pair-density functional theory with density fitting: Development and application to geometry optimization in the ground and excited states. J Chem Phys 2021; 154:074108. [PMID: 33607874 DOI: 10.1063/5.0039258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Density fitting reduces the computational cost of both energy and gradient calculations by avoiding the computation and manipulation of four-index electron repulsion integrals. With this algorithm, one can efficiently optimize the geometries of large systems with an accurate multireference treatment. Here, we present the derivation of multiconfiguration pair-density functional theory for energies and analytic gradients with density fitting. Six systems are studied, and the results are compared to those obtained with no approximation to the electron repulsion integrals and to the results obtained by complete active space second-order perturbation theory. With the new approach, there is an increase in the speed of computation with a negligible loss in accuracy. Smaller grid sizes have also been used to reduce the computational cost of multiconfiguration pair-density functional theory with little effect on the optimized geometries and gradient values.
Collapse
Affiliation(s)
- Thais R Scott
- Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Meagan S Oakley
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew R Hermes
- Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrew M Sand
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, USA
| | - Roland Lindh
- Department of Chemistry-BMC, Organic Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Laura Gagliardi
- Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Laikov DN. Optimization of atomic density-fitting basis functions for molecular two-electron integral approximations. J Chem Phys 2020; 153:114121. [PMID: 32962362 DOI: 10.1063/5.0014639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A general procedure for the optimization of atomic density-fitting basis functions is designed with the balance between accuracy and numerical stability in mind. Given one-electron wavefunctions and energies, weights are assigned to the product densities, modeling their contribution to the exchange and second-order correlation energy, and a simple weighted error measure is minimized. Generally contracted Gaussian auxiliary basis sets are optimized to match the wavefunction basis sets [D. N. Laikov, Theor. Chem. Acc. 138, 40 (2019)] for all 102 elements in a scalar-relativistic approximation [D. N. Laikov, J. Chem. Phys. 150, 061103 (2019)].
Collapse
Affiliation(s)
- Dimitri N Laikov
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Scott TR, Hermes MR, Sand AM, Oakley MS, Truhlar DG, Gagliardi L. Analytic gradients for state-averaged multiconfiguration pair-density functional theory. J Chem Phys 2020; 153:014106. [PMID: 32640800 DOI: 10.1063/5.0007040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analytic gradients are important for efficient calculations of stationary points on potential energy surfaces, for interpreting spectroscopic observations, and for efficient direct dynamics simulations. For excited electronic states, as are involved in UV-Vis spectroscopy and photochemistry, analytic gradients are readily available and often affordable for calculations using a state-averaged complete active space self-consistent-field (SA-CASSCF) wave function. However, in most cases, a post-SA-CASSCF step is necessary for quantitative accuracy, and such calculations are often too expensive if carried out by perturbation theory or configuration interaction. In this work, we present the analytic gradients for multiconfiguration pair-density functional theory based on SA-CASSCF wave functions, which is a more affordable alternative. A test set of molecules has been studied with this method, and the stationary geometries and energetics are compared to values in the literature as obtained by other methods. Excited-state geometries computed with state-averaged pair-density functional theory have similar accuracy to those from complete active space perturbation theory at the second-order.
Collapse
Affiliation(s)
- Thais R Scott
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew R Hermes
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew M Sand
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, USA
| | - Meagan S Oakley
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Matthews DA, Cheng L, Harding ME, Lipparini F, Stopkowicz S, Jagau TC, Szalay PG, Gauss J, Stanton JF. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J Chem Phys 2020; 152:214108. [DOI: 10.1063/5.0004837] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael E. Harding
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, D-76131 Karlsruhe, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Thomas-C. Jagau
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - John F. Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
16
|
Aquilante F, Autschbach J, Baiardi A, Battaglia S, Borin VA, Chibotaru LF, Conti I, De Vico L, Delcey M, Fdez Galván I, Ferré N, Freitag L, Garavelli M, Gong X, Knecht S, Larsson ED, Lindh R, Lundberg M, Malmqvist PÅ, Nenov A, Norell J, Odelius M, Olivucci M, Pedersen TB, Pedraza-González L, Phung QM, Pierloot K, Reiher M, Schapiro I, Segarra-Martí J, Segatta F, Seijo L, Sen S, Sergentu DC, Stein CJ, Ungur L, Vacher M, Valentini A, Veryazov V. Modern quantum chemistry with [Open]Molcas. J Chem Phys 2020; 152:214117. [PMID: 32505150 DOI: 10.1063/5.0004835] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
Collapse
Affiliation(s)
- Francesco Aquilante
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, USA
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Mickaël Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Nicolas Ferré
- Aix-Marseille University, CNRS, Institut Chimie Radicalaire, Marseille, France
| | - Leon Freitag
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Xuejun Gong
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Thomas B Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Quan M Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luis Seijo
- Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Christopher J Stein
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Liviu Ungur
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 44300 Nantes, France
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
17
|
Fdez. Galván I, Vacher M, Alavi A, Angeli C, Aquilante F, Autschbach J, Bao JJ, Bokarev SI, Bogdanov NA, Carlson RK, Chibotaru LF, Creutzberg J, Dattani N, Delcey MG, Dong SS, Dreuw A, Freitag L, Frutos LM, Gagliardi L, Gendron F, Giussani A, González L, Grell G, Guo M, Hoyer CE, Johansson M, Keller S, Knecht S, Kovačević G, Källman E, Li Manni G, Lundberg M, Ma Y, Mai S, Malhado JP, Malmqvist PÅ, Marquetand P, Mewes SA, Norell J, Olivucci M, Oppel M, Phung QM, Pierloot K, Plasser F, Reiher M, Sand AM, Schapiro I, Sharma P, Stein CJ, Sørensen LK, Truhlar DG, Ugandi M, Ungur L, Valentini A, Vancoillie S, Veryazov V, Weser O, Wesołowski TA, Widmark PO, Wouters S, Zech A, Zobel JP, Lindh R. OpenMolcas: From Source Code to Insight. J Chem Theory Comput 2019; 15:5925-5964. [DOI: 10.1021/acs.jctc.9b00532] [Citation(s) in RCA: 655] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Fdez. Galván
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Morgane Vacher
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Ali Alavi
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Francesco Aquilante
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Nikolay A. Bogdanov
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Rebecca K. Carlson
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Liviu F. Chibotaru
- Theory of Nanomaterials Group, University of Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Joel Creutzberg
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Nike Dattani
- Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Mickaël G. Delcey
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
| | - Leon Freitag
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, and Instituto de Investigación Química “Andrés M. del Río”, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Angelo Giussani
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Meiyuan Guo
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marcus Johansson
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Keller
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Goran Kovačević
- Division of Materials Physics, Ruđer Bošković Institute, P.O.B. 180, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Erik Källman
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Giovanni Li Manni
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Yingjin Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag
102904, Auckland 0632, New Zealand
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- USIAS and Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, 67034 Strasbourg, France
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Stein
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lasse Kragh Sørensen
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Mihkel Ugandi
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Steven Vancoillie
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Valera Veryazov
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Oskar Weser
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Tomasz A. Wesołowski
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Per-Olof Widmark
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Wouters
- Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium
| | - Alexander Zech
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - J. Patrick Zobel
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Roland Lindh
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
18
|
Feng X, Epifanovsky E, Gauss J, Krylov AI. Implementation of analytic gradients for CCSD and EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks. J Chem Phys 2019; 151:014110. [DOI: 10.1063/1.5100022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xintian Feng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
19
|
Segarra‐Martí J, Tran T, Bearpark MJ. Computing the Ultrafast and Radiationless Electronic Excited State Decay of Cytosine and 5‐methyl‐cytosine Cations: Uncovering the Role of Dynamic Electron Correlation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Segarra‐Martí
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| | - Thierry Tran
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| | - Michael J. Bearpark
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| |
Collapse
|
20
|
Li Y, Wang W, Liu F. Exploring the Mechanism of a Chiral N-Alkyl Imine-Based Light-Driven Molecular Rotary Motor at MS-CASPT2//CASSCF and MS-CASPT2//(TD) DFT Levels. Chemistry 2019; 25:4194-4201. [PMID: 30653755 DOI: 10.1002/chem.201806152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/10/2022]
Abstract
The working mechanism including the photoisomerization and thermal isomerization steps of a chiral N-alkyl imine-based motor synthesized by Lehn et al. are revealed by MS-CASPT2//CASSCF and MS-CASPT2//(TD-)DFT methods. For the photoisomerization process of the imine-based motor, it involves both the bright (π,π*) state and the dark (n,π*) state. In addition, the MECI has similar geometry and energy to the minimum of the S1 state, which shows that the process is barrierless and keeps the unidirectionality of rotation well; the result confirms the imine-based motor is a good candidate for a light-driven molecular rotary motor. For the thermal isomerization process of the imine-based motor, there are two even isomerization paths: one with the mechanism of the in-plane N inversion, the energy barriers of which are 29.6 kcal mol-1 at MS3-CASPT2//CAM-B3LYP level and 29.2 kcal mol-1 at MS3-CASPT2//CASSCF level; the other with the mechanism of ring inversion of the cycloheptatriene moiety, with energy barriers of 28.1 kcal mol-1 at MS3-CASPT2//CAM-B3LYP level and 18.1 kcal mol-1 at MS3-CASPT2//CASSCF level. According to the structural feature of the stator moiety, the imine molecule can be used as a two-step or a four-step light-driven rotary motor.
Collapse
Affiliation(s)
- Yuanying Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P.R. China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P.R. China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P.R. China
| |
Collapse
|
21
|
Segarra-Martí J, Tran T, Bearpark MJ. Ultrafast and radiationless electronic excited state decay of uracil and thymine cations: computing the effects of dynamic electron correlation. Phys Chem Chem Phys 2019; 21:14322-14330. [PMID: 30698175 DOI: 10.1039/c8cp07189f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this article we characterise the radiationless decay of the first few electronic excited states of the cations of DNA/RNA nucleobases uracil and thymine, including the effects of dynamic electron correlation on energies and geometries (optimised with XMS-CASPT2). In both systems, we find that one state of 2n and another two of 2π+ character can be populated following photoionisation, and their different minima and interstate crossings are located. We find strong similarities between uracil and thymine cations: with accessible conical intersections suggesting that depopulation of their electronic excited states takes place on ultrafast timescales in both systems, suggesting that they are photostable in agreement with previous theoretical (uracil+) evidence. We find that dynamic electron correlation separates the energy levels of the "3-state" conical intersection (D2/D1/D0)CI previously located with CASSCF for uracil+, which will therefore have a different geometry and higher energy. Simulating the electronic and vibrational absorptions allows us to characterise spectral fingerprints that could be used to monitor these cation photo-processes experimentally.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| | - Thierry Tran
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| | - Michael J Bearpark
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| |
Collapse
|
22
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
23
|
Snyder JW, Fales BS, Hohenstein EG, Levine BG, Martínez TJ. A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. J Chem Phys 2018; 146:174113. [PMID: 28477593 DOI: 10.1063/1.4979844] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently developed an algorithm to compute response properties for the state-averaged complete active space self-consistent field method (SA-CASSCF) that capitalized on sparsity in the atomic orbital basis. Our original algorithm was limited to treating small to moderate sized active spaces, but the recent development of graphical processing unit (GPU) based direct-configuration interaction algorithms provides an opportunity to extend this to large active spaces. We present here a direct-compatible version of the coupled perturbed equations, enabling us to compute response properties for systems treated with arbitrary active spaces (subject to available memory and computation time). This work demonstrates that the computationally demanding portions of the SA-CASSCF method can be formulated in terms of seven fundamental operations, including Coulomb and exchange matrix builds and their derivatives, as well as, generalized one- and two-particle density matrix and σ vector constructions. As in our previous work, this algorithm exhibits low computational scaling and is accelerated by the use of GPUs, making possible optimizations and nonadiabatic dynamics on systems with O(1000) basis functions and O(100) atoms, respectively.
Collapse
Affiliation(s)
- James W Snyder
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - B Scott Fales
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Edward G Hohenstein
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, USA
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
24
|
Blanco-Díaz EG, Vázquez-Montelongo EA, Cisneros GA, Castrejón-González EO. Computational investigation of non-covalent interactions in 1-butyl 3-methylimidazolium/bis(trifluoromethylsulfonyl)imide [bmim][Tf2N] in EMD and NEMD. J Chem Phys 2018; 148:054303. [DOI: 10.1063/1.5017987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edgar G. Blanco-Díaz
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato 38010,
Mexico
| | | | - G. Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76206, USA
| | | |
Collapse
|
25
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
26
|
Aquilante F, Delcey MG, Pedersen TB, Fdez. Galván I, Lindh R. Inner projection techniques for the low-cost handling of two-electron integrals in quantum chemistry. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1284354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Francesco Aquilante
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Bologna, Italy
| | - Mickaël G. Delcey
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| | - Ignacio Fdez. Galván
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden
- Uppsala Center for Computational Chemistry – UC3, Uppsala University, Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Li Y, Liu F, Wang B, Su Q, Wang W, Morokuma K. Different conical intersections control nonadiabatic photochemistry of fluorene light-driven molecular rotary motor: A CASSCF and spin-flip DFT study. J Chem Phys 2016; 145:244311. [DOI: 10.1063/1.4972825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuanying Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China
| | - Bin Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China
| | - Qingqing Su
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
28
|
Segarra-Martí J, Francés-Monerris A, Roca-Sanjuán D, Merchán M. Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules 2016; 21:molecules21121666. [PMID: 27918489 PMCID: PMC6274573 DOI: 10.3390/molecules21121666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess the accuracy of these different computational strategies under study based on a variety of numerical thresholds and optimization methods. Several basis sets and active spaces have also been calibrated to understand to what extent they can influence the resulting geometries and subsequent interpretation of the photochemical decay channels. The study shows small discrepancies between CASSCF and CASPT2 PEHs, displaying a shallow planar or twisted 1(ππ*) minimum, respectively, and thus featuring a qualitatively similar scenario for supporting the ultrafast bi-exponential deactivation registered in thymine upon UV-light exposure. A deeper knowledge of the PEHs at different levels of theory provides useful insight into its correct characterization and subsequent interpretation of the experimental observations. The discrepancies displayed by the different methods studied here are then discussed and framed within their potential consequences in on-the-fly non-adiabatic molecular dynamics simulations, where qualitatively diverse outcomes are expected.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
- Present Address: Laboratoire de Chimie UMR 5182, École Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France.
| | - Antonio Francés-Monerris
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| |
Collapse
|
29
|
Francés-Monerris A, Segarra-Martí J, Merchán M, Roca-Sanjuán D. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). J Chem Phys 2016; 143:215101. [PMID: 26646889 DOI: 10.1063/1.4936574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.
Collapse
Affiliation(s)
| | - Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
30
|
Vlaisavljevich B, Shiozaki T. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions. J Chem Theory Comput 2016; 12:3781-7. [DOI: 10.1021/acs.jctc.6b00572] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bess Vlaisavljevich
- Department of Chemistry, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Fdez. Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical State-Average Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections. J Chem Theory Comput 2016; 12:3636-53. [DOI: 10.1021/acs.jctc.6b00384] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mickaël G. Delcey
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas Bondo Pedersen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| | - Francesco Aquilante
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, IT-40126 Bologna, Italy
| | | |
Collapse
|
32
|
Granovsky AA. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction. J Chem Phys 2015; 143:231101. [DOI: 10.1063/1.4938169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 2015; 37:506-41. [PMID: 26561362 DOI: 10.1002/jcc.24221] [Citation(s) in RCA: 1150] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
Collapse
Affiliation(s)
- Francesco Aquilante
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Rebecca K Carlson
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu F Chibotaru
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Mickaël G Delcey
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Luca De Vico
- Department of Chemistry, Copenhagen University, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ignacio Fdez Galván
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Nicolas Ferré
- Université d'Aix-Marseille, CNRS, Institut de Chimie Radicalaire, Campus Étoile/Saint-Jérôme Case 521, Avenue Esc. Normandie Niemen, Marseille Cedex 20, 13397, France
| | - Luis Manuel Frutos
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy.,Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Chad E Hoyer
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Giovanni Li Manni
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle and Boston, Lubbock, Texas, 79409-1061, USA.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Dongxia Ma
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Per Åke Malmqvist
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Thomas Müller
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy.,Chemistry Department, Bowling Green State University, 141 Overman Hall, Bowling Green, Ohio, 43403, USA.,Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo, 0315, Norway
| | - Daoling Peng
- College of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Felix Plasser
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Ben Pritchard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, Zurich, CH-8093, Switzerland
| | - Ivan Rivalta
- Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France.,Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Michael Stenrup
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Donald G Truhlar
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu Ungur
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Alessio Valentini
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Steven Vancoillie
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Valera Veryazov
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Victor P Vysotskiy
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Felipe Zapata
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roland Lindh
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| |
Collapse
|