1
|
Ngai KL. Importance of Experiments That Can Test Theories Critically. J Phys Chem B 2024; 128:10709-10726. [PMID: 39413288 DOI: 10.1021/acs.jpcb.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
General dynamic and thermodynamic properties of complex materials, including amorphous polymers and molecular glass-formers, have been established from the wealth of experimental data accumulated over the years. Naturally, these general properties attract researchers to construct theories and models to address and explain them. Often more than one theory with contrasting or even conflicting theoretical bases can equally explain a general property rather well. The correct explanation becomes unclear, and progress is stopped. The resolution of the problem comes when an innovative experiment is performed with insightful results that can critically test the premise and assumptions of each theory. This important role played by experimentalists is exemplified by the contributions of Mark Ediger in several general properties considered in this paper: (1) dynamics of the components in binary polymer blends; (2) breakdown of the Stokes-Einstein and the Debye-Stokes-Einstein relations; (3) enhancement of surface mobility and in relation to formation of ultrastable glasses; and (4) the Johari-Goldstein β-relaxation in ultrastable glasses. Different theories proposed to explain these properties are discussed, including the Coupling Model of the author.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Institute for Chemical and Physical Processes, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
2
|
Luo M, Chen A, Huang C, Guo M, Cai T. Effects of Polymers on Cocrystal Growth in a Drug-Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. Mol Pharm 2024; 21:3591-3602. [PMID: 38818946 DOI: 10.1021/acs.molpharmaceut.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Coamorphous and cocrystal drug delivery systems provide attractive crystal engineering strategies for improving the solubilities, dissolution rates, and oral bioavailabilities of poorly water-soluble drugs. Polymeric additives have often been used to inhibit the unwanted crystallization of amorphous drugs. However, the transformation of a coamorphous phase to a cocrystal phase in the presence of polymers has not been fully elucidated. Herein, we investigated the effects of low concentrations of the polymeric excipients poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) on the growth of carbamazepine-celecoxib (CBZ-CEL) cocrystals from the corresponding coamorphous phase. PEO accelerated the growth rate of the cocrystals by increasing the molecular mobility of the coamorphous system, while PVP had the opposite effect. The coamorphous CBZ-CEL system exhibited two anomalously fast crystal growth modes: glass-to-crystal (GC) growth in the bulk and accelerated crystal growth at the free surface. These two fast growth modes both disappeared after doping with PEO (1-3% w/w) but were retained in the presence of PVP, indicating a potential correlation between the two fast crystal growth modes. We propose that the different effects of PEO and PVP on the crystal growth modes arose from weaker effects of the polymers on cocrystallization at the surface than in the bulk. This work provides a deep understanding of the mechanisms by which polymers influence the cocrystallization kinetics of a multicomponent amorphous phase and highlights the importance of polymer selection in stabilizing coamorphous systems or preparing cocrystals via solid-based methods.
Collapse
Affiliation(s)
- Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chengbin Huang
- CMC Drug Product, Research and Development, BeiGene Co., Inc., Beijing 102206, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Zhai Q, Gao XY, Lee CS, Ong CY, Yan K, Deng HY, Yang S, Lam CH. Surface mobility gradient and emergent facilitation in glassy films. SOFT MATTER 2024; 20:4389-4394. [PMID: 38757511 DOI: 10.1039/d4sm00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Confining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films. The film mobility measurements reported by Yang et al., Science, 2010, 328, 1676 are successfully reproduced. The flow exhibits a crossover from a simple viscous flow to a surface-dominated regime as the temperature decreases. The propagation of a highly mobile front induced by the free surface is visualized in real space. Our approach provides a microscopic treatment of the observed glassy phenomena.
Collapse
Affiliation(s)
- Qiang Zhai
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an, Shaanxi, 710049, China.
| | - Xin-Yuan Gao
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chun-Shing Lee
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chin-Yuan Ong
- School of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Ke Yan
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hai-Yao Deng
- School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, Wales, UK.
| | - Sen Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an, Shaanxi, 710049, China.
| | - Chi-Hang Lam
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
4
|
Phan AD, Schweizer KS. Effect of the nature of the solid substrate on spatially heterogeneous activated dynamics in glass forming supported films. J Chem Phys 2024; 160:074902. [PMID: 38364012 DOI: 10.1063/5.0188016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
We extend the force-level elastically collective nonlinear Langevin equation theory to treat the spatial gradients of the alpha relaxation time and glass transition temperature, and the corresponding film-averaged quantities, to the geometrically asymmetric case of finite thickness supported films with variable fluid-substrate coupling. The latter typically nonuniversally slows down motion near the solid-liquid interface as modeled via modification of the surface dynamic free energy caging constraints that are spatially transferred into the film and which compete with the accelerated relaxation gradient induced by the vapor interface. Quantitative applications to the foundational hard sphere fluid and a polymer melt are presented. The strength of the effective fluid-substrate coupling has very large consequences for the dynamical gradients and film-averaged quantities in a film thickness and thermodynamic state dependent manner. The interference of the dynamical gradients of opposite nature emanating from the vapor and solid interfaces is determined, including the conditions for the disappearance of a bulk-like region in the film center. The relative importance of surface-induced modification of local caging vs the generic truncation of the long range collective elastic component of the activation barrier is studied. The conditions for the accuracy and failure of a simple superposition approximation for dynamical gradients in thin films are also determined. The emergence of near substrate dead layers, large gradient effects on film-averaged response functions, and a weak non-monotonic evolution of dynamic gradients in thick and cold films are briefly discussed. The connection of our theoretical results to simulations and experiments is briefly discussed, as is the extension to treat more complex glass-forming systems under nanoconfinement.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| | - Kenneth S Schweizer
- Departments of Materials Science, Chemistry, Chemical and Biomolecular Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Hartley AD, Drayer WF, Ghanekarade A, Simmons DS. Interplay between dynamic heterogeneity and interfacial gradients in a model polymer film. J Chem Phys 2023; 159:204905. [PMID: 38032012 DOI: 10.1063/5.0165650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Glass-forming liquids exhibit long-lived, spatially correlated dynamical heterogeneity, in which some nm-scale regions in the fluid relax more slowly than others. In the nanoscale vicinity of an interface, glass-formers also exhibit the emergence of massive interfacial gradients in glass transition temperature Tg and relaxation time τ. Both of these forms of heterogeneity have a major impact on material properties. Nevertheless, their interplay has remained poorly understood. Here, we employ molecular dynamics simulations of polymer thin films in the isoconfigurational ensemble in order to probe how bulk dynamic heterogeneity alters and is altered by the large gradient in dynamics at the surface of a glass-forming liquid. Results indicate that the τ spectrum at the surface is broader than in the bulk despite being shifted to shorter times, and yet it is less spatially correlated. This is distinct from the bulk, where the τ distribution becomes broader and more spatially organized as the mean τ increases. We also find that surface gradients in slow dynamics extend further into the film than those in fast dynamics-a result with implications for how distinct properties are perturbed near an interface. None of these features track locally with changes in the heterogeneity of caging scale, emphasizing the local disconnect between these quantities near interfaces. These results are at odds with conceptions of the surface as reflecting simply a higher "rheological temperature" than the bulk, instead pointing to a complex interplay between bulk dynamic heterogeneity and spatially organized dynamical gradients at interfaces in glass-forming liquids.
Collapse
Affiliation(s)
- Austin D Hartley
- Department of Chemical, Biological, and Materials Engineering, The University of South Florida, Tampa, Florida 33620, USA
| | - William F Drayer
- Department of Chemical, Biological, and Materials Engineering, The University of South Florida, Tampa, Florida 33620, USA
| | - Asieh Ghanekarade
- Department of Chemical, Biological, and Materials Engineering, The University of South Florida, Tampa, Florida 33620, USA
| | - David S Simmons
- Department of Chemical, Biological, and Materials Engineering, The University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
6
|
Yang E, Pressly JF, Natarajan B, Colby R, Winey KI, Riggleman RA. Understanding creep suppression mechanisms in polymer nanocomposites through machine learning. SOFT MATTER 2023; 19:7580-7590. [PMID: 37755065 DOI: 10.1039/d3sm00898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
While recent efforts have shown how local structure plays an essential role in the dynamic heterogeneity of homogeneous glass-forming materials, systems containing interfaces such as thin films or composite materials remain poorly understood. It is known that interfaces perturb the molecular packing nearby, however, numerous studies show the dynamics are modified over a much larger range. Here, we examine the dynamics in polymer nanocomposites (PNCs) using a combination of simulations and experiments and quantitatively separate the role of polymer packing from other effects on the dynamics, as a function of distance from the nanoparticle surfaces. After showing good qualitative agreement between the simulations and experiments in glassy structure and creep compliance, we use a machine-learned structure indicator, softness, to decompose polymer dynamics in our simulated PNCs into structure-dependent and structure-independent processes. With this decomposition, the free energy barrier for polymer rearrangement can be described as a combination of packing-dependent and packing-independent barriers. We find both barriers are higher near nanoparticles and decrease with applied stress, quantitatively demonstrating that the slow interfacial dynamics is not solely due to polymer packing differences, but also the change of structure-dynamics relationships. Finally, we present how this decomposition can be used to accurately predict strain-time creep curves for PNCs from their static configuration, providing additional insights into the effects of polymer-nanoparticle interfaces on creep suppression in PNCs.
Collapse
Affiliation(s)
- Entao Yang
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - James F Pressly
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Bharath Natarajan
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Robert Colby
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Karen I Winey
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert A Riggleman
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Shi Q, Wang Y, Kong J. Crystallization of Amorphous Nimesulide: The Relationship between Crystal Growth Kinetics and Liquid Dynamics. Molecules 2023; 28:molecules28072919. [PMID: 37049679 PMCID: PMC10095769 DOI: 10.3390/molecules28072919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Understanding crystallization and its correlations with liquid dynamics is relevant for developing robust amorphous pharmaceutical solids. Herein, nimesulide, a classical anti-inflammatory agent, was used as a model system for studying the correlations between crystallization kinetics and molecular dynamics. Kinetic parts of crystal growth (ukin) of nimesulide exhibited a power law dependence upon the liquid viscosity (η) as ukin~η-0.61. Bulk molecular diffusivities (DBulk) of nimesulide were predicted by a force-level statistical-mechanical model from the α-relaxation times, which revealed the relationship as ukin~Dbulk0.65. Bulk crystal growth kinetics of nimesulide in deeply supercooled liquid exhibited a fragility-dependent decoupling from τα. The correlations between growth kinetics and α-relaxation times predicted by the Adam-Gibbs-Vogel equation in a glassy state were also explored, for both the freshly made and fully equilibrated glass. These findings are relevant for the in-depth understanding and prediction of the physical stability of amorphous pharmaceutical solids.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jianfei Kong
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
8
|
Ghanekarade A, Simmons DS. Combined Mixing and Dynamical Origins of Tg Alterations Near Polymer–Polymer Interfaces. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asieh Ghanekarade
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida33544, United States
| | - David S. Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida33544, United States
| |
Collapse
|
9
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
10
|
Li Y, Bishop C, Cui K, Schmidt JR, Ediger MD, Yu L. Surface diffusion of a glassy discotic organic semiconductor and the surface mobility gradient of molecular glasses. J Chem Phys 2022; 156:094710. [PMID: 35259874 DOI: 10.1063/5.0079890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface diffusion has been measured in the glass of an organic semiconductor, MTDATA, using the method of surface grating decay. The decay rate was measured as a function of temperature and grating wavelength, and the results indicate that the decay mechanism is viscous flow at high temperatures and surface diffusion at low temperatures. Surface diffusion in MTDATA is enhanced by 4 orders of magnitude relative to bulk diffusion when compared at the glass transition temperature Tg. The result on MTDATA has been analyzed along with the results on other molecular glasses without extensive hydrogen bonds. In total, these systems cover a wide range of molecular geometries from rod-like to quasi-spherical to discotic and their surface diffusion coefficients vary by 9 orders of magnitude. We find that the variation is well explained by the existence of a steep surface mobility gradient and the anchoring of surface molecules at different depths. Quantitative analysis of these results supports a recently proposed double-exponential form for the mobility gradient: log D(T, z) = log Dv(T) + [log D0 - log Dv(T)]exp(-z/ξ), where D(T, z) is the depth-dependent diffusion coefficient, Dv(T) is the bulk diffusion coefficient, D0 ≈ 10-8 m2/s, and ξ ≈ 1.5 nm. Assuming representative bulk diffusion coefficients for these fragile glass formers, the model reproduces the presently known surface diffusion rates within 0.6 decade. Our result provides a general way to predict the surface diffusion rates in molecular glasses.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kai Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
11
|
Li Y, Annamareddy A, Morgan D, Yu Z, Wang B, Cao C, Perepezko JH, Ediger MD, Voyles PM, Yu L. Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. PHYSICAL REVIEW LETTERS 2022; 128:075501. [PMID: 35244425 DOI: 10.1103/physrevlett.128.075501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Surface diffusion is vastly faster than bulk diffusion in some glasses, but only moderately enhanced in others. We show that this variation is closely linked to bulk fragility, a common measure of how quickly dynamics is excited when a glass is heated to become a liquid. In fragile molecular glasses, surface diffusion can be a factor of 10^{8} faster than bulk diffusion at the glass transition temperature, while in the strong system SiO_{2}, the enhancement is a factor of 10. Between these two extremes lie systems of intermediate fragility, including metallic glasses and amorphous selenium and silicon. This indicates that stronger liquids have greater resistance to dynamic excitation from bulk to surface and enables prediction of surface diffusion, surface crystallization, and formation of stable glasses by vapor deposition.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ajay Annamareddy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dane Morgan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zheng Yu
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bu Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chengrong Cao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John H Perepezko
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Zhang T, Riggleman RA. Thickness-Dependent Mechanical Failure in Thin Films of Glassy Polymer Bidisperse Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianren Zhang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Ghanekarade A, Phan AD, Schweizer KS, Simmons DS. Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films. Proc Natl Acad Sci U S A 2021; 118:e2104398118. [PMID: 34326262 PMCID: PMC8346796 DOI: 10.1073/pnas.2104398118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular, polymeric, colloidal, and other classes of liquids can exhibit very large, spatially heterogeneous alterations of their dynamics and glass transition temperature when confined to nanoscale domains. Considerable progress has been made in understanding the related problem of near-interface relaxation and diffusion in thick films. However, the origin of "nanoconfinement effects" on the glassy dynamics of thin films, where gradients from different interfaces interact and genuine collective finite size effects may emerge, remains a longstanding open question. Here, we combine molecular dynamics simulations, probing 5 decades of relaxation, and the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory, addressing 14 decades in timescale, to establish a microscopic and mechanistic understanding of the key features of altered dynamics in freestanding films spanning the full range from ultrathin to thick films. Simulations and theory are in qualitative and near-quantitative agreement without use of any adjustable parameters. For films of intermediate thickness, the dynamical behavior is well predicted to leading order using a simple linear superposition of thick-film exponential barrier gradients, including a remarkable suppression and flattening of various dynamical gradients in thin films. However, in sufficiently thin films the superposition approximation breaks down due to the emergence of genuine finite size confinement effects. ECNLE theory extended to treat thin films captures the phenomenology found in simulation, without invocation of any critical-like phenomena, on the basis of interface-nucleated gradients of local caging constraints, combined with interfacial and finite size-induced alterations of the collective elastic component of the structural relaxation process.
Collapse
Affiliation(s)
- Asieh Ghanekarade
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620
| | - Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam;
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801;
- Department of Chemistry, University of Illinois, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801
| | - David S Simmons
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620;
| |
Collapse
|
14
|
Bishop C, Chen Z, Toney MF, Bock H, Yu L, Ediger MD. Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. J Phys Chem B 2021; 125:2761-2770. [PMID: 33683124 DOI: 10.1021/acs.jpcb.0c11564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate vapor-deposited glasses of a phenanthroperylene ester, known to form an equilibrium hexagonal columnar phase, and show that liquid crystal-like order can be manipulated by the choice of deposition rate and substrate temperature during deposition. We find that rate-temperature superposition (RTS)-the equivalence of lowering the deposition rate and increasing the substrate temperature-can be used to predict and control the molecular orientation in vapor-deposited glasses over a wide range of substrate temperatures (0.75-1.0 Tg). This work extends RTS to a new structural motif, hexagonal columnar liquid crystal order, which is being explored for organic electronic applications. By several metrics, including the apparent average face-to-face nearest-neighbor distance, physical vapor deposition (PVD) glasses of the phenanthroperylene ester are as ordered as the glass prepared by cooling the equilibrium liquid crystal. By other measures, the PVD glasses are less ordered than the cooled liquid crystal. We explain the difference in the maximum attainable order with the existence of a gradient in molecular mobility at the free surface of a liquid crystal and its impact upon different mechanisms of structural rearrangement. This free surface equilibration mechanism explains the success of the RTS principle and provides guidance regarding the types of order most readily enhanced by vapor deposition. This work extends the applicability of RTS to include molecular systems with a diverse range of higher-order liquid-crystalline morphologies that could be useful for new organic electronic applications.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - Michael F Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Li F, Xin J, Shi Q. Diffusion-controlled and `diffusionless' crystal growth: relation between liquid dynamics and growth kinetics of griseofulvin. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576720014636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding how liquid dynamics govern crystallization is critical for maintaining the physical stability of amorphous pharmaceutical formulations. In the present study, griseofulvin (GSF), a classic antifungal drug, was used as the model system to investigate the correlations between crystal growth kinetics and liquid dynamics. The temperature dependence of the kinetic part of the bulk crystal growth in a supercooled liquid of GSF was weaker than that of the structural relaxation time τα and scaled as τα
−0.69. In the glassy state, GSF exhibited the glass-to-crystal (GC) growth behavior, whose growth rate was too fast to be under the control of the α-relaxation process. Moreover, from the perspective of τα, the GC growth of GSF also satisfied the general condition for GC growth to exist: D/u < 7 pm, where D is the diffusion coefficient and u the speed of crystal growth. Also compared were the fast surface crystal growth rates u
s and surface relaxation times τsurface predicted by the random first-order transition theory. Here, the surface crystal growth rate u
s of GSF exhibited a power-law dependence upon the surface structural relaxation time: u
s ∝ τsurface
−0.71, which was similar to that of the bulk growth rate and τα. These findings are important for understanding and predicting the crystallization of amorphous pharmaceutical solids both in the bulk and at the surface.
Collapse
|
16
|
Storey AN, Zhang W, Douglas JF, Starr FW. How Does Monomer Structure Affect the Interfacial Dynamics of Supported Ultrathin Polymer Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber N. Storey
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| | - Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| |
Collapse
|
17
|
Zhou Y, Schweizer KS. Theory of microstructure-dependent glassy shear elasticity and dynamic localization in melt polymer nanocomposites. J Chem Phys 2020; 153:114901. [PMID: 32962384 DOI: 10.1063/5.0021954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We present an integrated theoretical study of the structure, thermodynamic properties, dynamic localization, and glassy shear modulus of melt polymer nanocomposites (PNCs) that spans the three microstructural regimes of entropic depletion induced nanoparticle (NP) clustering, discrete adsorbed layer driven NP dispersion, and polymer-mediated bridging network. The evolution of equilibrium and dynamic properties with NP loading, total packing fraction, and strength of interfacial attraction is systematically studied based on a minimalist model. Structural predictions of polymer reference interaction site model integral equation theory are employed to establish the rich behavior of the interfacial cohesive force density, surface excess, and a measure of free volume as a function of PNC variables. The glassy dynamic shear modulus is predicted to be softened, reinforced, or hardly changed relative to the pure polymer melt depending on system parameters, as a result of the competing and qualitatively different influences of interfacial cohesion (physical bonding), free volume, and entropic depletion on dynamic localization and shear elasticity. The localization of polymer segments is the dominant factor in determining bulk PNC softening and reinforcement effects for moderate to strong interfacial attractions, respectively. While in the athermal entropy-dominated regime, the primary origin of mechanical reinforcement is the stress stored in the aggregated NP subsystem. The PNC shear modulus is often qualitatively correlated with the segment localization length but with notable exceptions. The present work provides the foundation for developing a theory of segmental relaxation, Tg changes, and collective NP dynamics in PNCs based on a self-consistent treatment of the cooperative activated motions of segments and NPs.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Diaz Vela D, Ghanekarade A, Simmons DS. Probing the Metrology and Chemistry Dependences of the Onset Condition of Strong “Nanoconfinement” Effects on Dynamics. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Diaz Vela
- Department of Chemical and Biomedical Engineering, The University of South Florida, Tampa, Florida 33620, United States
| | - Asieh Ghanekarade
- Department of Chemical and Biomedical Engineering, The University of South Florida, Tampa, Florida 33620, United States
| | - David S. Simmons
- Department of Chemical and Biomedical Engineering, The University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
19
|
Li Y, Zhang W, Bishop C, Huang C, Ediger MD, Yu L. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. SOFT MATTER 2020; 16:5062-5070. [PMID: 32453335 DOI: 10.1039/d0sm00353k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature Tg. Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulk where mobility is low. For molecular glasses without extensive hydrogen bonds, we find that the surface diffusion coefficient at Tg decreases smoothly with the penetration depth of surface molecules and the trend has the double-exponential form for the surface mobility gradient observed in simulations. This supports the view that these molecular glasses have a similar mobility vs. depth profile and their different surface diffusion rates arise simply from the different depths at which molecules are anchored. Our results also provide support for a previously observed correlation between the rate of surface diffusion and the fragility of the bulk liquid.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Hajduk B, Bednarski H, Trzebicka B. Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. J Phys Chem B 2020; 124:3229-3251. [PMID: 32275433 PMCID: PMC7590969 DOI: 10.1021/acs.jpcb.9b11863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Indexed: 12/03/2022]
Abstract
Thin polymer films have found many important applications in organic electronics, such as active layers, protective layers, or antistatic layers. Among the various experimental methods suitable for studying the thermo-optical properties of thin polymer films, temperature-dependent spectroscopic ellipsometry plays a special role as a nondestructive and very sensitive optical technique. In this Review Article, issues related to the physical origin of the dependence of ellipsometric angles on temperature are surveyed. In addition, the Review Article discusses the use of temperature-dependent spectroscopic ellipsometry for studying phase transitions in thin polymer films. The benefits of studying thermal transitions using different cooling/heating speeds are also discussed. Furthermore, it is shown how the analysis and modeling of raw ellipsometric data can be used to determine the thermal properties of thin polymer films.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Henryk Bednarski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
21
|
Schweizer KS, Simmons DS. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J Chem Phys 2019; 151:240901. [PMID: 31893888 DOI: 10.1063/1.5129405] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nature of alterations to dynamics and vitrification in the nanoscale vicinity of interfaces-commonly referred to as "nanoconfinement" effects on the glass transition-has been an open question for a quarter century. We first analyze experimental and simulation results over the last decade to construct an overall phenomenological picture. Key features include the following: after a metrology- and chemistry-dependent onset, near-interface relaxation times obey a fractional power law decoupling relation with bulk relaxation; relaxation times vary in a double-exponential manner with distance from the interface, with an intrinsic dynamical length scale appearing to saturate at low temperatures; the activation barrier and vitrification temperature Tg approach bulk behavior in a spatially exponential manner; and all these behaviors depend quantitatively on the nature of the interface. We demonstrate that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discrimination between different theories, and thus we assess their merits based on the above dynamical gradient properties. Entropy-based theories appear to exhibit significant inconsistencies with the phenomenology. Diverse free-volume-motivated theories vary in their agreement with observations, with approaches invoking cooperative motion exhibiting the most promise. The elastically cooperative nonlinear Langevin equation theory appears to capture the largest portion of the phenomenology, although important aspects remain to be addressed. A full theoretical understanding requires improved confrontation with simulations and experiments that probe spatially heterogeneous dynamics within the accessible 1-ps to 1-year time window, minimal use of adjustable parameters, and recognition of the rich quantitative dependence on chemistry and interface.
Collapse
Affiliation(s)
- Kenneth S Schweizer
- Departments of Materials Science, Chemistry and Chemical & Biomolecular Engineering, Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - David S Simmons
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
22
|
|
23
|
Phan AD, Schweizer KS. Influence of Longer Range Transfer of Vapor Interface Modified Caging Constraints on the Spatially Heterogeneous Dynamics of Glass-Forming Liquids. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Li SJ, Qian HJ, Lu ZY. A simulation study on the glass transition behavior and relevant segmental dynamics in free-standing polymer nanocomposite films. SOFT MATTER 2019; 15:4476-4485. [PMID: 31111851 DOI: 10.1039/c9sm00267g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In polymer/nanoparticle composite (PNC) thin films, polymer chains experience strong confinement effects not only at the free surface area but also from nanoparticles (NPs). In this work, the influence of NP-polymer interaction and NP distribution on the polymer segmental dynamics and the glass transition behavior of PNC free-standing films are investigated through molecular dynamics simulations. We demonstrate that NPs will migrate to the film surface area and form an NP-concentrated layer when NP-polymer interactions are weak, while NPs are well dispersed in the bulk region when NP-polymer interactions are strong. In both cases, we find increases in the glass transition temperature Tg compared with the pure film without NPs, although with a different degree. The weakly interacting system has the same Tg as the pure bulk system without NPs. The NP layer formed at the surface area reduces both the mobility of the surface polymer beads and the mobility gradient in the film normal direction (MGFND), therefore resulting in an increase in the Tg which highlights the vital role of the mobile surface layer. In contrast, the NPs in the bulk region enlarge the MGFND. NPs have opposite influences on the polymer bead dynamic anisotropy when they interact weakly or strongly with polymers, weakened for the former and enhanced for the latter. These findings offer a clear picture of the segmental dynamics and glass transition behavior in free-standing PNC films with different NP-polymer interaction strengths. We hope these results will be helpful for the property design of related materials.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | | | | |
Collapse
|
25
|
Qian Z, Cao Z, Galuska L, Zhang S, Xu J, Gu X. Glass Transition Phenomenon for Conjugated Polymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900062] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiyuan Qian
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Luke Galuska
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Song Zhang
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Jie Xu
- Argonne National Laboratory Lemont IL 60439 USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
26
|
Thees MF, Roth CB. Unexpected Molecular Weight Dependence to the Physical Aging of Thin Polystyrene Films Present at Ultra‐High Molecular Weights. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Connie B. Roth
- Department of Physics Emory University Atlanta Georgia 30322
| |
Collapse
|
27
|
Phan AD, Schweizer KS. Theory of the spatial transfer of interface-nucleated changes of dynamical constraints and its consequences in glass-forming films. J Chem Phys 2019; 150:044508. [PMID: 30709240 DOI: 10.1063/1.5079250] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We formulate a new theory for how caging constraints in glass-forming liquids at a surface or interface are modified and then spatially transferred, in a layer-by-layer bootstrapped manner, into the film interior in the context of the dynamic free energy concept of the Nonlinear Langevin Equation (NLE) theory approach. The dynamic free energy at any mean location (cage center) involves contributions from two adjacent layers where confining forces are not the same. At the most fundamental level of the theory, the caging component of the dynamic free energy varies essentially exponentially with distance from the interface, saturating deep enough into the film with a correlation length of modest size and weak sensitivity to the thermodynamic state. This imparts a roughly exponential spatial variation of all the key features of the dynamic free energy required to compute gradients of dynamical quantities including the localization length, jump distance, cage barrier, collective elastic barrier, and alpha relaxation time. The spatial gradients are entirely of dynamical, not structural or thermodynamic, origin. The theory is implemented for the hard sphere fluid and diverse interfaces which can be a vapor, a rough pinned particle solid, a vibrating (softened) pinned particle solid, or a smooth hard wall. Their basic description at the level of the spatially heterogeneous dynamic free energy is identical, with the crucial difference arising from the first layer where dynamical constraints can be weakened, softened, or hardly changed depending on the specific interface. Numerical calculations establish the spatial dependence and fluid volume fraction sensitivity of the key dynamical property gradients for five different model interfaces. A comparison of the theoretical predictions for the dynamic localization length and glassy modulus with simulations and experiments for systems with a vapor interface reveals good agreement. The present advance sets the stage for using the Elastically Collective NLE theory to make quantitative predictions for the alpha relaxation time gradient, decoupling phenomena, Tg gradient, and many film-averaged properties of both model and experimental (colloids, molecules, and polymers) systems with diverse interfaces and chemical makeup.
Collapse
Affiliation(s)
- Anh D Phan
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
28
|
Chen Y, Chen Z, Tylinski M, Ediger MD, Yu L. Effect of molecular size and hydrogen bonding on three surface-facilitated processes in molecular glasses: Surface diffusion, surface crystal growth, and formation of stable glasses by vapor deposition. J Chem Phys 2019; 150:024502. [DOI: 10.1063/1.5079441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yinshan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Michael Tylinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
29
|
Diaz-Vela D, Hung JH, Simmons DS. Temperature-Independent Rescaling of the Local Activation Barrier Drives Free Surface Nanoconfinement Effects on Segmental-Scale Translational Dynamics near Tg. ACS Macro Lett 2018; 7:1295-1301. [PMID: 35651251 DOI: 10.1021/acsmacrolett.8b00695] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Near-interface alterations in dynamics and glass formation behavior have been the subject of extensive study for the past two decades, both because of their practical importance and in the hope of revealing underlying correlation lengths underpinning glass transition more generally. Here we employ molecular dynamics simulations of thick films to demonstrate that these effects emerge, for segmental-scale translational dynamics at low temperature, from a temperature-independent rescaling of the local activation barrier. This rescaling manifests as a fractional power law decoupling relationship of local dynamics relative to the bulk, with a transition from a regime of weak decoupling at high temperatures to a regime of strong decoupling at low temperatures. The range of this effect saturates at low temperatures, with 90% of the surface perturbation in the barrier lost over a range of 12 segmental diameters. These findings reduce the phenomenology of Tg nanoconfinement effects to two properties-a position-dependent, temperature independent, barrier rescaling factor and an onset time scale-while substantially constraining the predictions required from any theoretical explanation of this phenomenon.
Collapse
Affiliation(s)
- Daniel Diaz-Vela
- The University of Akron, 250 South Forge Street, Akron, Ohio 44325, United States
| | - Jui-Hsiang Hung
- The University of Akron, 250 South Forge Street, Akron, Ohio 44325, United States
| | - David S. Simmons
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| |
Collapse
|
30
|
Phan AD, Schweizer KS. Elastically Collective Nonlinear Langevin Equation Theory of Glass-Forming Liquids: Transient Localization, Thermodynamic Mapping, and Cooperativity. J Phys Chem B 2018; 122:8451-8461. [DOI: 10.1021/acs.jpcb.8b04975] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Phan AD, Schweizer KS. Dynamic Gradients, Mobile Layers, Tg Shifts, Role of Vitrification Criterion, and Inhomogeneous Decoupling in Free-Standing Polymer Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Cangialosi D. Glass Transition and Physical Aging of Confined Polymers Investigated by Calorimetric Techniques. RECENT ADVANCES, TECHNIQUES AND APPLICATIONS 2018. [DOI: 10.1016/b978-0-444-64062-8.00013-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Sun G, Saw S, Douglass I, Harrowell P. Structural Origin of Enhanced Dynamics at the Surface of a Glassy Alloy. PHYSICAL REVIEW LETTERS 2017; 119:245501. [PMID: 29286748 DOI: 10.1103/physrevlett.119.245501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the nonuniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
Collapse
Affiliation(s)
- Gang Sun
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Shibu Saw
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Ian Douglass
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Affiliation(s)
- M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison,
1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Kasavan BL, Baglay RR, Roth CB. Local Glass Transition Temperature
T
g
(
z
) Profile in Polystyrene next to Polybutadiene with and without Plasticization Effects. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Connie B. Roth
- Department of Physics Emory University Atlanta GA 30322 USA
| |
Collapse
|
36
|
Sussman DM, Schoenholz SS, Cubuk ED, Liu AJ. Disconnecting structure and dynamics in glassy thin films. Proc Natl Acad Sci U S A 2017; 114:10601-10605. [PMID: 28928147 PMCID: PMC5635874 DOI: 10.1073/pnas.1703927114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film.
Collapse
Affiliation(s)
| | | | - Ekin D Cubuk
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94304
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Chen Y, Zhu M, Laventure A, Lebel O, Ediger MD, Yu L. Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines. J Phys Chem B 2017. [PMID: 28651429 DOI: 10.1021/acs.jpcb.7b05333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C2H5, OCH3, and NHCH3, and referred to as "Et", "OMe", and "NHMe", respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow as the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. This result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.
Collapse
Affiliation(s)
- Yinshan Chen
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Men Zhu
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Audrey Laventure
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada , Kingston, Ontario K7K 7B4, Canada
| | - Olivier Lebel
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada , Kingston, Ontario K7K 7B4, Canada
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Ogieglo W, Rahimi K, Rauer SB, Ghanem B, Ma X, Pinnau I, Wessling M. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1? J Phys Chem B 2017; 121:7210-7220. [PMID: 28703006 DOI: 10.1021/acs.jpcb.7b03891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p0), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition Pg has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Khosorov Rahimi
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Sebastian Bernhard Rauer
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Bader Ghanem
- Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST) , Al-Jazri Building 4, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaohua Ma
- Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST) , Al-Jazri Building 4, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST) , Al-Jazri Building 4, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
39
|
Mangalara JH, Mackura ME, Marvin MD, Simmons DS. The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials. J Chem Phys 2017; 146:203316. [DOI: 10.1063/1.4977520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jayachandra Hari Mangalara
- Department of Polymer Engineering, The University of Akron, 250 South Forge St, Akron, Ohio, 44325-0301 USA
| | - Mark E. Mackura
- Department of Polymer Engineering, The University of Akron, 250 South Forge St, Akron, Ohio, 44325-0301 USA
| | - Michael D. Marvin
- Department of Polymer Engineering, The University of Akron, 250 South Forge St, Akron, Ohio, 44325-0301 USA
| | - David S. Simmons
- Department of Polymer Engineering, The University of Akron, 250 South Forge St, Akron, Ohio, 44325-0301 USA
| |
Collapse
|
40
|
Boucher VM, Cangialosi D, Alegría A, Colmenero J. Complex nonequilibrium dynamics of stacked polystyrene films deep in the glassy state. J Chem Phys 2017; 146:203312. [DOI: 10.1063/1.4977207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Tylinski M, Beasley MS, Chua YZ, Schick C, Ediger MD. Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. J Chem Phys 2017; 146:203317. [DOI: 10.1063/1.4977787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Tylinski
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
42
|
Casalini R, Labardi M, Roland CM. Dynamics of poly(vinyl methyl ketone) thin films studied by local dielectric spectroscopy. J Chem Phys 2017; 146:203315. [PMID: 28571366 DOI: 10.1063/1.4977785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local dielectric spectroscopy, which entails measuring the change in resonance frequency of the conducting tip of an atomic force microscope to determine the complex permittivity of a sample with high spatial (lateral) resolution, was employed to characterize the dynamics of thin films of poly(vinyl methyl ketone) (PVMK) having different substrate and top surface layers. A free surface yields the usual speeding up of the segmental dynamics, corresponding to a glass transition suppression of 6.5° for 18 nm film thickness. This result is unaffected by the presence of a glassy, compatible polymer, poly-4-vinyl phenol (PVPh), between the metal substrate and the PVMK. However, covering the top surface with a thin layer of the PVPh suppresses the dynamics. The speeding up of PVMK segmental motions observed for a free surface is absent due to interfacial interactions of the PVMK with the glass layer, an effect not seen when the top layer is an incompatible polymer.
Collapse
Affiliation(s)
- R Casalini
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5320, USA
| | - M Labardi
- CNR-IPCF, SS Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
| | - C M Roland
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5320, USA
| |
Collapse
|
43
|
Mirigian S, Schweizer KS. Influence of chemistry, interfacial width, and non-isothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films. J Chem Phys 2017; 146:203301. [PMID: 28571330 DOI: 10.1063/1.4974766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephen Mirigian
- Departments of Materials Science and Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | - Kenneth S. Schweizer
- Departments of Materials Science and Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
44
|
Baglay RR, Roth CB. Local glass transition temperatureTg(z) of polystyrene next to different polymers: Hard vs. soft confinement. J Chem Phys 2017; 146:203307. [DOI: 10.1063/1.4975168] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Roman R. Baglay
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
45
|
Zhang Y, Fakhraai Z. Decoupling of surface diffusion and relaxation dynamics of molecular glasses. Proc Natl Acad Sci U S A 2017; 114:4915-4919. [PMID: 28373544 PMCID: PMC5441703 DOI: 10.1073/pnas.1701400114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tobacco mosaic virus is used as a probe to measure surface diffusion of ultrathin films of N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) (12 nm [Formula: see text] 53 nm, where [Formula: see text] is the film thickness) at various temperatures below the glass transition temperature, [Formula: see text], of all films. As the film thickness is decreased, [Formula: see text] decreases rapidly and the average film dynamics are enhanced by 6-14 orders of magnitude. We show that the surface diffusion is invariant of the film thickness decrease and the resulting enhanced overall mobility. The values of the surface diffusion coefficient and its temperature dependence are invariant of film thickness and are the same as the corresponding bulk values ([Formula: see text]400 nm). For the thinnest films ([Formula: see text]20 nm), the effective activation energy for rearrangement (temperature dependence of relaxation times) becomes smaller than the activation energy for surface diffusion. These results suggest that the fast surface diffusion is decoupled from film relaxation dynamics and is a solely free surface property.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| |
Collapse
|
46
|
Mangalara JH, Marvin MD, Wiener NR, Mackura ME, Simmons DS. Does fragility of glass formation determine the strength ofTg-nanoconfinement effects? J Chem Phys 2017; 146:104902. [DOI: 10.1063/1.4976521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jayachandra Hari Mangalara
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - Michael D. Marvin
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - Nicholas R. Wiener
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - Mark E. Mackura
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - David S. Simmons
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| |
Collapse
|
47
|
Zhang Y, Fakhraai Z. Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses. PHYSICAL REVIEW LETTERS 2017; 118:066101. [PMID: 28234512 DOI: 10.1103/physrevlett.118.066101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature T_{g}. These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below T_{g}.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
48
|
Ngai KL, Paluch M, Rodríguez-Tinoco C. Why is surface diffusion the same in ultrastable, ordinary, aged, and ultrathin molecular glasses? Phys Chem Chem Phys 2017; 19:29905-29912. [DOI: 10.1039/c7cp05357f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The primitive/JG relaxation explains the same surface diffusion coefficient in ordinary, ultrastable and thin film glasses of OTP and TPD.
Collapse
Affiliation(s)
- K. L. Ngai
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
| | - Marian Paluch
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Physics
- University of Silesia
| | - Cristian Rodríguez-Tinoco
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Physics
- University of Silesia
| |
Collapse
|
49
|
Starr FW, Douglas JF, Meng D, Kumar SK. Bound Layers "Cloak" Nanoparticles in Strongly Interacting Polymer Nanocomposites. ACS NANO 2016; 10:10960-10965. [PMID: 28024345 DOI: 10.1021/acsnano.6b05683] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer-nanoparticle (NP) interfacial interactions are expected to strongly influence the properties of nanocomposites, but surprisingly, experiments often report small or no changes in the glass transition temperature, Tg. To understand this paradoxical situation, we simulate nanocomposites over a broad range of polymer-NP interaction strengths, ε. When ε is stronger than the polymer-polymer interaction, a distinct relaxation that is slower than the main α-relaxation emerges, arising from an adsorbed "bound" polymer layer near the NP surface. This bound layer "cloaks" the NPs, so that the dynamics of the matrix polymer are largely unaffected. Consequently, Tg defined from the temperature dependence of the routinely measured thermodynamics or the polymer matrix relaxation is nearly independent of ε, in accord with many experiments. Apparently, quasi-thermodynamic measurements do not reliably reflect dynamical changes in the bound layer, which alter the overall composite dynamics. These findings clarify the relation between quasi-thermodynamic Tg measurements and nanocomposite dynamics, and should also apply to thin polymer films.
Collapse
Affiliation(s)
- Francis W Starr
- Department of Physics, Wesleyan University , Middletown, Connecticut 06459, United States
- Department of Molecular Biology & Biochemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Dong Meng
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
50
|
Xie SJ, Schweizer KS. Nonuniversal Coupling of Cage Scale Hopping and Collective Elastic Distortion as the Origin of Dynamic Fragility Diversity in Glass-Forming Polymer Liquids. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02272] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shi-Jie Xie
- Departments of Materials
Science and Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Departments of Materials
Science and Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|