1
|
Bruno G, de Souza B, Neese F, Bistoni G. Can domain-based local pair natural orbitals approaches accurately predict phosphorescence energies? Phys Chem Chem Phys 2022; 24:14228-14241. [PMID: 35649286 DOI: 10.1039/d2cp01623k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the discovery of the peculiar conducting and optical properties of aromatics, many efforts have been made to characterize and predict their phosphorescence. This physical process is exploited in modern Organic Emitting Light Diodes (OLEDs), and it is also one of the processes decreasing the efficiency of Dye-sensitized solar cells (DSSCs). Herein, we propose a computational strategy for the accurate calculation of singlet-triplet gaps of aromatic compounds, which provides results that are in excellent agreement with available experimental data. Our approach relies on the domain-based local pair natural orbital (DLPNO) variant of the "gold standard" CCSD(T) method. The convergence of our results with respect to the key technical parameters of the calculation, such as the basis set used, the approximations employed in the perturbative triples correction, and the dimension of the PNOs space, was thoroughly discussed.
Collapse
Affiliation(s)
- Giovanna Bruno
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy.
| |
Collapse
|
2
|
Stella M, Thapa K, Genovese L, Ratcliff LE. Transition-Based Constrained DFT for the Robust and Reliable Treatment of Excitations in Supramolecular Systems. J Chem Theory Comput 2022; 18:3027-3038. [PMID: 35471972 PMCID: PMC9097287 DOI: 10.1021/acs.jctc.1c00548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Despite the variety of available computational approaches, state-of-the-art methods for calculating excitation energies, such as time-dependent density functional theory (TDDFT), are computationally demanding and thus limited to moderate system sizes. Here, we introduce a new variation of constrained DFT (CDFT), wherein the constraint corresponds to a particular transition (T), or a combination of transitions, between occupied and virtual orbitals, rather than a region of the simulation space as in traditional CDFT. We compare T-CDFT with TDDFT and ΔSCF results for the low-lying excited states (S1 and T1) of a set of gas-phase acene molecules and OLED emitters and with reference results from the literature. At the PBE level of theory, T-CDFT outperforms ΔSCF for both classes of molecules, while also proving to be more robust. For the local excitations seen in the acenes, T-CDFT and TDDFT perform equally well. For the charge transfer (CT)-like excitations seen in the OLED molecules, T-CDFT also performs well, in contrast to the severe energy underestimation seen with TDDFT. In other words, T-CDFT is equally applicable to both local excitations and CT states, providing more reliable excitation energies at a much lower computational cost than TDDFT cost. T-CDFT is designed for large systems and has been implemented in the linear-scaling BigDFT code. It is therefore ideally suited for exploring the effects of explicit environments on excitation energies, paving the way for future simulations of excited states in complex realistic morphologies, such as those which occur in OLED materials.
Collapse
Affiliation(s)
- Martina Stella
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- The
Abdus Salam International Centre for Theoretical Physics, Condensed Matter and Statistical Physics, Trieste 34151, Italy
| | - Kritam Thapa
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Luigi Genovese
- Université
Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble 38000, France
| | - Laura E. Ratcliff
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
3
|
Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Martina Stella
- Department of Materials Imperial College London London UK
| | | | | | - Luigi Genovese
- Université Grenoble Alpes, INAC‐MEM, L_Sim Grenoble France
| |
Collapse
|
4
|
Prentice JCA. Efficiently Computing Excitations of Complex Systems: Linear-Scaling Time-Dependent Embedded Mean-Field Theory in Implicit Solvent. J Chem Theory Comput 2022; 18:1542-1554. [PMID: 35133827 PMCID: PMC9082505 DOI: 10.1021/acs.jctc.1c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Quantum embedding schemes have the
potential to significantly reduce
the computational cost of first-principles calculations while maintaining
accuracy, particularly for calculations of electronic excitations
in complex systems. In this work, I combine time-dependent embedded
mean field theory (TD-EMFT) with linear-scaling density functional
theory and implicit solvation models, extending previous work within
the ONETEP code. This provides a way to perform multilevel calculations
of electronic excitations on very large systems, where long-range
environmental effects, both quantum and classical in nature, are important.
I demonstrate the power of this method by performing simulations on
a variety of systems, including a molecular dimer, a chromophore in
solution, and a doped molecular crystal. This work paves the way for
high accuracy calculations to be performed on large-scale systems
that were previously beyond the reach of quantum embedding schemes.
Collapse
Affiliation(s)
- Joseph C A Prentice
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
5
|
Zuehlsdorff TJ, Shedge SV, Lu SY, Hong H, Aguirre VP, Shi L, Isborn CM. Vibronic and Environmental Effects in Simulations of Optical Spectroscopy. Annu Rev Phys Chem 2021; 72:165-188. [DOI: 10.1146/annurev-physchem-090419-051350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.
Collapse
Affiliation(s)
- Tim J. Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Sapana V. Shedge
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Shao-Yu Lu
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Hanbo Hong
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Vincent P. Aguirre
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Christine M. Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
6
|
Chan B, Hirao K. Rapid Prediction of Ultraviolet-Visible Spectra from Conventional (Non-Time-Dependent) Density Functional Theory Calculations. J Phys Chem Lett 2020; 11:7882-7885. [PMID: 32893637 DOI: 10.1021/acs.jpclett.0c02146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present an approximate approach for the simulation of UV/vis spectra using conventional [non-time-dependent (non-TD)] DFT computations. It uses Kohn-Sham orbitals and orbital energies to estimate both the excitation energies and the associated oscillator strengths. For a wide range of systems from small molecules to large molecular dyes used in electrochromic and solar-cell applications, reasonable UV/vis spectra are generated, each with just two conventional DFT computations. The accuracy is generally comparable to what one would expect from TD-DFT calculations. In comparison to TD-DFT, the protocol of the present study provides an intuitive and notably more rapid means for simulating electronic absorption properties. It enables efficient screening of materials for a wide range of relevant applications.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki-shi, Nagasaki 852-8521, Japan
| | - Kimihiko Hirao
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
7
|
Abstract
We present a machine learning (ML) method to accelerate the nuclear ensemble approach (NEA) for computing absorption cross sections. ML-NEA is used to calculate cross sections on vast ensembles of nuclear geometries to reduce the error due to insufficient statistical sampling. The electronic properties-excitation energies and oscillator strengths-are calculated with a reference electronic structure method only for a relatively few points in the ensemble. The KREG model (kernel-ridge-regression-based ML combined with the RE descriptor) as implemented in MLatom is used to predict these properties for the remaining tens of thousands of points in the ensemble without incurring much of additional computational cost. We demonstrate for two examples, benzene and a 9-dicyanomethylene derivative of acridine, that ML-NEA can produce statistically converged cross sections even for very challenging cases and even with as few as several hundreds of training points.
Collapse
Affiliation(s)
- Bao-Xin Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | | | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
8
|
Zuehlsdorff TJ, Hong H, Shi L, Isborn CM. Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions. J Chem Phys 2020; 153:044127. [PMID: 32752702 DOI: 10.1063/5.0013739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
First-principles modeling of nonlinear optical spectra in the condensed phase is highly challenging because both environment and vibronic interactions can play a large role in determining spectral shapes and excited state dynamics. Here, we compute two dimensional electronic spectroscopy (2DES) signals based on a cumulant expansion of the energy gap fluctuation operator, with specific focus on analyzing mode mixing effects introduced by the Duschinsky rotation and the role of the third order term in the cumulant expansion for both model and realistic condensed phase systems. We show that for a harmonic model system, the third order cumulant correction captures effects introduced by a mismatch in curvatures of ground and excited state potential energy surfaces, as well as effects of mode mixing. We also demonstrate that 2DES signals can be accurately reconstructed from purely classical correlation functions using quantum correction factors. We then compute nonlinear optical spectra for the Nile red and methylene blue chromophores in solution, assessing the third order cumulant contribution for realistic systems. We show that the third order cumulant correction is strongly dependent on the treatment of the solvent environment, revealing the interplay between environmental polarization and the electronic-vibrational coupling.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Hanbo Hong
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Liang Shi
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
9
|
Neutral excitation density-functional theory: an efficient and variational first-principles method for simulating neutral excitations in molecules. Sci Rep 2020; 10:8947. [PMID: 32488196 PMCID: PMC7265560 DOI: 10.1038/s41598-020-65209-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
We introduce neutral excitation density-functional theory (XDFT), a computationally light, generally applicable, first-principles technique for calculating neutral electronic excitations. The concept is to generalise constrained density functional theory to free it from any assumptions about the spatial confinement of electrons and holes, but to maintain all the advantages of a variational method. The task of calculating the lowest excited state of a given symmetry is thereby simplified to one of performing a simple, low-cost sequence of coupled DFT calculations. We demonstrate the efficacy of the method by calculating the lowest single-particle singlet and triplet excitation energies in the well-known Thiel molecular test set, with results which are in good agreement with linear-response time-dependent density functional theory (LR-TDDFT). Furthermore, we show that XDFT can successfully capture two-electron excitations, in principle, offering a flexible approach to target specific effects beyond state-of-the-art adiabatic-kernel LR-TDDFT. Overall the method makes optical gaps and electron-hole binding energies readily accessible at a computational cost and scaling comparable to that of standard density functional theory. Owing to its multiple qualities beneficial to high-throughput studies where the optical gap is of particular interest; namely broad applicability, low computational demand, and ease of implementation and automation, XDFT presents as a viable candidate for research within materials discovery and informatics frameworks.
Collapse
|
10
|
Prentice JCA, Aarons J, Womack JC, Allen AEA, Andrinopoulos L, Anton L, Bell RA, Bhandari A, Bramley GA, Charlton RJ, Clements RJ, Cole DJ, Constantinescu G, Corsetti F, Dubois SMM, Duff KKB, Escartín JM, Greco A, Hill Q, Lee LP, Linscott E, O'Regan DD, Phipps MJS, Ratcliff LE, Serrano ÁR, Tait EW, Teobaldi G, Vitale V, Yeung N, Zuehlsdorff TJ, Dziedzic J, Haynes PD, Hine NDM, Mostofi AA, Payne MC, Skylaris CK. The ONETEP linear-scaling density functional theory program. J Chem Phys 2020; 152:174111. [PMID: 32384832 DOI: 10.1063/5.0004445] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.
Collapse
Affiliation(s)
- Joseph C A Prentice
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jolyon Aarons
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Alice E A Allen
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lampros Andrinopoulos
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lucian Anton
- UKAEA, Culham Science Centre, Abingdon OX14 3DB, United Kingdom
| | - Robert A Bell
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Arihant Bhandari
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Gabriel A Bramley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Robert J Charlton
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Rebecca J Clements
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gabriel Constantinescu
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Fabiano Corsetti
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Simon M-M Dubois
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kevin K B Duff
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - José María Escartín
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andrea Greco
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Quintin Hill
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Louis P Lee
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Edward Linscott
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David D O'Regan
- School of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Maximillian J S Phipps
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Laura E Ratcliff
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Álvaro Ruiz Serrano
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Edward W Tait
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Gilberto Teobaldi
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Valerio Vitale
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nelson Yeung
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter D Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Arash A Mostofi
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mike C Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Fernandez‐Corbaton I, Beutel D, Rockstuhl C, Pausch A, Klopper W. Computation of Electromagnetic Properties of Molecular Ensembles. Chemphyschem 2020; 21:878-887. [PMID: 32101636 PMCID: PMC7317848 DOI: 10.1002/cphc.202000072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/17/2022]
Abstract
We outline a methodology for efficiently computing the electromagnetic response of molecular ensembles. The methodology is based on the link that we establish between quantum-chemical simulations and the transfer matrix (T-matrix) approach, a common tool in physics and engineering. We exemplify and analyze the accuracy of the methodology by using the time-dependent Hartree-Fock theory simulation data of a single chiral molecule to compute the T-matrix of a cross-like arrangement of four copies of the molecule, and then computing the circular dichroism of the cross. The results are in very good agreement with full quantum-mechanical calculations on the cross. Importantly, the choice of computing circular dichroism is arbitrary: Any kind of electromagnetic response of an object can be computed from its T-matrix. We also show, by means of another example, how the methodology can be used to predict experimental measurements on a molecular material of macroscopic dimensions. This is possible because, once the T-matrices of the individual components of an ensemble are known, the electromagnetic response of the ensemble can be efficiently computed. This holds for arbitrary arrangements of a large number of molecules, as well as for periodic or aperiodic molecular arrays. We identify areas of research for further improving the accuracy of the method, as well as new fundamental and technological research avenues based on the use of the T-matrices of molecules and molecular ensembles for quantifying their degrees of symmetry breaking. We provide T-matrix-based formulas for computing traditional chiro-optical properties like (oriented) circular dichroism, and also for quantifying electromagnetic duality and electromagnetic chirality. The formulas are valid for light-matter interactions of arbitrarily-high multipolar orders.
Collapse
Affiliation(s)
- Ivan Fernandez‐Corbaton
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | - Dominik Beutel
- Institut für Theoretische FestkörperphysikKarlsruhe Institute of Technology (KIT)P.O. Box 698076049KarlsruheGermany
| | - Carsten Rockstuhl
- Institut für Theoretische FestkörperphysikKarlsruhe Institute of Technology (KIT)P.O. Box 698076049KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | - Ansgar Pausch
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)P.O. Box 698076049KarlsruheGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)P.O. Box 698076049KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| |
Collapse
|
12
|
Zuehlsdorff TJ, Hong H, Shi L, Isborn CM. Influence of Electronic Polarization on the Spectral Density. J Phys Chem B 2019; 124:531-543. [DOI: 10.1021/acs.jpcb.9b10250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tim J. Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Hanbo Hong
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Christine M. Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
13
|
Wen X, Graham DS, Chulhai DV, Goodpaster JD. Absolutely Localized Projection-Based Embedding for Excited States. J Chem Theory Comput 2019; 16:385-398. [DOI: 10.1021/acs.jctc.9b00959] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuelan Wen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel S. Graham
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Dhabih V. Chulhai
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Mester D, Kállay M. Reduced-Scaling Approach for Configuration Interaction Singles and Time-Dependent Density Functional Theory Calculations Using Hybrid Functionals. J Chem Theory Comput 2019; 15:1690-1704. [DOI: 10.1021/acs.jctc.8b01199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dávid Mester
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box
91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box
91, H-1521 Budapest, Hungary
| |
Collapse
|
15
|
Turner MAP, Horbury MD, Stavros VG, Hine NDM. Determination of Secondary Species in Solution through Pump-Selective Transient Absorption Spectroscopy and Explicit-Solvent TDDFT. J Phys Chem A 2019; 123:873-880. [DOI: 10.1021/acs.jpca.8b11013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. A. P. Turner
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
| | - M. D. Horbury
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - V. G. Stavros
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - N. D. M. Hine
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
16
|
Zuehlsdorff TJ, Haynes PD, Payne MC, Hine NDM. Predicting solvatochromic shifts and colours of a solvated organic dye: The example of nile red. J Chem Phys 2018; 146:124504. [PMID: 28388154 DOI: 10.1063/1.4979196] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The solvatochromic shift, as well as the change in colour of the simple organic dye nile red, is studied in two polar and two non-polar solvents in the context of large-scale time-dependent density-functional theory (TDDFT) calculations treating large parts of the solvent environment from first principles. We show that an explicit solvent representation is vital to resolve absorption peak shifts between nile red in n-hexane and toluene, as well as acetone and ethanol. The origin of the failure of implicit solvent models for these solvents is identified as being due to the strong solute-solvent interactions in form of π-stacking and hydrogen bonding in the case of toluene and ethanol. We furthermore demonstrate that the failures of the computationally inexpensive Perdew-Burke-Ernzerhof (PBE) functional in describing some features of the excited state potential energy surface of the S1 state of nile red can be corrected for in a straightforward fashion, relying only on a small number of calculations making use of more sophisticated range-separated hybrid functionals. The resulting solvatochromic shifts and predicted colours are in excellent agreement with experiment, showing the computational approach outlined in this work to yield very robust predictions of optical properties of dyes in solution.
Collapse
Affiliation(s)
- T J Zuehlsdorff
- School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, California 95343, USA
| | - P D Haynes
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - M C Payne
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - N D M Hine
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
17
|
Charlton RJ, Fogarty RM, Bogatko S, Zuehlsdorff TJ, Hine NDM, Heeney M, Horsfield AP, Haynes PD. Implicit and explicit host effects on excitons in pentacene derivatives. J Chem Phys 2018; 148:104108. [DOI: 10.1063/1.5017285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- R. J. Charlton
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - R. M. Fogarty
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - S. Bogatko
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - T. J. Zuehlsdorff
- School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, California 95343, USA
| | - N. D. M. Hine
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M. Heeney
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - A. P. Horsfield
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - P. D. Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Joseph J, Baumann KN, Koehler P, Zuehlsdorff TJ, Cole DJ, Weber J, Bohndiek SE, Hernández-Ainsa S. Distance dependent photoacoustics revealed through DNA nanostructures. NANOSCALE 2017; 9:16193-16199. [PMID: 29043366 DOI: 10.1039/c7nr05353c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular rulers that rely on the Förster resonance energy transfer (FRET) mechanism are widely used to investigate dynamic molecular processes that occur on the nanometer scale. However, the capabilities of these fluorescence molecular rulers are fundamentally limited to shallow imaging depths by light scattering in biological samples. Photoacoustic tomography (PAT) has recently emerged as a high resolution modality for in vivo imaging, coupling optical excitation with ultrasound detection. In this paper, we report the capability of PAT to probe distance-dependent FRET at centimeter depths. Using DNA nanotechnology we created several nanostructures with precisely positioned fluorophore-quencher pairs over a range of nanoscale separation distances. PAT of the DNA nanostructures showed distance-dependent photoacoustic signal enhancement and demonstrated the ability of PAT to reveal the FRET process deep within tissue mimicking phantoms. Further, we experimentally validated these DNA nanostructures as a novel and biocompatible strategy to augment the intrinsic photoacoustic signal generation capabilities of small molecule fluorescent dyes.
Collapse
Affiliation(s)
- James Joseph
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Corsini NRC, Hine NDM, Haynes PD, Molteni C. Unravelling the Roles of Size, Ligands, and Pressure in the Piezochromic Properties of CdS Nanocrystals. NANO LETTERS 2017; 17:1042-1048. [PMID: 28128961 DOI: 10.1021/acs.nanolett.6b04461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the effects of pressure-induced deformations on the optoelectronic properties of nanomaterials is important not only from the fundamental point of view but also for potential applications such as stress sensors and electromechanical devices. Here, we describe the novel insights into these piezochromic effects gained from using a linear-scaling density functional theory framework and an electronic enthalpy scheme, which allow us to accurately characterize the electronic structure of CdS nanocrystals with a zincblende-like core of experimentally relevant size. In particular, we focus on unravelling the complex interplay of size and surface (phenyl) ligands with pressure. We show that pressure-induced deformations are not simple isotropic scaling of the original structures and that the change in HOMO-LUMO gap with pressure results from two competing factors: (i) a bulk-like linear increase due to compression, which is offset by (ii) distortions and disorder and, to a lesser extent, orbital hybridization induced by ligands affecting the frontier orbitals. Moreover, we observe that the main peak in the optical absorption spectra is systematically red-shifted or blue-shifted, as pressure is increased up to 5 GPa, depending on the presence or absence of phenyl ligands. These heavily hybridize the frontier orbitals, causing a reduction in overlap and oscillator strength, so that at zero pressure, the lowest energy transition involves deeper hole orbitals than in the case of hydrogen-capped nanocrystals; the application of pressure induces greater delocalization over the whole nanocrystals bringing the frontier hole orbitals into play and resulting in an unexpected red shift for the phenyl-capped nanocrystals, in part caused by distortions. In response to a growing interest in relatively small nanocrystals that can be difficult to accurately characterize with experimental techniques, this work exemplifies the detailed understanding of structure-property relationships under pressure that can be obtained for realistic nanocrystals with state-of-the-art first-principles methods and used for the characterization and design of devices based on these and similar nanomaterials.
Collapse
Affiliation(s)
| | - Nicholas D M Hine
- Department of Physics, University of Warwick , Coventry CV4 7AL, U.K
| | | | - Carla Molteni
- Department of Physics, King's College London , Strand, London WC2R 2LS, U.K
| |
Collapse
|
20
|
Hine NDM. Linear-scaling density functional theory using the projector augmented wave method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:024001. [PMID: 27841986 DOI: 10.1088/0953-8984/29/2/024001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantum mechanical simulation of realistic models of nanostructured systems, such as nanocrystals and crystalline interfaces, demands computational methods combining high-accuracy with low-order scaling with system size. Blöchl's projector augmented wave (PAW) approach enables all-electron (AE) calculations with the efficiency and systematic accuracy of plane-wave pseudopotential calculations. Meanwhile, linear-scaling (LS) approaches to density functional theory (DFT) allow for simulation of thousands of atoms in feasible computational effort. This article describes an adaptation of PAW for use in the LS-DFT framework provided by the ONETEP LS-DFT package. ONETEP uses optimisation of the density matrix through in situ-optimised local orbitals rather than the direct calculation of eigenstates as in traditional PAW approaches. The method is shown to be comparably accurate to both PAW and AE approaches and to exhibit improved convergence properties compared to norm-conserving pseudopotential methods.
Collapse
|
21
|
Ratcliff LE, Mohr S, Huhs G, Deutsch T, Masella M, Genovese L. Challenges in large scale quantum mechanical calculations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1290] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laura E. Ratcliff
- Argonne Leadership Computing Facility Argonne National Laboratory Lemon IL USA
| | - Stephan Mohr
- Department of Computer Applications in Science and Engineering Barcelona Supercomputing Center (BSC‐CNS) Barcelona Spain
| | - Georg Huhs
- Department of Computer Applications in Science and Engineering Barcelona Supercomputing Center (BSC‐CNS) Barcelona Spain
| | - Thierry Deutsch
- University Grenoble Alpes INAC‐MEM Grenoble France
- CEA, INAC‐MEM Grenoble France
| | - Michel Masella
- Laboratoire de Biologie Structurale et Radiologie, Service de Bioénergétique, Biologie Structurale et Mécanisme Institut de Biologie et de Technologie de Saclay, CEA Saclay Gif‐sur‐Yvette Cedex France
| | - Luigi Genovese
- University Grenoble Alpes INAC‐MEM Grenoble France
- CEA, INAC‐MEM Grenoble France
| |
Collapse
|
22
|
Cole DJ, Hine NDM. Applications of large-scale density functional theory in biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:393001. [PMID: 27494095 DOI: 10.1088/0953-8984/28/39/393001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Collapse
Affiliation(s)
- Daniel J Cole
- Theory of Condensed Matter group, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK. School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
23
|
Zuehlsdorff TJ, Hine NDM, Payne MC, Haynes PD. Erratum: “Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals” [J. Chem. Phys. 143, 204107 (2015)]. J Chem Phys 2016; 144:219902. [DOI: 10.1063/1.4953078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- T. J. Zuehlsdorff
- Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - N. D. M. Hine
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M. C. Payne
- Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - P. D. Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Zuehlsdorff TJ, Haynes PD, Hanke F, Payne MC, Hine NDM. Solvent Effects on Electronic Excitations of an Organic Chromophore. J Chem Theory Comput 2016; 12:1853-61. [DOI: 10.1021/acs.jctc.5b01014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T. J. Zuehlsdorff
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | | | - F. Hanke
- Dassault Systèmes
BIOVIA, 334 Science Park, Cambridge CB4 0WN, U.K
| | - M. C. Payne
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - N. D. M. Hine
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|