1
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Quevedo DF, Lentz CJ, Coll de Peña A, Hernandez Y, Habibi N, Miki R, Lahann J, Lapizco-Encinas BH. Electrokinetic characterization of synthetic protein nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1556-1567. [PMID: 33134000 PMCID: PMC7590587 DOI: 10.3762/bjnano.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/29/2020] [Indexed: 05/11/2023]
Abstract
The application of nanoparticle in medicine is promising for the treatment of a wide variety of diseases. However, the slow progress in the field has resulted in relatively few therapies being translated into the clinic. Anisotropic synthetic protein nanoparticles (ASPNPs) show potential as a next-generation drug-delivery technology, due to their biocompatibility, biodegradability, and functionality. Even though ASPNPs have the potential to be used in a variety of applications, such as in the treatment of glioblastoma, there is currently no high-throughput technology for the processing of these particles. Insulator-based electrokinetics employ microfluidics devices that rely on electrokinetic principles to manipulate micro- and nanoparticles. These miniaturized devices can selectively trap and enrich nanoparticles based on their material characteristics, and subsequently release them, which allows for particle sorting and processing. In this study, we use insulator-based electrokinetic (EK) microdevices to characterize ASPNPs. We found that anisotropy strongly influences electrokinetic particle behavior by comparing compositionally identical anisotropic and non-anisotropic SPNPs. Additionally, we were able to estimate the empirical electrokinetic equilibrium parameter (eE EEC) for all SPNPs. This particle-dependent parameter can allow for the design of various separation and purification processes. These results show how promising the insulator-based EK microdevices are for the analysis and purification of clinically relevant SPNPs.
Collapse
Affiliation(s)
- Daniel F Quevedo
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Cody J Lentz
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Adriana Coll de Peña
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Yazmin Hernandez
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Nahal Habibi
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Rikako Miki
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| |
Collapse
|
3
|
|
4
|
Hayes MA. Dielectrophoresis of proteins: experimental data and evolving theory. Anal Bioanal Chem 2020; 412:3801-3811. [PMID: 32314000 PMCID: PMC7250158 DOI: 10.1007/s00216-020-02623-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
The ability to selectively move and trap proteins is core to their effective use as building blocks and for their characterization. Analytical and preparative strategies for proteins have been pursued and modeled for nearly a hundred years, with great advances and success. Core to all of these studies is the separation, isolation, purification, and concentration of pure homogeneous fractions of a specific protein in solution. Processes to accomplish this useful solution include biphasic equilibrium (chromatographies, extractions), mechanical, bulk property, chemical equilibria, and molecular recognition. Ultimately, the goal of all of these is to physically remove all non-like protein molecules-to the finest detail: all atoms in the full three-dimensional structure being identical down the chemical bond and bulk structure chirality. One strategy which has not been effectively pursued is exploiting the higher order subtle electrical properties of the protein-solvent system. The advent of microfluidic systems has enabled the use of very high electric fields and well-defined gradients such that extremely high resolution separations of protein mixtures are possible. These advances and recognition of these capabilities have caused a re-evaluation of the underlying theoretical models and they were found to be inadequate. New theoretical descriptions are being considered which align more closely to the total forces present and the subtlety of differences between similar proteins. These are focused on the interfacial area between the protein and hydrating solvent molecules, as opposed to the macroscale assumptions of homogeneous solutions and particles. This critical review examines all data which has been published that place proteins in electric field gradients which induce collection of those proteins, demonstrating a force greater than dispersive effects or countering forces. Evolving theoretical constructs are presented and discussed, and a general estimate of future capabilities using the higher order effects and the high fields and precise gradients of microfluidic systems is discussed. Graphical abstract.
Collapse
Affiliation(s)
- Mark A Hayes
- School of Molecular Sciences, Arizona State University, Mail Stop 1604, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Guthrie S, Huelsenbeck L, Salahi A, Varhue W, Smith N, Yu X, Yoon LU, Choi JJ, Swami N, Giri G. Crystallization of high aspect ratio HKUST-1 thin films in nanoconfined channels for selective small molecule uptake. NANOSCALE ADVANCES 2019; 1:2946-2952. [PMID: 36133596 PMCID: PMC9418888 DOI: 10.1039/c9na00254e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 05/11/2023]
Abstract
We present the ability to create unique morphologies of a prototypical metal organic framework (MOF), HKUST-1, by carrying out its crystallization within a set of nano-confined fluidic channels. These channels are fabricated on cyclic olefin copolymer by the high-fidelity hot embossing imprinting method. The picoliter volume synthesis in the nanochannels is hypothesized to bias the balance between nucleation and growth rates to obtain high aspect ratio large-crystalline domains of HKUST-1, which are grown in defined morphologies due to the patterned nanochannels. Confined crystal growth is achieved in nanofluidic channels as shallow as 50 nm. HKUST-1 crystalline domains with aspect ratios greater than 2500, and lengths up to 144 μm are obtained using the nanochannels, exceeding values obtained using chemical modulation and other confinement methods. HKUST-1 crystals are characterized using optical microscopy and scanning electron microscopy with energy dispersive spectroscopy. Porosity of the MOF and selective molecular uptake is demonstrated through inclusion of anthracene and methylene blue within the HKUST-1 framework, and with exclusion of rhodamine B and riboflavin, characterized using a confocal fluorescence microscope. We attribute this selectivity to the analyte size and electrostatic characteristics. Nanoconfined crystallization of MOFs can thus yield control over crystalline morphology to create ideal MOF crystals for enabling selective molecular enrinchment and sensing.
Collapse
Affiliation(s)
- Stephanie Guthrie
- Department of Chemical Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Luke Huelsenbeck
- Department of Chemical Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Armita Salahi
- Department of Electrical and Computer Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Walter Varhue
- Department of Electrical and Computer Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Natalie Smith
- Department of Chemical Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Xiaohan Yu
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Lucy U Yoon
- Department of Chemical Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Joshua J Choi
- Department of Chemical Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Nathan Swami
- Department of Electrical and Computer Engineering, University of Virginia Charlottesville Virginia 22904 USA
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia Charlottesville Virginia 22904 USA
| |
Collapse
|
6
|
Moore JH, Varhue WB, Su YH, Linton SS, Farmehini V, Fox TE, Matters GL, Kester M, Swami NS. Conductance-Based Biophysical Distinction and Microfluidic Enrichment of Nanovesicles Derived from Pancreatic Tumor Cells of Varying Invasiveness. Anal Chem 2019; 91:10424-10431. [PMID: 31333013 DOI: 10.1021/acs.analchem.8b05745] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diagnostics based on exosomes and other extracellular vesicles (EVs) are emerging as strategies for informing cancer progression and therapies, since the lipid content and macromolecular cargo of EVs can provide key phenotypic and genotypic information on the parent tumor cell and its microenvironment. We show that EVs derived from more invasive pancreatic tumor cells that express high levels of tumor-specific surface proteins and are composed of highly unsaturated lipids that increase membrane fluidity, exhibit significantly higher conductance versus those derived from less invasive tumor cells, based on dielectrophoresis measurements. Furthermore, through specific binding of the EVs to gold nanoparticle-conjugated antibodies, we show that these conductance differences can be modulated in proportion to the type as well as level of expressed tumor-specific antigens, thereby presenting methods for selective microfluidic enrichment and cytometry-based quantification of EVs based on invasiveness of their parent cell.
Collapse
Affiliation(s)
| | | | | | - Samuel S Linton
- Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , Pennsylvania 17033 , United States
| | | | | | - Gail L Matters
- Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , Pennsylvania 17033 , United States
| | | | | |
Collapse
|
7
|
Lentz CJ, Hidalgo-Caballero S, Lapizco-Encinas BH. Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations. BIOMICROFLUIDICS 2019; 13:044114. [PMID: 31489061 PMCID: PMC6715440 DOI: 10.1063/1.5115153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
In this study, we demonstrate the use of cyclical low frequency signals with insulator-based dielectrophoresis (iDEP) devices for the separation of particles of similar characteristics and an experimental method for estimating particle DEP mobilities. A custom signal designer program was created using Matlab® and COMSOL Multiphysics® for the identification of specific low frequency signals aimed at separating particle mixtures by exploiting slight differences in surface charge (particle zeta potential) or particle size. For the separation by surface charge, a mixture of two types of 10 μm particles was analyzed and effectively separated employing both a custom step signal and a sawtooth left signal. Notably, these particles had the same shape, size, and surface functionalization as well as were made from the same substrate material. For the separation by size, a sample containing 2 μm and 5 μm particles was successfully separated using a custom step signal; these particles had the same shape, surface functionalization, were made from the same substrate materials, and had only a small difference in zeta potential (10 mV). Additionally, an experimental technique was developed to estimate the dielectrophoretic mobility of each particle type; this information was then utilized by the signal designer program. The technique developed in this study is readily applicable for designing signals capable of separating micron-sized particles of similar characteristics, such as microorganisms, where slight differences in cell size and the shape of surface charge could be effectively exploited. These findings open the possibility for applications in microbial screening using iDEP devices.
Collapse
Affiliation(s)
- Cody J. Lentz
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
8
|
Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-018-2402-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: A review. Electrophoresis 2018; 40:358-375. [PMID: 30112789 DOI: 10.1002/elps.201800285] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
Abstract
Insulator-based dielectrophoresis (iDEP), also known as electrodeless DEP, has become a well-known dielectrophoretic technique, no longer viewed as a new methodology. Significant advances on iDEP have been reported during the last 15 years. This review article aims to summarize some of the most important findings on iDEP organized by the type of dielectrophoretic mode: streaming and trapping iDEP. The former is primarily used for particle sorting, while the latter has great capability for particle enrichment. The characteristics of a wide array of devices are discussed for each type of dielectrophoretic mode in order to present an overview of the distinct designs and applications developed with iDEP. A short section on Joule heating effects and electrothermal flow is also included to highlight some of the challenges in the utilization of iDEP systems. The significant progress on iDEP illustrates its potential for a large number of applications, ranging from bioanalysis to clinical and biomedical assessments. The present article discusses the work on iDEP by numerous research groups around the world, with the aim of proving the reader with an overview of the state-of-the-art in iDEP microfluidic systems.
Collapse
|
10
|
Zhao K, Li D. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water. J Chromatogr A 2018; 1558:96-106. [DOI: 10.1016/j.chroma.2018.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
11
|
Rohani A, Sanghavi BJ, Salahi A, Liao KT, Chou CF, Swami NS. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. NANOSCALE 2017; 9:12124-12131. [PMID: 28805875 PMCID: PMC5629073 DOI: 10.1039/c7nr02376f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Proteomic biomarkers of interest to the early diagnosis of diseases and infections are present at trace levels versus interfering species. Hence, their selective enrichment is needed within bio-assays for speeding binding kinetics with receptors and for reducing signal interferences. While DC fields can separate biomolecules based on their electrokinetic mobilities, they are unable to selectively enrich biomarkers versus interfering species, which may possess like-charges. We present the utilization of AC electrokinetics to enable frequency-selective enrichment of nanocolloidal biomolecules, based on the characteristic time constant for polarization of their electrical double-layer, since surface conduction in their ion cloud depends on colloidal size, shape and surface charge. In this manner, using DC-offset AC fields, differences in frequency dispersion for negative dielectrophoresis are balanced against electrophoresis in a nanoslit channel to enable the selective enrichment of prostate specific antigen (PSA) versus anti-mouse immunoglobulin antibodies that cause signal interferences to immunoassays. Through coupling enrichment to capture by receptors on graphene-modified surfaces, we demonstrate the elimination of false positives caused by anti-mouse immunoglobulin antibodies to the PSA immunoassay.
Collapse
Affiliation(s)
- Ali Rohani
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
13
|
Swami NS, Hughes M. Preface to Special Topic: Selected Papers from the 2015 Annual Meeting of the AES Electrophoresis Society in Salt Lake City, Utah. BIOMICROFLUIDICS 2016; 10:032701. [PMID: 27453766 PMCID: PMC4930444 DOI: 10.1063/1.4954810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 05/04/2023]
Affiliation(s)
- Nathan S Swami
- Electrical and Computer Engineering, University of Virginia , 351 McCormick Rd., PO Box 400743, Charlottesville, Virginia 22904, USA
| | - Michael Hughes
- Guildford Centre for Biomedical Engineering, University of Surrey , Guildford, Surrey GU30 7QT, United Kingdom
| |
Collapse
|