1
|
Yang Z, Barbhai S, Ji B, Feng J. Effect of surface viscoelasticity on top jet drops produced by bursting bubbles. SOFT MATTER 2024; 20:4868-4877. [PMID: 38700115 DOI: 10.1039/d4sm00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Jet drops resulting from bubble bursting at a liquid surface play a key role in various mass transfer processes across the interface, including sea spray aerosol generation and pathogen transmission. However, the impact of structurally compound interfaces, characterized by complex surface rheology introduced by surface-active contaminants, on the jet drop ejection still remains unclear. Here, we experimentally investigate the influence of surface viscoelasticity on the size and velocity of the top jet drops from surface bubble bursting, examining both pure protein and mixed protein-surfactant solutions. We document that for bubble bursting at a pure-protein-laden surface where surface elasticity dominates, the increase in Ec, i.e. the interfacial elastocapillary number as the ratio between the effects of interfacial elasticity and capillarity, efficiently increases the radius and decreases the velocity of the top jet drop, ultimately inhibiting the jet drop ejection. On the other hand, considering the mixed protein-surfactant solution, we show that the top jet drop radius and velocity exhibit a different variation trend with Ec, which is attributed to the additional dissipation on the capillary waves as well as the retardation and resistance on the converging flow for jet formation from surface viscoelasticity. Our work may advance the understanding of bubble bursting dynamics at contaminated liquid surfaces and shed light on the potential influence of surface viscoelasticity on the generation of bubble bursting aerosols.
Collapse
Affiliation(s)
- Zhengyu Yang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Sainath Barbhai
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Bingqiang Ji
- School of Astronautics, Beihang University, Beijing 100191, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Ferreira J, Domínguez-Arca V, Carneiro J, Prieto G, Taboada P, Moreira de Campos J. Classical and Nonclassical Nucleation Mechanisms of Insulin Crystals. ACS OMEGA 2024; 9:23364-23376. [PMID: 38854527 PMCID: PMC11154923 DOI: 10.1021/acsomega.3c10052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Although the Classical Nucleation Theory (CNT) is the most consensual theory to explain protein nucleation mechanisms, experimental observations during the shear-induced assays suggest that the CNT does not always describe the insulin nucleation process. This is the case at intermediate precipitant (ZnCl2) solution concentrations (2.3 mM) and high-temperature values (20 and 40 °C) as well as at low precipitant solution concentrations (1.6 mM) and low-temperature values (5 °C). In this work, crystallization events following the CNT registered at high precipitant solution concentrations (3.1 and 4.7 mM) are typically described by a Newtonian response. On the other hand, crystallization events following a nonclassical nucleation pathway seem to involve the formation of a metastable intermediate state before crystal formation and are described by a transition from Newtonian to shear-thinning responses. A dominant shear-thinning behavior (shear viscosity values ranging more than 6 orders of magnitude) is found during aggregation/agglomeration events. The rheological analysis is complemented with different characterization techniques (Dynamic Light Scattering, Energy-Dispersive Spectroscopy, Circular Dichroism, and Differential Scanning Calorimetry) to understand the insulin behavior in solution, especially during the occurrence of aggregation/agglomeration events. To the best of our knowledge, the current work is the first study describing nonclassical nucleation mechanisms during shear-induced crystallization experiments, which reveals the potential of the interdisciplinary approach herein described and opens a window for a clear understanding of protein nucleation mechanisms.
Collapse
Affiliation(s)
- Joana Ferreira
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vicente Domínguez-Arca
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
- Grupo
de Biosistemas e Inginería de Bioprocesos, Instituto de Investigaciones Marinas (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain
| | - João Carneiro
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gerardo Prieto
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Pablo Taboada
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - João Moreira de Campos
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
4
|
Deiringer N, Leitner I, Friess W. Effect of the Tubing Material Used in Peristaltic Pumping in Tangential Flow Filtration Processes of Biopharmaceutics on Particle Formation and Flux. J Pharm Sci 2023; 112:665-672. [PMID: 36220395 DOI: 10.1016/j.xphs.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 02/18/2023]
Abstract
Tangential flow filtration (TFF) is a central step in manufacturing of biopharmaceutics. Membrane clogging leads to decreased permeate flux, longer process time and potentially complete failure of the process. The effect of peristaltic pumping with tubings made of three different materials on protein particle formation during TFF was monitored via micro flow imaging, turbidity and photo documentation. At low protein concentrations, pumping with a membrane pump resulted in a stable flux with low protein particle concentration. Using a peristaltic pump led to markedly higher protein particle formation dependent on tubing type. With increasing protein particle formation propensity of the tubing, the permeate flux rate became lower and the process took longer. The protein particles formed in the pump were captured in the cassette and accumulated on the membrane leading to blocking. Using tubing with a hydrophilic copolymer modification counteracted membrane clogging and flux decrease by reducing protein particle formation. In ultrafiltration mode the permeate flux decrease was governed by the viscosity increase rather than by the protein aggregation; but using modified tubing is still beneficial due to a lower particle burden of the product. In summary, using tubing material for peristaltic pumping in TFF processes which leads a less protein particle formation, especially tubing material with hydrophilic modification, is highly beneficial for membrane flux and particle burden of the product.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Imke Leitner
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Averina E, Konnerth J, van Herwijnen HWG. Protein Adhesives: Investigation of Factors Affecting Wet Strength of Alkaline Treated Proteins Crosslinked with Glyoxal. Polymers (Basel) 2022; 14:polym14204351. [PMID: 36297929 PMCID: PMC9612214 DOI: 10.3390/polym14204351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins obtained as side-products from starch production (potato and corn proteins) were investigated for wood adhesives application. To improve the wet strength of protein-based adhesives, glyoxal was added as a crosslinking agent. The effect of glyoxal on the wet strength of protein-based adhesives was investigated at different pH, protein: glyoxal ratios and solid content. The alkaline pretreatment of proteins was carried out by two different methods which reduced the molecular weight of proteins to different extents. The effect of molecular weight reduction on the wet strength of protein-glyoxal adhesives was also observed. It was found that pH level affects wet strength more significantly compared to solid content and protein-to-crosslinker ratio. Potato and corn proteins crosslinked with glyoxal showed maximal wet strength results in an acidic pH range.
Collapse
Affiliation(s)
- Elena Averina
- Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Science, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
- Wood K Plus—Kompetenzzentrum Holz GmbH, Altenberger Straße 69, 4040 Linz, Austria
- Correspondence:
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Science, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | | |
Collapse
|
6
|
Pogorelov A, Ipatova L, Pogorelova M, Kuznetsov A, Suvorov O. Properties of serum albumin in electrolyzed water. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-117-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Electrochemical activation of water controls the physicochemical parameters of aquatic food environment without any reagents. Electrolyzed water affects the properties of macronutrient solutions. The present research studied the effect of anodic and cathodic fractions of electrochemically activated water on protein molecules and their interaction patterns.
Study objects and methods. The study featured bovine serum albumin and its properties in electrochemically activated water with nonstandard redox and acidity values. The aqueous solution of bovine serum albumin was studied by viscometry, UV spectrometry, time-of-flight secondary ion mass spectrometry, and electrophoresis.
Results and discussion. By knowing the interaction patterns of electrochemically activated water and protein molecules, food producers can control the properties of biological raw materials. Bovine serum albumin was studied in metastable fractions of electrochemically activated water obtained in the anode or cathode chamber of an electrochemical reactor. Both fractions of electrochemically activated water appeared to modify the properties of bovine serum albumin. The oxidized fraction of electrochemically activated water (anolyte) converted the protein solution into a more homogeneous molecular composition. The solution of bovine serum albumin in the reduced fraction of electrochemically activated water (catholyte) had an abnormally negative redox potential (–800 mV). The aqueous solution of bovine serum albumin in catholyte retained its initial viscosity for a long time, and its level was lower than in the control sample. This effect was consistent with other physicochemical characteristics of the solution.
Conclusion. The research revealed some patterns that make it possible to apply reagent-free viscosity regulation to protein media in the food industry.
Collapse
Affiliation(s)
- Alexander Pogorelov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Larisa Ipatova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Maria Pogorelova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Alexander Kuznetsov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Oleg Suvorov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| |
Collapse
|
7
|
Salipante PF, Kuei S, Hudson SD. A small-volume microcapillary rheometer. RHEOLOGICA ACTA 2022; 61:10.1007/s00397-022-01333-4. [PMID: 36632607 PMCID: PMC9830794 DOI: 10.1007/s00397-022-01333-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate a capillary device used to measure the shear rate-dependent viscosity of microliter scale volumes. Liquid samples are driven pneumatically through a microcapillary and partially fill a larger glass capillary. The glass capillary is mounted on an optical linear sensor to track the air-liquid meniscus in real time and trigger the reversal of flow direction by switching a pneumatic valve. Each transit provides a volumetric flow rate measurement, which is used with the pressure drop to determine viscosity as a function of shear rate. A given sample of at least 50 μL can be measured over at least 2 to 3 decades in shear rate, in the range of 10 to 105 s-1, and be essentially fully recovered. Validation by comparison to reference measurements is performed using samples of Newtonian and non-Newtonian fluid, with viscosity ranging from 1 to 100 mPa s. The range of operation and uncertainty arising from instrumentation, meniscus effects, and inertial effects are discussed. The performance of this rheometer is advantageous, especially for use and reuse of small volumes.
Collapse
Affiliation(s)
- Paul F. Salipante
- Polymers and Complex Fluids Group, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Steve Kuei
- Polymers and Complex Fluids Group, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Steven D. Hudson
- Polymers and Complex Fluids Group, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| |
Collapse
|
8
|
A microfluidic approach to studying the injection flow of concentrated albumin solutions. SN APPLIED SCIENCES 2021; 3:783. [PMID: 34723096 PMCID: PMC8550001 DOI: 10.1007/s42452-021-04767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Abstract Subcutaneous injection by means of prefilled syringes allows patients to self-administrate high-concentration (100 g/L or more) protein-based drugs. Although the shear flow of concentrated globulins or monoclonal antibodies has been intensively studied and related to the injection force proper of SC processes, very small attention has been paid to the extensional behavior of this category of complex fluids. This work focuses on the flow of concentrated bovine serum albumin (BSA) solutions through a microfluidic “syringe-on-chip” contraction device which shares some similarities with the geometry of syringes used in SC self-injection. By comparing the velocity and pressure measurements in complex flow with rheometric shear measurements obtained by means of the “Rheo-chip” device, it is shown that the extensional viscosity plays an important role in the injection process of protinaceous drugs. Article Highlights A microfluidic “syringe on chip” device mimicking the injection flow of protinaceous drugs has been developed. The velocity field of concentrated BSA solutions through the “syringe on chip” is Newtonian-like. The extensional viscosity of concentrated protein solutions should also be considered when computing injection forces through needles.
Collapse
|
9
|
Krishnamurthy S, Sudhakar S, Mani E. Kinetics of aggregation of amyloid β under different shearing conditions: Experimental and modelling analyses. Colloids Surf B Biointerfaces 2021; 209:112156. [PMID: 34736218 DOI: 10.1016/j.colsurfb.2021.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Amyloid β (Aβ40) is a class of amyloidogenic proteins known to aggregate into a fibrillar network. The rate of aggregation and fibril yield is sensitive to external energy input, such as shear. In this work, simple shear and shaking experiments are performed on Aβ40 solution using a Couette cell and an orbital shaker, respectively. Experiments show that, under uniform shear, both the mass of fibrils and aggregation rate increase with the shear rate. In the case of orbital shaking, the lag time decreases with the rotational speed of the shaker, but the final fibril mass is the same for all agitation speeds. To explain this contrasting behavior of aggregation kinetics, a population balance model is developed to account for the effect of shear on the aggregation of Aβ. The kinetic model includes primary nucleation, secondary nucleation, elongation, fragmentation, and depolymerization steps. The effect of steady uniform shear is encoded in the depolymerization rate constant (kd), and it is shown that kd decreases with shear rate initially and saturates at high shear rates. A competition between elongation and depolymerization rates yields different equilibrium masses of fibril at different shear rates. The model results agree quantitatively well with experimental data on the rate of aggregation and mass of fibrils as a function of shear rate. The modeling framework can be used to explain the shear rate-dependent aggregation of other amyloidogenic proteins.
Collapse
Affiliation(s)
- Sriram Krishnamurthy
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Swathi Sudhakar
- Eberhard Karls Universität Tübingen, ZMBP, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
10
|
Roche A, Gentiluomo L, Sibanda N, Roessner D, Friess W, Trainoff SP, Curtis R. Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient. J Colloid Interface Sci 2021; 607:1813-1824. [PMID: 34624723 DOI: 10.1016/j.jcis.2021.08.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023]
Abstract
The viscosity of a monoclonal antibody solution must be monitored and controlled as it can adversely affect product processing, packaging and administration. Engineering low viscosity mAb formulations is challenging as prohibitive amounts of material are required for concentrated solution analysis, and it is difficult to predict viscosity from parameters obtained through low-volume, high-throughput measurements such as the interaction parameter, kD, and the second osmotic virial coefficient, B22. As a measure encompassing the effect of intermolecular interactions on dilute solution viscosity, the Huggins coefficient, kh, is a promising candidate as a parameter measureable at low concentrations, but indicative of concentrated solution viscosity. In this study, a differential viscometry technique is developed to measure the intrinsic viscosity, [η], and the Huggins coefficient, kh, of protein solutions. To understand the effect of colloidal protein-protein interactions on the viscosity of concentrated protein formulations, the viscometric parameters are compared to kD and B22 of two mAbs, tuning the contributions of repulsive and attractive forces to the net protein-protein interaction by adjusting solution pH and ionic strength. We find a strong correlation between the concentrated protein solution viscosity and the kh but this was not observed for the kD or the b22, which have been previously used as indicators of high concentration viscosity. Trends observed in [η] and kh values as a function of pH and ionic strength are rationalised in terms of protein-protein interactions.
Collapse
Affiliation(s)
- Aisling Roche
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK; Currently at: National Institute for Biological Standards and Control, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany; Currently at: Coriolis Pharma, Fraunhoferstraße 18B, 82152 Munich, Germany
| | - Nicole Sibanda
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Steven P Trainoff
- Wyatt Technology Corporation, 6330 Hollister Ave, Goleta, CA 93117, United States
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK.
| |
Collapse
|
11
|
Beck C, Grimaldo M, Braun MK, Bühl L, Matsarskaia O, Jalarvo NH, Zhang F, Roosen-Runge F, Schreiber F, Seydel T. Temperature and salt controlled tuning of protein clusters. SOFT MATTER 2021; 17:8506-8516. [PMID: 34490428 DOI: 10.1039/d1sm00418b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
Collapse
Affiliation(s)
- Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Marco Grimaldo
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Michal K Braun
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Lena Bühl
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Niina H Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden.
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
12
|
Lindquist BA. Inverse design of equilibrium cluster fluids applied to a physically informed model. J Chem Phys 2021; 154:174907. [PMID: 34241069 DOI: 10.1063/5.0048812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inverse design strategies have proven highly useful for the discovery of interaction potentials that prompt self-assembly of a variety of interesting structures. However, often the optimized particle interactions do not have a direct relationship to experimental systems. In this work, we show that Relative Entropy minimization is able to discover physically meaningful parameter sets for a model interaction built from depletion attraction and electrostatic repulsion that yield self-assembly of size-specific clusters. We then explore the sensitivity of the optimized interaction potentials with respect to deviations in the underlying physical quantities, showing that clustering behavior is largely preserved even as the optimized parameters are perturbed.
Collapse
Affiliation(s)
- Beth A Lindquist
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
13
|
Tein YS, Zhang Z, Wagner NJ. Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air-Water Interface Determined by Interfacial Rheology and Neutron Reflectometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7814-7823. [PMID: 32551695 DOI: 10.1021/acs.langmuir.0c00797] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interfacial stresses can destabilize therapeutic formulations containing monoclonal antibodies (mAbs), which is proposed to be a result of adsorption and aggregation at the air-water interface. To increase protein stability, pharmaceutical industries add surfactants, such as Polysorbate 20 (PS20), into protein formulations to minimize mAb adsorption at the interface but rarely quantify this process. We determine that mAb adsorption in surfactant-free solutions creates a monolayer with significant viscoelasticity, which can influence measurements of bulk mAb solution viscosity. In contrast, PS20 absorption leads to an interface with negligible interfacial viscosity that protects the air-water interface from mAb adsorption. These studies were performed through a combined study of surface tensiometry, interfacial rheology, capillary viscometry, and neutron reflectometry to determine the surface activity of a model surfactant, PS20, and mAb system, which can be useful for the successful formulation developments of biotherapeutics.
Collapse
Affiliation(s)
- Y Summer Tein
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Zhenhuan Zhang
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Norman J Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Chowdhury A, Guruprasad G, Chen AT, Karouta CA, Blanco MA, Truskett TM, Johnston KP. Protein-Protein Interactions, Clustering, and Rheology for Bovine IgG up to High Concentrations Characterized by Small Angle X-Ray Scattering and Molecular Dynamics Simulations. J Pharm Sci 2020; 109:696-708. [DOI: 10.1016/j.xphs.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 01/23/2023]
|
15
|
Dear BJ, Chowdhury A, Hung JJ, Karouta CA, Ramachandran K, Nieto MP, Wilks LR, Sharma A, Shay TY, Cheung JK, Truskett TM, Johnston KP. Relating Collective Diffusion, Protein–Protein Interactions, and Viscosity of Highly Concentrated Monoclonal Antibodies through Dynamic Light Scattering. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Barton J. Dear
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amjad Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica J. Hung
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Carl A. Karouta
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishan Ramachandran
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria P. Nieto
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Logan R. Wilks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ayush Sharma
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tony Y. Shay
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason K. Cheung
- Biophysical and Biochemical Characterization, Sterile Formulation Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P. Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Hung JJ, Zeno WF, Chowdhury AA, Dear BJ, Ramachandran K, Nieto MP, Shay TY, Karouta CA, Hayden CC, Cheung JK, Truskett TM, Stachowiak JC, Johnston KP. Self-diffusion of a highly concentrated monoclonal antibody by fluorescence correlation spectroscopy: insight into protein-protein interactions and self-association. SOFT MATTER 2019; 15:6660-6676. [PMID: 31389467 DOI: 10.1039/c9sm01071h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic behavior of monoclonal antibodies (mAbs) at high concentration provides insight into protein microstructure and protein-protein interactions (PPI) that influence solution viscosity and protein stability. At high concentration, interpretation of the collective-diffusion coefficient Dc, as determined by dynamic light scattering (DLS), is highly challenging given the complex hydrodynamics and PPI at close spacings. In contrast, self-diffusion of a tracer particle by Brownian motion is simpler to understand. Herein, we develop fluorescence correlation spectroscopy (FCS) for the measurement of the long-time self-diffusion of mAb2 over a wide range of concentrations and viscosities in multiple co-solute formulations with varying PPI. The normalized self-diffusion coefficient D0/Ds (equal to the microscopic relative viscosity ηeff/η0) was found to be smaller than η/η0. Smaller ratios of the microscopic to macroscopic viscosity (ηeff/η) are attributed to a combination of weaker PPI and less self-association. The interaction parameters extracted from fits of D0/Ds with a length scale dependent viscosity model agree with previous measurements of PPI by SLS and SAXS. Trends in the degree of self-association, estimated from ηeff/η with a microviscosity model, are consistent with oligomer sizes measured by SLS. Finally, measurements of collective diffusion and osmotic compressibility were combined with FCS data to demonstrate that the changes in self-diffusion between formulations are due primarily to changes in the protein-protein friction in these systems, and not to protein-solvent friction. Thus, FCS is a robust and accessible technique for measuring mAb self-diffusion, and, by extension, microviscosity, PPI and self-association that govern mAb solution dynamics.
Collapse
Affiliation(s)
- Jessica J Hung
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
18
|
Dear BJ, Bollinger JA, Chowdhury A, Hung JJ, Wilks LR, Karouta CA, Ramachandran K, Shay TY, Nieto MP, Sharma A, Cheung JK, Nykypanchuk D, Godfrin PD, Johnston KP, Truskett TM. X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. J Phys Chem B 2019; 123:5274-5290. [DOI: 10.1021/acs.jpcb.9b04478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barton J. Dear
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan A. Bollinger
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amjad Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica J. Hung
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Logan R. Wilks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Carl A. Karouta
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishan Ramachandran
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tony Y. Shay
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria P. Nieto
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ayush Sharma
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason K. Cheung
- Biophysical and Biochemical Characterization, Sterile Formulation Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033 United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - P. Douglas Godfrin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith P. Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Bergman MJ, Garting T, Schurtenberger P, Stradner A. Experimental Evidence for a Cluster Glass Transition in Concentrated Lysozyme Solutions. J Phys Chem B 2019; 123:2432-2438. [PMID: 30785749 PMCID: PMC6550439 DOI: 10.1021/acs.jpcb.8b11781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lysozyme
is known to form equilibrium clusters at pH ≈ 7.8
and at low ionic strength as a result of a mixed potential. While
this cluster formation and the related dynamic and static structure
factors have been extensively investigated, its consequences on the
macroscopic dynamic behavior expressed by the zero shear viscosity
η0 remain controversial. Here we present results
from a systematic investigation of η0 using two complementary
passive microrheology techniques, dynamic light scattering based tracer
microrheology, and multiple particle tracking using confocal microscopy.
The combination of these techniques with a simple but effective evaporation
approach allows for reaching concentrations close to and above the
arrest transition in a controlled and gentle way. We find a strong
increase of η0 with increasing volume fraction ϕ
with an apparent divergence at ϕ ≈ 0.35, and unambiguously
demonstrate that this is due to the existence of an arrest transition
where a cluster glass forms. These findings demonstrate the power
of tracer microrheology to investigate complex fluids, where weak
temporary bonds and limited sample volumes make measurements with
classical rheology challenging.
Collapse
Affiliation(s)
- Maxime J Bergman
- Division of Physical Chemistry, Department of Chemistry , Lund University , PO Box 124, SE-22100 Lund , Sweden
| | - Tommy Garting
- Division of Physical Chemistry, Department of Chemistry , Lund University , PO Box 124, SE-22100 Lund , Sweden
| | - Peter Schurtenberger
- Division of Physical Chemistry, Department of Chemistry , Lund University , PO Box 124, SE-22100 Lund , Sweden.,LINXS - Lund Institute of advanced Neutron and X-ray Science , SE-22100 Lund , Sweden
| | - Anna Stradner
- Division of Physical Chemistry, Department of Chemistry , Lund University , PO Box 124, SE-22100 Lund , Sweden.,LINXS - Lund Institute of advanced Neutron and X-ray Science , SE-22100 Lund , Sweden
| |
Collapse
|
20
|
Liu Y, Xi Y. Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics. Curr Opin Colloid Interface Sci 2019; 39. [PMID: 34140838 DOI: 10.1016/j.cocis.2019.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Colloidal systems with both a short-range attraction and long-range repulsion (SALR) have rich phases compared with the traditional hard sphere systems or sticky hard sphere systems. The competition between the short-range attraction and long-range repulsion results in the frustrated phase separation, which leads to the formation of intermediate range order (IRO) structures and introduces new phases to both equilibrium and nonequilibrium phase diagrams, such as clustered fluid, cluster percolated fluid, Wigner glass, and cluster glass. One hallmark feature of many SALR systems is the appearance of the IRO peak in the interparticle structure factor, which is associated with different types of IRO structures. The relationship between the IRO peak and the clustered fluid state has been careful investigated. Not surprisingly, the morphology of clusters in solutions can be affected and controlled by the SALR potential. And the effect of the SALR potential on the dynamic properties is also reviewed here. Even though much progress has been made in understanding SALR systems, many future works are still needed to have quantitative comparisons between experiments and simulations/theories and understand the differences from different experimental systems. Owing to the large parameter space available for SALR systems, many exciting features of SALR systems are not fully explored yet. Because proteins in low-salinity solutions have SALR interactions, the understanding of SALR systems can greatly help understand protein behavior in concentrated solutions or crowded conditions.
Collapse
Affiliation(s)
- Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.,Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.,Department of Physics & Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Yuyin Xi
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.,Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
21
|
Podgornik A. Pressure drop in liquid chromatography. J Sep Sci 2018; 42:72-88. [DOI: 10.1002/jssc.201800882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/13/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Aleš Podgornik
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Ljubljana Slovenia
- Center of Excellence for Biosensors; Instrumentation and Process Control - COBIK; Ajdovščina Slovenia
| |
Collapse
|
22
|
Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline. Pharm Res 2018; 35:133. [DOI: 10.1007/s11095-018-2398-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
|
23
|
Schiel JE, Turner A. The NISTmAb Reference Material 8671 lifecycle management and quality plan. Anal Bioanal Chem 2018; 410:2067-2078. [PMID: 29430600 PMCID: PMC5830479 DOI: 10.1007/s00216-017-0844-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
Comprehensive analysis of monoclonal antibody therapeutics involves an ever expanding cadre of technologies. Lifecycle-appropriate application of current and emerging techniques requires rigorous testing followed by discussion between industry and regulators in a pre-competitive space, an effort that may be facilitated by a widely available test metric. Biopharmaceutical quality materials, however, are often difficult to access and/or are protected by intellectual property rights. The NISTmAb, humanized IgG1κ Reference Material 8671 (RM 8671), has been established with the intent of filling that void. The NISTmAb embodies the quality and characteristics of a typical biopharmaceutical product, is widely available to the biopharmaceutical community, and is an open innovation tool for development and dissemination of results. The NISTmAb lifecyle management plan described herein provides a hierarchical strategy for maintenance of quality over time through rigorous method qualification detailed in additional submissions in the current publication series. The NISTmAb RM 8671 is a representative monoclonal antibody material and provides a means to continually evaluate current best practices, promote innovative approaches, and inform regulatory paradigms as technology advances. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.
Collapse
Affiliation(s)
- John E Schiel
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA.
| | - Abigail Turner
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
- Medimmune, LLC, 55 Watkins Mill Rd, Gaithersburg, MD, 20878, USA
| |
Collapse
|
24
|
Zhang Z, Liu Y. Recent progresses of understanding the viscosity of concentrated protein solutions. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Salipante PF, Little CAE, Hudson SD. Jetting of a shear banding fluid in rectangular ducts. PHYSICAL REVIEW FLUIDS 2017; 2:033302. [PMID: 28691108 PMCID: PMC5497526 DOI: 10.1103/physrevfluids.2.033302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report the characteristics and causes of a jetting flow instability of shear banding wormlike micelle solutions in microfluidic channels with rectangular cross sections over an intermediate volumetric flow regime. Particle-tracking methods are used to measure the three-dimensional flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting occurs, it is self-contained within a portion of the channel where the flow velocity is greater than the surroundings. We observe that the instability forms in channels with aspect ratio greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress localizations. Jetting is not observed in a lower concentration solution without shear banding. Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar behavior to the experimental observations and indicate that compressive normal stresses in the cross-stream directions support the development of the jetting flow. Our results show that nonuniform flow of shear thinning fluids can develop across the wide dimension in rectangular microfluidic channels, with implications for microfluidic rheometry.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| | - Charles A. E. Little
- National Institute of Standards and Technology, RF Electronics Group, Bolder, Colorado 80305, USA
| | - Steven D. Hudson
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
26
|
Lindner A, Arratia PE. Preface to Special Topic: Invited Articles on Microfluidic Rheology. BIOMICROFLUIDICS 2016; 10:043301. [PMID: 27648112 PMCID: PMC5001971 DOI: 10.1063/1.4961681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 05/12/2023]
Affiliation(s)
- Anke Lindner
- PMMH-ESPCI Paris, PSL, UMR 7636, CNRS, Univ. Paris Diderot and Univ. Pierre et Marie Curie , 10 Rue Vauquelin, Paris F-75231 Paris Cedex 05, France
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|