1
|
Sarkar ID, Sil A, Guchhait B, Das S. Hydrogen-bond induced non-linear size dependence of lysozyme under the influence of aqueous glyceline. J Chem Phys 2025; 162:114506. [PMID: 40105133 DOI: 10.1063/5.0251283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
Natural deep eutectic solvents (NADESs) are environmentally friendly green solvents and hold great promise in the pharmaceutical industry. The secondary structure of a protein, lysozyme, follows a non-monotonous behavior in aqueous glyceline (choline chloride + glycerol) as the wt. % of water is increased. However, it is unclear how the hydration affects the stability of the protein in a non-linear way. In this work, we have performed all-atom molecular dynamic simulations for 1 μs with the lysozyme protein in an aqueous glyceline deep eutectic solvent (DES) by varying the wt. % of water. The simulated radius of gyration, Rg, values can qualitatively reproduce the protein behavior such that the Rg increases initially with an increase in wt. % of water, reaches the peak at 40 wt. %, and then gradually decreases with dilution. Several other properties, including root mean square deviation, root-mean square fluctuation, secondary structure of the protein, and solvent accessible surface area, are examined to explore the NADES effect on the protein structure. Next, we analyze the hydrogen bond profile of intra-protein and among various interspecies, e.g., protein-DES, DES-DES, protein-water, and water-water. The variation in protein-protein hydrogen bonds with concentrations can qualitatively explain the non-linear conformational dependence of the protein. The radial distribution function analyses show various microscopic structures formed due to the DES and water interaction, which play a critical role in protein behavior. This study indicates that at lower wt. % of water, the protein is constrained in a strong hydrogen bond network formed by glycerol and water molecules, resulting in a lower Rg. As the wt. % of water increases, the protein-water interaction drives the protein to expand, reflecting an increasing Rg. At sufficiently higher wt. % of water, the DES constituent and the water molecules interact strongly with the protein, resulting in a decrease in Rg. Overall, the investigation offers a microscopic insight into the protein conformation in DES.
Collapse
Affiliation(s)
- Ivy Das Sarkar
- GITAM University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Arnab Sil
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suman Das
- Department of Chemistry, GITAM University, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
2
|
Mondal A, Kumbhakar K, Biswas R. Correlating Ionic Conductivity to Structure and Dynamics of Li-Ion Battery Electrolyte Systems: Raman Spectroscopy, Dielectric Relaxation Measurements, and Streak Camera Solvation Data Analysis. J Phys Chem B 2024; 128:11924-11937. [PMID: 39578096 DOI: 10.1021/acs.jpcb.4c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
A correlation between ionic conductivity and electrolyte solution structure and dynamics was explored by performing electrolyte concentration- and temperature-dependent measurements of conductivity, viscosity, and dielectric relaxation (DR) in solutions of lithium bis(trifluoromethane)sulfonimide (LiTFSI) in triethylene glycol dimethyl ether (also known as triglyme, G3). In addition, an electrolyte concentration-dependent Raman spectroscopic study and ultrafast dynamic fluorescence Stokes shift measurements of solvation of a dissolved solute by employing a streak camera detection technique were carried out. Measured conductivities (σ) and the average DR times (⟨τDR⟩) were found to be partially decoupled from the solution viscosities (η) and obeyed the relation, σ or ⟨τDR⟩-1 ∝(η/T)-p, with p = 0.6-0.75 for σ and p = 0.2-0.45 for ⟨τDR⟩-1. Raman data indicated the formation of ion pairs and ionic aggregates in these solutions, while the measured glass transition temperature increased with LiTFSI concentration. Conductivities (σ) showed a nonlinear concentration dependence but increased linearly with the solution static dielectric constants (εs). The latter may be explained by considering the temperature effects on complex electrolyte species and the subsequent solution dielectric behavior. Interestingly, an inverse power-law dependence of σ on the measured DR or solvation time scales, σ ∝ (τx)-m, with m = 1.2-1.9, was observed. This dependence may be explained by considering that the same environmental friction regulates both the ion diffusion and the medium polarization relaxation. The control of a slow process (ion translation) by relatively faster medium dynamics (dipolar rotation), although quite fascinating for the present system, warrants further experimental scrutiny for other electrolyte systems relevant to battery applications.
Collapse
Affiliation(s)
- Amrita Mondal
- Chemical and Biological Sciences (CBS), S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Kajal Kumbhakar
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Ranjit Biswas
- Chemical and Biological Sciences (CBS), S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
3
|
Sil A, Sangeeta, Poonia V, Das S, Guchhait B. Molecular dynamics insights into the dynamical behavior of structurally modified water in aqueous deep eutectic solvents (ADES). J Chem Phys 2024; 161:164501. [PMID: 39435833 DOI: 10.1063/5.0223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Recent studies have demonstrated that the presence of water in deep eutectic solvents (DESs) significantly affects their dynamics, structure, and physical properties. Although the structural changes due to the addition of water are well understood, the microscopic dynamics of these changes have been rarely studied. Here, we performed molecular dynamics simulation of 30% (v/v) (∼0.57 molar fraction) water mixture of DES containing CH3CONH2 and NaSCN/KSCN at various salt fractions to understand the microscopic structure and dynamics of water. The simulated results reveal a heterogeneous environment for water molecules in aqueous DES (ADES), which is influenced by the nature of the cation. The diffusion coefficients of water in ADESs are significantly lower than that in neat water and concentrated aqueous NaSCN/KSCN solution. When Na+ ions are replaced by K+ ions in the ADES system, the diffusion coefficient increases, which is consistent with the measured nuclear magnetic resonance data. Self-dynamic structure factor for water and other simulated dynamic quantities, such as reorientation, hydrogen-bond, and residence time correlation functions, show markedly slower dynamics inside ADES than in the neat water and aqueous salt solution. Moreover, these dynamics become faster when Na+ ions in ADES are replaced by K+ ions. The results suggest that the structural environment of water in Na+-rich ADES is rigid due to the presence of cation-bound water and geometrically constrained water. The medium becomes less rigid as the KSCN fraction increases due to the relatively weaker interaction of K+ ions with water than Na+ ions, which accelerates the dynamical processes.
Collapse
Affiliation(s)
- Arnab Sil
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sangeeta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Vishnu Poonia
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suman Das
- Department of Chemistry, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Rinesh T, Srinivasan H, Sharma VK, Mitra S. Unraveling relationship between complex lifetimes and microscopic diffusion in deep eutectic solvents. J Chem Phys 2024; 161:024501. [PMID: 38973757 DOI: 10.1063/5.0213402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Aqueous mixtures of deep eutectic solvents (DESs) have emerged as a subject of interest in recent years for their tailored physicochemical properties. However, a comprehensive understanding of water's multifaceted influence on the microscopic dynamics, including its impact on improved transport properties of the DES, remains elusive. Additionally, the diffusion mechanisms within DESs manifest heterogeneous behavior, intricately tied to the formation and dissociation kinetics of complexes and hydrogen bonds. Therefore, it is imperative to explore the intricate interplay between bond kinetics, diffusion mechanism, and dynamical heterogeneity. This work employs water as an agent to explore their relationships by studying various relaxation phenomena in a DES based on acetamide and lithium perchlorate over a wide range of water concentrations. Notably, acetamide exhibits Fickian yet non-Gaussian diffusion across all water concentrations with Fickian (τf) and Gaussian (τg) timescales following a power-law relationship, τg∝τfγ, γ ∼ 1.4. The strength of coupling between bond kinetics and different diffusion timescales is estimated through various power-law relationships. Notably, acetamide-water hydrogen bond lifetime is linked to diffusive timescales through a single power-law over the entire water concentration studied. However, the relationship between diffusive timescales and the lifetime of acetamide-lithium complexes shows a sharp transition in behavior at 20 wt. % water, reflecting a change from vehicular diffusion below this concentration to structural diffusion above it. Our findings emphasize the critical importance of understanding bond dynamics within DESs, as they closely correlate with and regulate the molecular diffusion processes within these systems.
Collapse
Affiliation(s)
- T Rinesh
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
Mondal J, Maji D, Mitra S, Biswas R. Temperature-Dependent Dielectric Relaxation Measurements of (Betaine + Urea + Water) Deep Eutectic Solvent in Hz-GHz Frequency Window: Microscopic Insights into Constituent Contributions and Relaxation Mechanisms. J Phys Chem B 2024; 128:6567-6580. [PMID: 38949428 DOI: 10.1021/acs.jpcb.4c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A combined experimental and simulation study of dielectric relaxation (DR) of a deep eutectic solvent (DES) composed of betaine, urea, and water with the composition [Betaine:Urea:Water = 11.7:12:1 (weight ratio) and 9:18:5 (molar ratio)] was performed to explore and understand the interaction and dynamics of this system. Temperature-dependent (303 ≤ T/K ≤ 343) measurements were performed over 9 decades of frequency, combining three different measurement setups. Measured DR, comprising four distinct steps with relaxation times spreading over a few picoseconds to several nanoseconds, was found to agree well with simulations. The simulated total DR spectra, upon dissection into three self (intraspecies) and three cross (interspecies) interaction contributions, revealed that the betaine-betaine self-term dominated (∼65%) the relaxation, while the urea-urea and water-water interactions contributed only ∼7% and ∼1%, respectively. The cross-terms (betaine-urea, betaine-water, and urea-water) together accounted for <30% of the total DR. The slowest DR component with a time constant of ∼1-10 ns derived dominant contribution from betaine-betaine interactions, where betaine-water and urea-water interactions also contributed. The subnanosecond (0.1-0.6 ns) time scale originated from all interactions except betaine-water interaction. An extensive interaction of water with betaine and urea severely reduced the average number of water-water H-bonds (∼0.7) and heavily decreased the static dielectric constant of water in this DES (εs ∼ 2). Furthermore, simulated first rank collective single particle reorientational relaxations (C1(t)) and the structural H-bond fluctuation dynamics (CHB (t)) exhibited multiexponential kinetics with time scales that corresponded well with those found both in the simulated and measured DR.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Sudipta Mitra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
6
|
Mondal J, Maji D, Biswas R. Temperature-dependent dielectric relaxation measurements of (acetamide + K/Na SCN) deep eutectic solvents: Decoding the impact of cation identity via computer simulations. J Chem Phys 2024; 160:084506. [PMID: 38421071 DOI: 10.1063/5.0193512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The impact of successive replacement of K+ by Na+ on the megahertz-gigahertz polarization response of 0.25[fKSCN + (1 - f)NaSCN] + 0.75CH3CONH2 deep eutectic solvents (DESs) was explored via temperature-dependent (303 ≤ T/K ≤ 343) dielectric relaxation (DR) measurements and computer simulations. Both the DR measurements (0.2 ≤ ν/GHz ≤ 50) and the simulations revealed multi-Debye relaxations accompanied by a decrease in the solution static dielectric constant (ɛs) upon the replacement of K+ by Na+. Accurate measurements of the DR response of DESs below 100 MHz were limited by the well-known one-over-frequency divergence for conducting solutions. This problem was tackled in simulations by removing the zero frequency contributions arising from the ion current to the total simulated DR response. The temperature-dependent measurements revealed a much stronger viscosity decoupling of DR times for Na+-containing DES than for the corresponding K+ system. The differential scanning calorimetry measurements indicated a higher glass transition temperature for Na+-DES (∼220 K) than K+-DES (∼200 K), implying more fragility and cooperativity for the former (Na+-DES) than the latter. The computer simulations revealed a gradual decrease in the average number of H bonds (⟨nHB⟩) per acetamide molecule and increased frustrations in the average orientational order upon the replacement of K+ by Na+. Both the measured and simulated ɛs values were found to decrease linearly with ⟨nHB⟩. Decompositions of the simulated DR spectra revealed that the cation-dependent cross interaction (dipole-ion) term contributes negligibly to ɛs and appears in the terahertz regime. Finally, the simulated collective single-particle reorientational relaxations and the structural H-bond fluctuation dynamics revealed the microscopic origin of the cation identity dependence shown by the measured DR relaxation times.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
7
|
Maji D, Biswas R. Dielectric relaxation and dielectric decrement in ionic acetamide deep eutectic solvents: Spectral decomposition and comparison with experiments. J Chem Phys 2023; 158:2888209. [PMID: 37139998 DOI: 10.1063/5.0147378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Frequency-dependent dielectric relaxation in three deep eutectic solvents (DESs), (acetamide+LiClO4/NO3/Br), was investigated in the temperature range, 329 ≤ T/K ≤ 358, via molecular dynamics simulations. Subsequently, decomposition of the real and the imaginary components of the simulated dielectric spectra was carried out to separate the rotational (dipole-dipole), translational (ion-ion), and ro-translational (dipole-ion) contributions. The dipolar contribution, as expected, was found to dominate all the frequency-dependent dielectric spectra over the entire frequency regime, while the other two components together made tiny contributions only. The translational (ion-ion) and the cross ro-translational contributions appeared in the THz regime in contrast to the viscosity-dependent dipolar relaxations that dominated the MHz-GHz frequency window. Our simulations predicted, in agreement with experiments, anion-dependent decrement of the static dielectric constant (ɛs ∼ 20 to 30) for acetamide (ɛs ∼ 66) in these ionic DESs. Simulated dipole-correlations (Kirkwood g factor) indicated significant orientational frustrations. The frustrated orientational structure was found to be associated with the anion-dependent damage of the acetamide H-bond network. Single dipole reorientation time distributions suggested slowed down acetamide rotations but did not indicate presence of any "rotationally frozen" molecule. The dielectric decrement is, therefore, largely static in origin. This provides a new insight into the ion dependence of the dielectric behavior of these ionic DESs. A good agreement between the simulated and the experimental timescales was also noticed.
Collapse
Affiliation(s)
- Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
8
|
Impact and Structure of Water in Aqueous Octanol Mixtures: Hz-GHz Dielectric Relaxation Measurements and Computer Simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Dinda S, Sil A, Das A, Tarif E, Biswas R. Does urea modify microheterogeneous nature of ionic amide deep eutectics? Clues from non-reactive and reactive solute-centered dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Mukherjee K, Das S, Rajbangshi J, Tarif E, Barman A, Biswas R. Temperature-Dependent Dielectric Relaxation in Ionic Acetamide Deep Eutectics: Partial Viscosity Decoupling and Explanations from the Simulated Single-Particle Reorientation Dynamics and Hydrogen-Bond Fluctuations. J Phys Chem B 2021; 125:12552-12567. [PMID: 34752087 DOI: 10.1021/acs.jpcb.1c07299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here temperature-dependent (293 ≤ T (K) ≤ 336) dielectric relaxation (DR) measurements of (acetamide + LiBr/NO3-/ClO4-) deep eutectic solvents (DESs) in the frequency window of 0.2 ≤ ν (GHz) ≤ 50 and explore, via molecular dynamics simulations, the relative roles for the collective single-particle reorientational relaxations and the H-bond dynamics of acetamide in the measured DR response. In addition, DR measurements of neat molten acetamide were performed. Recorded DR spectra of these DESs require multi-Debye fits and produce well-separated DR time scales that are spread over several picoseconds to ∼1 ns. Simulations suggest DR time scales derive contributions from both the collective reorientational (Cl(t)) relaxation and structural H-bond (CHB(t)) dynamics of acetamide. A good correlation between the measured and simulated activation energies further reveals a strong connection between the measured DR and the simulated Cl(t) and CHB(t). Average DR times exhibit a strong fractional viscosity dependence, suggesting substantial microheterogeneity in these media. Simulations of Cl(t) and CHB(t) reveal strong stretched exponential relaxations with a stretching exponent, 0.4 ≤ β ≤ 0.7. The ratio between the average reorientational correlation times of first and second ranks, ⟨τ⟩l=1/⟨τ⟩l=2, deviates appreciably from Debye's l(l+1) law for homogeneous media. Importantly, a pronounced translation-rotation decoupling between the simulated reorientation and center-of-mass diffusion times was observed.
Collapse
|
11
|
Srinivasan H, Sharma VK, Mitra S. Can the microscopic and macroscopic transport phenomena in deep eutectic solvents be reconciled? Phys Chem Chem Phys 2021; 23:22854-22873. [PMID: 34505589 DOI: 10.1039/d1cp02413b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have become ubiquitous in a variety of industrial and pharmaceutical applications since their discovery. However, the fundamental understanding of their physicochemical properties and their emergence from the microscopic features is still being explored fervently. Particularly, the knowledge of transport mechanisms in DESs is essential to tune their properties, which shall aid in expanding the territory of their applications. This perspective presents the current state of understanding of the bulk/macroscopic transport properties and microscopic relaxation processes in DESs. The dependence of these properties on the components and composition of the DES is explored, highlighting the role of hydrogen bonding (H-bonding) interactions. Modulation of these interactions by water and other additives, and their subsequent effect on the transport mechanisms, is also discussed. Various models (e.g. hole theory, free volume theory, etc.) have been proposed to explain the macroscopic transport phenomena from a microscopic origin. But the formation of H-bond networks and clusters in the DES reveals the insufficiency of these models, and establishes an antecedent for dynamic heterogeneity. Even significantly above the glass transition, the microscopic relaxation processes in DESs are rife with temporal and spatial heterogeneity, which causes a substantial decoupling between the viscosity and microscopic diffusion processes. However, we propose that a thorough understanding of the structural relaxation associated to the H-bond dynamics in DESs will provide the necessary framework to interpret the emergence of bulk transport properties from their microscopic counterparts.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
12
|
Maji D, Indra S, Biswas R. Dielectric relaxations of molten acetamide: dependence on the model interaction potentials and the effects of system size. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Srinivasan H, Sharma VK, Mitra S. Water accelerates the hydrogen-bond dynamics and abates heterogeneity in deep eutectic solvent based on acetamide and lithium perchlorate. J Chem Phys 2021; 155:024505. [PMID: 34266283 DOI: 10.1063/5.0054942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deep eutectic solvents (DESs) have become a prevalent and promising medium in various industrial applications. The addition of water to DESs has attracted a lot of attention as a scheme to modulate their functionalities and improve their physicochemical properties. In this work, we study the effects of water on an acetamide based DES by probing its microscopic structure and dynamics using classical molecular dynamics simulation. It is observed that, at low water content, acetamide still remains the dominant solvate in the first solvation shell of lithium ions, however, beyond 10 wt. %, it is replaced by water. The increase in the water content in the solvent accelerates the H-bond dynamics by drastically decreasing the lifetimes of acetamide-lithium H-bond complexes. Additionally, water-lithium H-bond complexes are also found to form, with systematically longer lifetimes in comparison to acetamide-lithium complexes. Consequently, the diffusivity and ionic conductivity of all the species in the DES are found to increase substantially. Non-Gaussianity parameters for translational motions of acetamide and water in the DES show a conspicuous decrease with addition of water in the system. The signature of jump-like reorientation of acetamide is observed in the DES by quantifying the deviation from rotational Brownian motion. However, a notable decrease in the deviation is observed with an increase in the water content in the DES. This study demonstrates the intricate connection between H-bond dynamics and various microscopic dynamical parameters in the DES, by investigating the modulation of the former with addition of water.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
14
|
Rajbangshi J, Mukherjee K, Biswas R. Heterogeneous Orientational Relaxations and Translation–Rotation Decoupling in (Choline Chloride + Urea) Deep Eutectic Solvents: Investigation through Molecular Dynamics Simulations and Dielectric Relaxation Measurements. J Phys Chem B 2021; 125:5920-5936. [DOI: 10.1021/acs.jpcb.1c01501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Juriti Rajbangshi
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Kallol Mukherjee
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| |
Collapse
|
15
|
Banerjee S, Ghorai PK, Das S, Rajbangshi J, Biswas R. Heterogeneous dynamics, correlated time and length scales in ionic deep eutectics: Anion and temperature dependence. J Chem Phys 2020; 153:234502. [DOI: 10.1063/5.0024355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Suman Das
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
16
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 924] [Impact Index Per Article: 184.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
17
|
Kaur S, Kumari M, Kashyap HK. Microstructure of Deep Eutectic Solvents: Current Understanding and Challenges. J Phys Chem B 2020; 124:10601-10616. [DOI: 10.1021/acs.jpcb.0c07934] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
18
|
Tarif E, Mondal J, Biswas R. How frictional response during solute solvation controls solute rotation in naturally abundant deep eutectic solvent (NADES)? A case study with amino acid derivative containing DES. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Kalhor P, Ghandi K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019; 24:E4012. [PMID: 31698717 PMCID: PMC6891572 DOI: 10.3390/molecules24224012] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is essential to the establishment of a sustainable and biobased economy in the modern world. The latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs); these have shown great promise for various applications and have attracted considerable attention from researchers who seek versatile solvents with pretreatment, extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes. The present work aimed to review the use of DESs and NADESs in the valorization of biomass and biowaste as pretreatment or extraction solvents or catalysis agents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Dubey V, Kumar N, Daschakraborty S. Importance of Solvents’ Translational–Rotational Coupling for Translational Jump of a Small Hydrophobic Solute in Supercooled Water. J Phys Chem B 2018; 122:7569-7583. [DOI: 10.1021/acs.jpcb.8b03177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vikas Dubey
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Nitesh Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | | |
Collapse
|
21
|
Sharma A, Ghorai PK. Effect of alcohols on the structure and dynamics of [BMIM][PF6] ionic liquid: A combined molecular dynamics simulation and Voronoi tessellation investigation. J Chem Phys 2018; 148:204514. [DOI: 10.1063/1.5008439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anirban Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
22
|
Das S, Mukherjee B, Biswas R. Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant? J Chem Phys 2018; 148:193839. [DOI: 10.1063/1.5017797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Suman Das
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Biswaroop Mukherjee
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
23
|
Sharma B, Chandra A. Born-Oppenheimer Molecular Dynamics Simulations of a Bromate Ion in Water Reveal Its Dual Kosmotropic and Chaotropic Behavior. J Phys Chem B 2018; 122:2090-2101. [PMID: 29376361 DOI: 10.1021/acs.jpcb.7b09300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvation structure and dynamics of a bromate (BrO3-) ion in water are studied by means of Born-Oppenheimer molecular dynamics simulations at two different temperatures using the Becke-Lee-Yang-Parr functional with Grimme D3 dispersion corrections. The bromate ion possesses a pyramidal structure, and it has two types of solvation sites, namely, the bromine and oxygen atoms. We have looked at different radial and orientational distributions of water molecules around the bromate ion and also investigated their hydrogen bonding properties. The solvation structure of the bromate ion is also compared with that of the iodate (IO3-) ion, which is structurally rather similar to the bromate ion and was found to have some unusual solvation properties in water. It is found that the bromate ion follows a similar trend as that followed by the iodate ion as far as the solvation structure is concerned. However, the effect of the former on surrounding water is found to be much weaker than that of the latter. On the dynamical side, we have looked at diffusion, residence dynamics, and also the orientational and hydrogen bond relaxation of water molecules around the BrO3- ion and compared them with those of the bulk. Dynamical results are presented for both H2O and D2O around the BrO3- ion. Interpretation of the dynamical results in terms of structure-making (kosmotropic)/-breaking (chaotropic) properties of the BrO3- ion reveals that the bromine atom of this ion acts as a water structure breaker, whereas the three oxygens act as water structure makers. Thus, in spite of being a single ion, the bromate ion has dual characteristics and the experimentally observed kosmotropic ability of this ion is actually a trade-off between a chaotropic site (the bromine atom) and three kosmotropic sites (three oxygen atoms) that are present in the ion.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
24
|
Das S, Mukherjee B, Biswas R. Microstructures and their lifetimes in acetamide/electrolyte deep eutectics: anion dependence. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1263-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Mainberger S, Kindlein M, Bezold F, Elts E, Minceva M, Briesen H. Deep eutectic solvent formation: a structural view using molecular dynamics simulations with classical force fields. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1288936] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sebastian Mainberger
- Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Moritz Kindlein
- Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Franziska Bezold
- Biothermodynamics, Technical University of Munich, Freising, Germany
| | - Ekaterina Elts
- Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Mirjana Minceva
- Biothermodynamics, Technical University of Munich, Freising, Germany
| | - Heiko Briesen
- Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
26
|
Sharma A, Ghorai PK. Structure and Dynamics of Ionic Liquid [MMIM][Br] Confined in Hydrophobic and Hydrophilic Porous Matrices: A Molecular Dynamics Simulation Study. J Phys Chem B 2016; 120:11790-11799. [DOI: 10.1021/acs.jpcb.6b07269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anirban Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
27
|
Das Mahanta D, Patra A, Samanta N, Luong TQ, Mukherjee B, Mitra RK. Non-monotonic dynamics of water in its binary mixture with 1,2-dimethoxy ethane: A combined THz spectroscopic and MD simulation study. J Chem Phys 2016; 145:164501. [DOI: 10.1063/1.4964857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Debasish Das Mahanta
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Animesh Patra
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Nirnay Samanta
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Trung Quan Luong
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Biswaroop Mukherjee
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
28
|
Indra S, Biswas R. How Heterogeneous Are Trehalose/Glycerol Cryoprotectant Mixtures? A Combined Time-Resolved Fluorescence and Computer Simulation Investigation. J Phys Chem B 2016; 120:11214-11228. [PMID: 27723334 DOI: 10.1021/acs.jpcb.6b06511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterogeneity and molecular motions in representative cryoprotectant mixtures made of trehalose and glycerol are investigated in the temperature range 298 ≤ T (K) ≤ 353, via time-resolved fluorescence Stokes shift and anisotropy measurements, and molecular dynamics simulations of four-point density-time correlations and H-bond relaxations. Mixtures containing 5 and 20 wt % of trehalose along with neat glycerol are studied. Viscosity coefficients for these systems lie in the range 0.30 < η (P) < 23. Measured solute (Coumarin 153) rotation and solvation times reveal a substantial departure from the hydrodynamic viscosity dependence, suggesting the strong microheterogeneous nature of these systems. Fluorescence anisotropy decays are highly nonexponential, reflecting a non-Markovian character of the medium friction. A complete missing of the Stokes shift dynamics in these systems at 298 K but partial detection of it at other higher temperatures (shift magnitude being ∼400-600 cm-1) indicates rigid solute environments. An amorphous solid-like feature emerges in the simulated radial distribution functions at these temperatures. Analyses of mean squared displacements reveal rattling-in-a-cage motion, non-Gaussian displacement distributions, and strong dynamic heterogeneity features. Simulated dynamic structure factors and four-point correlations hint, respectively, at very long α-relaxation and correlated time scales at 298 K. This explains the long solute rotation times (∼80-200 ns) measured at 298 K. Stretched exponential decay of the simulated H-bond relaxations with long time scales further highlights the strong temporal heterogeneity and slow dynamics inherent to these systems. In summary, this work provides the first insight into the molecular motions and interspecies interaction in a representative cryoprotectant mixture, and stimulates further study to investigate the interconnection between cryoprotection and dynamic heterogeneity.
Collapse
Affiliation(s)
- Sandipa Indra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| |
Collapse
|