1
|
Hatch HW, Bergonzo C, Blanco MA, Yuan G, Grudinin S, Lund M, Curtis JE, Grishaev AV, Liu Y, Shen VK. Anisotropic coarse-grain Monte Carlo simulations of lysozyme, lactoferrin, and NISTmAb by precomputing atomistic models. J Chem Phys 2024; 161:094113. [PMID: 39234967 DOI: 10.1063/5.0224809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
We develop a multiscale coarse-grain model of the NIST Monoclonal Antibody Reference Material 8671 (NISTmAb) to enable systematic computational investigations of high-concentration physical instabilities such as phase separation, clustering, and aggregation. Our multiscale coarse-graining strategy captures atomic-resolution interactions with a computational approach that is orders of magnitude more efficient than atomistic models, assuming the biomolecule can be decomposed into one or more rigid bodies with known, fixed structures. This method reduces interactions between tens of thousands of atoms to a single anisotropic interaction site. The anisotropic interaction between unique pairs of rigid bodies is precomputed over a discrete set of relative orientations and stored, allowing interactions between arbitrarily oriented rigid bodies to be interpolated from the precomputed table during coarse-grained Monte Carlo simulations. We present this approach for lysozyme and lactoferrin as a single rigid body and for the NISTmAb as three rigid bodies bound by a flexible hinge with an implicit solvent model. This coarse-graining strategy predicts experimentally measured radius of gyration and second osmotic virial coefficient data, enabling routine Monte Carlo simulation of medically relevant concentrations of interacting proteins while retaining atomistic detail. All methodologies used in this work are available in the open-source software Free Energy and Advanced Sampling Simulation Toolkit.
Collapse
Affiliation(s)
- Harold W Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biomolecular Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, USA
| | - Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sergei Grudinin
- CNRS, Grenoble INP, LJK, Université Grenoble Alpes, 38000 Grenoble, France
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Lund, Sweden
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Alexander V Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biomolecular Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, USA
| | - Vincent K Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
2
|
Hatch HW, Siderius DW, Shen VK. Monte Carlo molecular simulations with FEASST version 0.25.1. J Chem Phys 2024; 161:092501. [PMID: 39234968 DOI: 10.1063/5.0224283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
FEASST is an open-source Monte Carlo software package for particle-based simulations. This software, which was released in 2017, has been used to study phase equilibrium, self-assembly, aggregation or gelation in biological materials, colloids, polymers, ionic liquids, and adsorption in porous networks. We highlight some of the unique features available in FEASST, such as flat-histogram grand canonical ensemble, Gibbs ensemble, and Mayer-sampling simulations with support for anisotropic models and parallelization with flat-histogram and prefetching. We also discuss how the challenges of supporting a variety of Monte Carlo algorithms were overcome by an object-oriented design. This also allows others to extend classes, which improves software interoperability, as inspired by LAMMPS classes and user packages. This article describes version 0.25.1 with benchmarks, compilation instructions, and introductory tutorials for running, restarting, and testing simulations, user guidelines, software design strategies, alternative interfaces, and the test-driven development strategy.
Collapse
Affiliation(s)
- Harold W Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Daniel W Siderius
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Vincent K Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
3
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Curvature-assisted self-assembly of Brownian squares on cylindrical surfaces. J Colloid Interface Sci 2021; 605:863-870. [PMID: 34371429 DOI: 10.1016/j.jcis.2021.07.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS We hypothesize that curved surfaces, including cylindrical surfaces, which go beyond prior experiments using flat surfaces, can significantly influence and alter the phase behavior and self-assembly of dense two-dimensional systems of Brownian colloids. EXPERIMENTS Here, we report a first experimental study regarding the self-assembly of Brownian square platelets with an edge length L = 2.3 μm on cylindrical surfaces having different curvatures; these platelets are subjected to a depletion attraction in order to form a monolayer above the cylindrical surface, yet have nearly hard interactions within the monolayer. Simulations are also performed to confirm and explain the experimental observations. FINDINGS Phase diagrams as a function of curvature are determined experimentally. Interestingly, hexagonal rotator crystal structures are observed for tubes having radii > 10.9L, but a tetratic phase is seen instead for the 10.9L tube at the corresponding platelet area fractions. We show that this transition is caused by the curvature-induced orientation-dependence of the depletion attraction between the squares and the underlying cylindrical surface. Brownian dynamics simulation results confirm the experimental observations and also illustrate helical structures formed by squares packing on cylinders. Our results demonstrate a way towards control over the self-assembly of anisotropic particles through curvature and depletion-attraction-induced orientational confinement.
Collapse
|
5
|
Singh J, Mustakim M, Anil Kumar AV. Super-Arrhenius diffusion in a binary colloidal mixture at low volume fraction: an effect of depletion interaction due to an asymmetric barrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:125101. [PMID: 33463528 DOI: 10.1088/1361-648x/abd428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report results from the molecular dynamics simulations of a binary colloidal mixture subjected to an external potential barrier along one of the spatial directions at low volume fraction, ϕ = 0.2. The variations in the asymmetry of the external potential barrier do not change the dynamics of the smaller particles, showing Arrhenius diffusion. However, the dynamics of the larger particles shows a crossover from sub-Arrhenius to super-Arrhenius diffusion with the asymmetry in the external potential at the low temperatures and low volume fraction. Super-Arrhenius diffusion is generally observed in the high density systems where the transient cages are present due to dense packing, e.g., supercooled liquids, jammed systems, diffusion through porous membranes, dynamics within the cellular environment, etc. This model can be applied to study the molecular transport across cell membranes, nano-, and micro-channels which are characterized by spatially asymmetric potentials.
Collapse
Affiliation(s)
- Jalim Singh
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Bhubaneswar 752050, India
| | | | | |
Collapse
|
6
|
Hatch HW. Parallel Prefetching for Canonical Ensemble Monte Carlo Simulations. J Phys Chem A 2020; 124:7191-7198. [PMID: 32841030 PMCID: PMC7808336 DOI: 10.1021/acs.jpca.0c05242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to enable large-scale molecular simulations, algorithms must efficiently utilize multicore processors that continue to increase in total core count over time with relatively stagnant clock speeds. Although parallelized molecular dynamics (MD) software has taken advantage of this trend in computer hardware, single-particle perturbations with Monte Carlo (MC) are more difficult to parallelize than system-wide updates in MD using domain decomposition. Instead, prefetching reconstructs the serial Markov chain after computing multiple MC trials in parallel. Canonical ensemble MC simulations of a Lennard-Jones fluid with prefetching resulted in up to a factor of 1.7 speedup using 2 threads, and a factor of 3 speedup using 4 threads. Strategies for maximizing efficiency of prefetching simulations are discussed, including the potentially counterintuitive benefit of reduced acceptance probabilities. Determination of the optimal acceptance probability for a parallel simulation is simplified by theoretical prediction from serial simulation data. Finally, complete open-source code for parallel prefetch simulations was made available in the Free Energy and Advance Sampling Simulation Toolkit (FEASST).
Collapse
Affiliation(s)
- Harold W Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, United States
| |
Collapse
|
7
|
Schönhöfer PWA, Marechal M, Cleaver DJ, Schröder-Turk GE. Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction of pear-shaped particles in a hard-sphere solvent. J Chem Phys 2020; 153:034904. [PMID: 32716194 DOI: 10.1063/5.0007287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We consider depletion effects of a pear-shaped colloidal particle in a hard-sphere solvent for two different model realizations of the pear-shaped colloidal particle. The two models are the pear hard Gaussian overlap (PHGO) particles and the hard pears of revolution (HPR). The motivation for this study is to provide a microscopic understanding for the substantially different mesoscopic self-assembly properties of these pear-shaped colloids, in dense suspensions, that have been reported in the previous studies. This is done by determining their differing depletion attractions via Monte Carlo simulations of PHGO and HPR particles in a pool of hard spheres and comparing them with excluded volume calculations of numerically obtained ideal configurations on the microscopic level. While the HPR model behaves as predicted by the analysis of excluded volumes, the PHGO model showcases a preference for splay between neighboring particles, which can be attributed to the special non-additive characteristics of the PHGO contact function. Lastly, we propose a potentially experimentally realizable pear-shaped particle model, the non-additive hard pear of revolution model, which is based on the HPR model but also features non-additive traits similar to those of PHGO particles to mimic their depletion behavior.
Collapse
Affiliation(s)
- Philipp W A Schönhöfer
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| | - Matthieu Marechal
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Douglas J Cleaver
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Gerd E Schröder-Turk
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| |
Collapse
|
8
|
Murphy RP, Hatch HW, Mahynski NA, Shen VK, Wagner NJ. Dynamic arrest of adhesive hard rod dispersions. SOFT MATTER 2020; 16:1279-1286. [PMID: 31913393 DOI: 10.1039/c9sm01877h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The phenomenon of dynamic arrest, more commonly referred to as gel and glass formation, originates as particle motion slows significantly. Current understanding of gels and glasses stems primarily from dispersions of spherical particles, but much less is known about how particle shape affects dynamic arrest transitions. To better understand the effects of particle shape anisotropy on gel and glass formation, we systematically measure the rheology, particle dynamics, and static microstructure of thermoreversible colloidal dispersions of adhesive hard rods (AHR). First, the dynamic arrest transitions are mapped as a function of temperature T, aspect ratio L/D≈ 3 to 7, and volume fraction φ≈ 0.1 to 0.5. The critical gel temperature Tgel and glass volume fraction φg are determined from the particle dynamics and rheology. Second, an effective orientation-averaged, short-range attraction between rods is quantified from small-angle scattering measurements and characterized by a reduced temperature τ. Similar τ is found at low rod concentrations, indicating that rod gelation occurs at similar effective attraction strength independent of L/D. Monte Carlo simulations reveal a similar convergence in τ when rods cluster and percolate with an average bond coordination number 〈nc〉≈ 2.4, supporting the link between physical gelation and rigidity percolation. Lastly, AHR results are mapped onto a dimensionless state diagram to compare with previous predictions of attraction-driven gels, repulsion-driven glasses, and liquid crystal phases.
Collapse
Affiliation(s)
- Ryan P Murphy
- Center for Neutron Science and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | | | |
Collapse
|
9
|
Hatch HW, McCann GW. Tabular Potentials for Monte Carlo Simulation of Supertoroids with Short-Range Interactions. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2019; 124:1-11. [PMID: 34877184 PMCID: PMC7351571 DOI: 10.6028/jres.124.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 06/13/2023]
Abstract
We describe a methodology for constructing tabular potentials of supertoroids with short-range interactions, which requires the calculation of the volume of overlap of these shapes for many relative positions and orientations. Recent advances in the synthesis of anisotropic colloids have made experimental realizations of such particles feasible and have increased the practical impact of fundamental simulation studies of these families of shapes. This extends our recent work on superquadric potentials to now include a family of ring-like shapes with a hole in the middle. Along with the addition of supertoroids, the ability to make tables for nonidentical particles and particle pairs with multiple, disconnected overlap volumes was added. Using newly developed extensions to a previously published algorithm, we produced tabular potentials for all of these new cases. The algorithmic developments in this work will enable Monte Carlo simulations of a wider variety of shapes to predict thermodynamic properties over a range of conditions.
Collapse
Affiliation(s)
- Harold W Hatch
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Gordon W McCann
- Department of Physics, Gettysburg College, Gettysburg, PA, 17325, USA
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
10
|
Hatch HW, Hall SW, Errington JR, Shen VK. Improving the efficiency of Monte Carlo simulations of ions using expanded grand canonical ensembles. J Chem Phys 2019; 151:144109. [PMID: 31615250 PMCID: PMC7254863 DOI: 10.1063/1.5123683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While ionic liquids have promising applications as industrial solvents, predicting their fluid phase properties and coexistence remains a challenge. Grand canonical Monte Carlo simulation is an effective method for such predictions, but equilibration is hampered by the apparent requirement to insert and delete neutral sets of ions simultaneously in order to maintain charge neutrality. For relatively high densities and low temperatures, previously developed methods have been shown to be essential in improving equilibration by gradual insertion and deletion of these neutral sets of ions. We introduce an expanded ensemble approach which may be used in conjunction with these existing methods to further improve efficiency. Individual ions are inserted or deleted in one Monte Carlo trial rather than simultaneous insertion/deletion of neutral sets. We show how charge neutrality is maintained and show rigorous quantitative agreement between the conventional and the proposed expanded ensemble approaches, but with up to an order of magnitude increase in efficiency at high densities. The expanded ensemble approach is also more straightforward to implement than simultaneous insertion/deletion of neutral sets, and its implementation is demonstrated within open source software.
Collapse
Affiliation(s)
- Harold W. Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Steven W. Hall
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Jeffrey R. Errington
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Vincent K. Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
11
|
Hatch HW, Mahynski NA, Murphy RP, Blanco MA, Shen VK. Monte Carlo simulation of cylinders with short-range attractions. AIP ADVANCES 2018; 8:095210. [PMID: 32855837 PMCID: PMC7448613 DOI: 10.1063/1.5040252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 05/21/2023]
Abstract
Cylindrical or rod-like particles are promising materials for the applications of fillers in nanocomposite materials and additives to control rheological properties of colloidal suspensions. Recent advances in particle synthesis allows for cylinders to be manufactured with short-ranged attractions to study the gelation as a function of packing fraction, aspect ratio and attraction strength. In order to aid in the analysis of small-angle scattering experiments of rod-like particles, computer simulation methods were used to model these particles with specialized Monte Carlo algorithms and tabular superquadric potentials. The attractive interaction between neighboring rods increases with the amount of locally-accessible surface area, thus leading to patchy-like interactions. We characterize the clustering and percolation of cylinders as the attractive interaction increases from the homogenous fluid at relatively low attraction strength, for a variety of aspect ratios and packing fractions. Comparisons with the experimental scattering results are also presented, which are in agreement.
Collapse
Affiliation(s)
- Harold W. Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Nathan A. Mahynski
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Ryan P. Murphy
- Center for Neutron Science and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Marco A. Blanco
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| | - Vincent K. Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
12
|
Affiliation(s)
- André S. Nunes
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisboa, Portugal
| | - Akshat Gupta
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno A. M. Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida M. Telo da Gama
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Hatch HW, Mahynski NA, Shen VK. FEASST: Free Energy and Advanced Sampling Simulation Toolkit. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2018; 123:1-3. [PMID: 34877133 PMCID: PMC7339717 DOI: 10.6028/jres.123.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 05/30/2023]
Abstract
The Free Energy and Advanced Sampling Simulation Toolkit (FEASST) is a free,
open-source, modular program to conduct molecular and particle-based simulations with
Metropolis, Wang-Landau, and Transition-Matrix Monte Carlo methods. FEASST is
implemented in C++ and may be imported as a module within Python 2 or 3. This document
describes the initial public release version 1.0.
Collapse
Affiliation(s)
- Harold W Hatch
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Nathan A Mahynski
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Vincent K Shen
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| |
Collapse
|
14
|
Mahynski NA, Zerze H, Hatch HW, Shen VK, Mittal J. Assembly of multi-flavored two-dimensional colloidal crystals. SOFT MATTER 2017; 13:5397-5408. [PMID: 28702631 PMCID: PMC5828173 DOI: 10.1039/c7sm01005b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We systematically investigate the assembly of binary multi-flavored colloidal mixtures in two dimensions. In these mixtures all pairwise interactions between species may be tuned independently. This introduces an additional degree of freedom over more traditional binary mixtures with fixed mixing rules, which is anticipated to open new avenues for directed self-assembly. At present, colloidal self-assembly into non-trivial lattices tends to require either high pressures for isotropically interacting particles, or the introduction of directionally anisotropic interactions. Here we demonstrate tunable assembly into a plethora of structures which requires neither of these conditions. We develop a minimal model that defines a three-dimensional phase space containing one dimension for each pairwise interaction, then employ various computational techniques to map out regions of this phase space in which the system self-assembles into these different morphologies. We then present a mean-field model that is capable of reproducing these results for size-symmetric mixtures, which reveals how to target different structures by tuning pairwise interactions, solution stoichiometry, or both. Concerning particle size asymmetry, we find that domains in this model's phase space, corresponding to different morphologies, tend to undergo a continuous "rotation" whose magnitude is proportional to the size asymmetry. Such continuity enables one to estimate the relative stability of different lattices for arbitrary size asymmetries. Owing to its simplicity and accuracy, we expect this model to serve as a valuable design tool for engineering binary colloidal crystals from multi-flavored components.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA.
| | | | | | | | | |
Collapse
|
15
|
Okada K, Satoh A. Quasi-2D Monte Carlo simulations of the regime change in the aggregates of magnetic cubic particles on a material surface. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1278477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kazuya Okada
- Graduate School of Akita Prefectural University, Yurihonjo, Japan
| | - Akira Satoh
- Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|