1
|
Zapanta MJ, Chen X, Van de Walle D, Postelmans A, Dewettinck K, Saeys W. Terahertz time-domain transmission spectroscopy of water and hydrogel thin films: Extraction of optical parameters and application to agarose gel characterization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124563. [PMID: 38861828 DOI: 10.1016/j.saa.2024.124563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is an emerging optical technique that has potential applications in the characterization of (bio)materials. However, the complicated extraction of optical parameters from multi-layered and optically thin samples is a barrier towards its acceptance by applied scientists. Therefore, the aim of this work is to provide a straightforward approach for the extraction of the THz absorption coefficient and index of refraction profiles of aqueous thin films in a window-sample-window configuration, which is ubiquitous in many laboratories (i.e., sample in a cuvette). A numerical approach-based methodology that accounts for multiple layers, Fabry-Pérot effect, and sample thickness is elaborated which involves an optical interference model based on a tri-layer structure and a simple thickness estimation technique. This method was validated on water samples where a good agreement was found with the THz optical parameters of water reported in the literature, while the use of a commercial software resulted in erroneous optical parameters estimates when used without due regard to its limitations. A case study was then performed to demonstrate the ability of the proposed method to characterize agarose hydrogels with varying degree of sulfation. It was demonstrated that THz-TDS can provide insight into the hydration state of the agarose hydrogels, including the relative number of the hydrogen bonds between the hydroxyl moieties of water and the polysaccharide network which is perturbed by the presence of sulfate. The trend in the index of refraction profiles suggested microstructural differences between the agarose hydrogels, which were confirmed by visualizing the agarose network morphology using cryo-SEM imaging.
Collapse
Affiliation(s)
- Mark Justine Zapanta
- KU Leuven, Department of Biosystems, MeBioS, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Xuequan Chen
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Davy Van de Walle
- Ghent University, Department of Food Technology, Safety and Health, Food Structure and Function Research Group, Coupure Links 653, 9000 Ghent, Belgium
| | - Annelies Postelmans
- KU Leuven, Department of Biosystems, MeBioS, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Koen Dewettinck
- Ghent University, Department of Food Technology, Safety and Health, Food Structure and Function Research Group, Coupure Links 653, 9000 Ghent, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, MeBioS, Kasteelpark Arenberg 30, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Penkov NV. Peculiarities of the Dynamical Hydration Shell of Native Conformation Protein Using a Bovine Serum Albumin Example. APPLIED SPECTROSCOPY 2024; 78:1051-1061. [PMID: 38881287 DOI: 10.1177/00037028241261097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This paper describes an approach based on the method of terahertz time-domain spectroscopy, which allows the analysis of dynamical hydration shells of proteins with a thickness of 1-2 nm. Using the example of bovine serum albumin in three conformations, it is shown that the hydration shells of the protein are characterized by increased binding of water molecules in the primary hydration layers, and in more distant areas of hydration, on the contrary, the water structure is somewhat destroyed. The fraction of free or weakly bound molecules, usually observed in the structure of liquid water in hydration shells, become more numerous but its average binding is greater than in undisturbed water. The energy distribution of hydrogen bonds in hydration shells is narrowed compared to undisturbed water. All these manifestations of hydration are most pronounced for the native conformation of the protein. Also, the hydration shells of the native protein are characterized by a smaller number of hydrogen bonds and a tendency to decrease their average energy compared to non-native conformations. The fact of a pronounced peculiarity of the hydration shells of the protein in the native conformation has been noted for different proteins before. However, the methodological approach used in this work for the first time allowed this peculiarity to be described by specific parameters of the intermolecular structure and dynamics of water.
Collapse
Affiliation(s)
- Nikita V Penkov
- Institute of Cell Biophysics, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
3
|
Murray A, Kilbride P, Gibson MI. Trehalose in cryopreservation. Applications, mechanisms and intracellular delivery opportunities. RSC Med Chem 2024; 15:2980-2995. [PMID: 39309363 PMCID: PMC11411628 DOI: 10.1039/d4md00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or via selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
- Asymptote, Cytiva Chivers Way Cambridge CB24 9BZ USA
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
4
|
Zhu Z, Mai J, Li T, Sun DW, Zeng Q, Liu X, Wang Z. In-situ investigation of supercooling behaviour during high-pressure shift freezing of pure water and sucrose solution. Food Chem 2024; 447:138980. [PMID: 38564849 DOI: 10.1016/j.foodchem.2024.138980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Supercooling is a main controllable factor for the fundamental understanding the high-pressure shift freezing (HPSF). In the study, a self-developed device based on the diamond anvil cell (DAC) and confocal Raman microscopy was utilized to realize an in-situ investigation of supercooling behaviour during HPSF of the pure water and sucrose solution. The spectra were used to determine the freezing point which is shown as a spectral phase marker (SD). The hydrogen bond strengths of water and sucrose solution under supercooling states were estimated by peak position and peak area ratio of sub-peaks. The results showed that the OH stretching bands had redshift under supercooling states. Moreover, the addition of sucrose molecules could strengthen the hydrogen bonding strength of water molecules under supercooling states. Thus, the DAC combined with Raman spectroscopy could be considered a novel strategy for a deep understanding of the supercooling behaviour during HPSF.
Collapse
Affiliation(s)
- Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jiayu Mai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | | | | | - Zhe Wang
- Hefei Hualing Co., Ltd, Hefei 230000, China
| |
Collapse
|
5
|
Penkov NV. Water determines the intramolecular dynamics of proteins. En example of bovine serum albumin. Front Chem 2024; 12:1444448. [PMID: 39119519 PMCID: PMC11306983 DOI: 10.3389/fchem.2024.1444448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
In this work, the terahertz time-domain spectroscopy method analyzed solutions of bovine serum albumin (BSA) in two high concentrations (50 and 334 mg/mL) at three pH values (2.5, 6.5, 8.5) and the same solvents without protein, at 25°C. The spectra of dry BSA were also recorded. For the first time, a method for determining the complex dielectric permittivity of protein molecules in aqueous solutions, without the dielectric contribution of the aqueous phase, is proposed. It is shown that the dielectric permittivity of dissolved and dry BSA (lyophilized, in the native conformation) differ significantly in the terahertz frequency range. These differences are small near 70 cm-1, but they increase greatly with decreasing frequency. It was found that the dielectric losses of protein molecules in solution are close to the dielectric losses of the aqueous environment, which in this frequency range are determined by intermolecular relaxation processes of water. Since dielectric losses are directly related to molecular dynamics, this fact shows that the intramolecular dynamics of the protein completely adjusts to the intermolecular dynamics of the aqueous environment. It also indicates that the native conformation does not determine all the fundamental characteristics of a protein molecule, in particular, it does not determine the dynamics of the protein, which significantly depends on the water environment.
Collapse
Affiliation(s)
- Nikita V. Penkov
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| |
Collapse
|
6
|
Wang W, Wang Y, Lü J, Li X. Terahertz Spectroscopic Insight into the Hydrogelation of Copper Ion-Coordinated Poly(vinyl alcohol). Gels 2024; 10:324. [PMID: 38786241 PMCID: PMC11121422 DOI: 10.3390/gels10050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Metal-coordinated hydrogels are becoming increasingly popular in the biomedical field due to their unique properties. However, the mechanism behind gel forming involving metal ions is not yet fully understood. In this work, terahertz spectroscopy was used to investigate the role of interfacial water in the gelation process of copper ion-coordinated poly(vinyl alcohol) hydrogels. The results showed that the binding of copper ions could alter the interfacial hydration dynamics of the poly(vinyl alcohol) polymers. Combined with the results of differential scanning calorimetry (DSC), we propose a possible hydration layer-mediated mechanism for the formation of cooper ion-coordinated hydrogel during the freeze-thaw cycle. These results highlight the value of terahertz spectroscopy as a sensor for studying the hydration process in hydrogels and provide an important clue for understanding the mechanism of hydrogelation in ion-coordinated hydrogels.
Collapse
Affiliation(s)
- Wenjing Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China (J.L.)
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadi Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China (J.L.)
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xueling Li
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| |
Collapse
|
7
|
Penkov NV. Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules. Biophys Rev 2023; 15:833-849. [PMID: 37974994 PMCID: PMC10643733 DOI: 10.1007/s12551-023-01131-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
The hydration of biomolecules is one of the fundamental processes underlying the construction of living matter. The formation of the native conformation of most biomolecules is possible only in an aqueous environment. At the same time, not only water affects the structure of biomolecules, but also biomolecules affect the structure of water, forming hydration shells. However, the study of the structure of biomolecules is given much more attention than their hydration shells. A real breakthrough in the study of hydration occurred with the development of the THz spectroscopy method, which showed that the hydration shell of biomolecules is not limited to 1-2 layers of strongly bound water, but also includes more distant areas of hydration with altered molecular dynamics. This review examines the fundamental features of the THz frequency range as a source of information about the structural and dynamic characteristics of water that change during hydration. The applied approaches to the study of hydration shells of biomolecules based on THz spectroscopy are described. The data on the hydration of biomolecules of all main types obtained from the beginning of the application of THz spectroscopy to the present are summarized. The emphasis is placed on the possible participation of extended hydration shells in the realization of the biological functions of biomolecules and at the same time on the insufficient knowledge of their structural and dynamic characteristics.
Collapse
Affiliation(s)
- Nikita V. Penkov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics RAS, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Matsuura H, Takano K, Shirakashi R. Slow water dynamics in dehydrated human Jurkat T cells evaluated by dielectric spectroscopy with the Bruggeman-Hanai equation. RSC Adv 2023; 13:20934-20940. [PMID: 37441032 PMCID: PMC10334875 DOI: 10.1039/d3ra02892e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The picosecond orientational dynamics of intracellular water was measured by dielectric spectroscopy, with the aim of revealing the effects of cryoprotective agents (CPAs) on biological cells. As a first step, Jurkat cells (human T lymphocyte cells) suspended in aqueous sucrose solutions of different concentrations ranging from 0.3 M (isotonic) to 0.9 M (hypertonic) were examined at 25 °C with a frequency range up to 43.5 GHz. The Bruggeman-Hanai equation was employed to obtain a cellular dielectric spectrum without extracellular contributions from the measured complex permittivity of the cell suspensions. By analyzing the γ process around 1010 Hz based on the Debye relaxation function, two types of water (bulk-like water and hydration water with slower molecular dynamics) were observed. An increase in the fraction of intracellular slower water was observed in the dehydrated cells which had a highly concentrated environment of biomolecules.
Collapse
Affiliation(s)
- Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
- Research Fellow of the Japan Society for the Promotion of Science Chiyoda Tokyo 102-0083 Japan
| | - Kiyoshi Takano
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| |
Collapse
|
9
|
Zhang J, Matsuura H, Shirakashi R. A method for measuring dielectric relaxation of water by
NIR
spectroscopy: Applicability and application to measurement of water diffusion coefficient. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Junkai Zhang
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba, Meguro City Tokyo 153‐8505 Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba, Meguro City Tokyo 153‐8505 Japan
| | - Ryo Shirakashi
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba, Meguro City Tokyo 153‐8505 Japan
| |
Collapse
|
10
|
Hu K, Shirakashi R. Molecular dynamics study of water rotational relaxation in saccharide solution for the development of bioprotective agent. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Edible Oleogels Fabricated by Dispersing Cellulose Particles in Oil Phase: Effects from the Water Addition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhang J, Yan Y, Wang B, Liu L, Li S, Tian Z, Ouyang C, Gu J, Zhang X, Chen Y, Han J, Zhang W. Water dynamics in the hydration shell of hyper-branched poly-ethylenimine. Phys Chem Chem Phys 2022; 24:18393-18400. [PMID: 35880732 DOI: 10.1039/d2cp01944b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We performed THz and GHz dielectric relaxation spectroscopy to investigate the reorientational dynamics of water molecules in the hydration shell of amphiphilic hyper-branched poly-ethylenimine (HPEI). Four Debye equations were employed to describe four types of water in the hydration shell, including bulk-like water, under-coordinated water, slow water (water molecules hydrating the hydrophobic groups and water molecules accepting hydrogen bonds from the NH2 groups) and super slow water (water molecules donating hydrogen bonds to and accepting hydrogen bonds from NH groups). The time scales of undercoordinated and bulk-like water show a slight decline from 0.4 to 0.1 ps and from 8 to 2 ps, respectively. Because of hydrophilic amino groups, HPEI molecules exhibit a strong retardation effect, where the time scales of slow and super slow water increase with concentration from 17 to 39.9 ps and from 88 to 225 ps, respectively.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Yuyue Yan
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300072, People's Republic of China
| | - Liyuan Liu
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Shaoxian Li
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Zhen Tian
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Chunmei Ouyang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Jianqiang Gu
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Xueqian Zhang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300354, China
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, People's Republic of China.
| | - Weili Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
13
|
Abstract
In this study, we examine the spectral dielectric properties of liquid water in charged nanopores over a wide range of frequencies (0.3 GHz to 30 THz) and pore widths (0.3 to 5 nm). This has been achieved using classical molecular dynamics simulations of hydrated Na-smectite, the prototypical swelling clay mineral. We observe a drastic (20-fold) and anisotropic decrease in the static relative permittivity of the system as the pore width decreases. This large decrement in static permittivity reflects a strong attenuation of the main Debye relaxation mode of liquid water. Remarkably, this strong attenuation entails very little change in the time scale of the collective relaxation. Our results indicate that water confined in charged nanopores is a distinct solvent with a much weaker collective nature than bulk liquid water, in agreement with recent observations of water in uncharged nanopores. Finally, we observe remarkable agreement between the dielectric properties of the simulated clay system against a compiled set of soil samples at various volumetric water contents. This implies that saturation may not be the sole property dictating the dielectric properties of soil samples, rather that the pore-size distribution of fully saturated nanopores may also play a critically important role.
Collapse
Affiliation(s)
- Thomas R Underwood
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.,High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Tominaga T, Hishida M, Murakami D, Fujii Y, Tanaka M, Seto H. Experimental Evidence of Slow Mode Water in the Vicinity of Poly(ethylene oxide) at Physiological Temperature. J Phys Chem B 2022; 126:1758-1767. [PMID: 35193352 DOI: 10.1021/acs.jpcb.1c09044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In some synthetic polymers used for medical applications, hydration water in the vicinity of the polymer chains is known to play an important role in biocompatibility and is referred to as intermediate water. The crystallization of water below 0 °C observed during thermal analysis has been considered as evidence of the presence of intermediate water. However, the origin and physicochemical properties of intermediate water have not yet been elucidated. In this study, as a typical biocompatible polymer, poly(ethylene oxide) and its hydration water were investigated with the use of terahertz time-domain spectroscopy and quasi-elastic neutron scattering. The obtained results prove the existence of a significant amount of mobile water that interacts with the polymer chains even when the water content is low at physiological temperatures.
Collapse
Affiliation(s)
- Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai 319-1106, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihisa Fujii
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hideki Seto
- Institute of Materials Structure Science/J-PARC Center, High Energy Accelerator Research Organization, Tokai 319-1195, Japan
| |
Collapse
|
15
|
Hu J, Liao Z, Yano Y, Yamahara H, Tabata H. Broadband Dielectric Spectroscopic Analysis toward Characterization of the Hydration State and Bioprotective Superiority of Trehalose. J Phys Chem B 2022; 126:708-715. [PMID: 35040322 DOI: 10.1021/acs.jpcb.1c09941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alteration of the hydrogen-bond (H-bond) network by trehalose is acknowledged as a bioprotective agent. However, most studies exploring the hydration superiority of the trehalose structure are limited structure are limited by the computational cost or a narrow-range spectrum. In the present study, the structural and dynamical behaviors of the H-bond network of trehalose and maltose solutions were observed and compared with a broadband dielectric spectrum (100 MHz-18 THz) to investigate the influence of the trehalose structure on the bioprotective function. From the relaxation time, the reorientation cooperativity, resonant frequency, and damping constant of water-water vibration, the symmetric structure of trehalose allowed a more significant H-bond strengthening effect and homogeneous aqueous environment. In contrast, the difference in the hydration number between trehalose and maltose was negligible. Thus, the enhanced H-bond strengthening effect and homogeneous aqueous environment owing to the symmetric structure are the essential factors that contribute to the remarkable bioprotective effect of trehalose.
Collapse
Affiliation(s)
- Junru Hu
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhiqiang Liao
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuo Yano
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyasu Yamahara
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
Gao S, Zhu K, Zhang Q, Niu Q, Chong J, Ren L, Yuan X. Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes. Biomacromolecules 2021; 23:530-542. [PMID: 34965723 DOI: 10.1021/acs.biomac.1c01372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ice formation and recrystallization exert severe impairments to cellular cryopreservation. In light of cell-damaging washing procedures in the current glycerol approach, many researches have been devoted to the development of biocompatible cryoprotectants for optimal bioprotection of human erythrocytes. Herein, we develop a novel ACTIVE glycopeptide of saccharide-grafted ε-poly(L-lysine), that can be credited with adsorption on membrane surfaces, cryopreservation with trehalose, and icephilicity for validity of human erythrocytes. Then, by Borch reductive amination or amidation, glucose, lactose, maltose, maltotriose, or trehalose was tethered to ε-polylysine. The synthesized ACTIVE glycopeptides with intrinsic icephilicity could localize on the membrane surface of human erythrocytes and improve cryopreservation with trehalose, so that remarkable post-thaw cryosurvival of human erythrocytes was achieved with a slight variation in cell morphology and functions. Human erythrocytes (∼50% hematocrit) in cryostores could maintain high cryosurvival above 74%, even after plunged in liquid nitrogen for 6 months. Analyses of differential scanning calorimetry, Raman spectroscopy, and dynamic ice shaping suggested that this cryopreservation protocol combined with the ACTIVE glycopeptide and trehalose could enhance the hydrogen bond network in nonfrozen solutions, resulting in inhibition of recrystallization and growth of ice. Therefore, the ACTIVE glycopeptide can be applied as a trehalose-associated "chaperone", providing a new way to serve as a candidate in glycerol-free human erythrocyte cryopreservation.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Qifa Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Conformational Consequences for Compatible Osmolytes on Thermal Denaturation. Life (Basel) 2021; 11:life11121394. [PMID: 34947925 PMCID: PMC8708791 DOI: 10.3390/life11121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Compatible osmolytes are a broad class of small organic molecules employed by living systems to combat environmental stress by enhancing the native protein structure. The molecular features that make for a superior biopreservation remain elusive. Through the use of time-resolved and steady-state spectroscopic techniques, in combination with molecular simulation, insight into what makes one molecule a more effective compatible osmolyte can be gained. Disaccharides differing only in their glycosidic bonds can exhibit different degrees of stabilization against thermal denaturation. The degree to which each sugar is preferentially excluded may explain these differences. The present work examines the biopreservation and hydration of trehalose, maltose, and gentiobiose.
Collapse
|
18
|
Relationships between Molecular Structure of Carbohydrates and Their Dynamic Hydration Shells Revealed by Terahertz Time-Domain Spectroscopy. Int J Mol Sci 2021; 22:ijms222111969. [PMID: 34769399 PMCID: PMC8584907 DOI: 10.3390/ijms222111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Despite more than a century of research on the hydration of biomolecules, the hydration of carbohydrates is insufficiently studied. An approach to studying dynamic hydration shells of carbohydrates in aqueous solutions based on terahertz time-domain spectroscopy assay is developed in the current work. Monosaccharides (glucose, galactose, galacturonic acid) and polysaccharides (dextran, amylopectin, polygalacturonic acid) solutions were studied. The contribution of the dissolved carbohydrates was subtracted from the measured dielectric permittivities of aqueous solutions based on the corresponding effective medium models. The obtained dielectric permittivities of the water phase were used to calculate the parameters describing intermolecular relaxation and oscillatory processes in water. It is established that all of the analyzed carbohydrates lead to the increase of the binding degree of water. Hydration shells of monosaccharides are characterized by elevated numbers of hydrogen bonds and their mean energies compared to undisturbed water, as well as by elevated numbers and the lifetime of free water molecules. The axial orientation of the OH(4) group of sugar facilitates a wider distribution of hydrogen bond energies in hydration shells compared to equatorial orientation. The presence of the carboxylic group affects water structure significantly. The hydration of polysaccharides is less apparent than that of monosaccharides, and it depends on the type of glycosidic bonds.
Collapse
|
19
|
Li D, Zhu Z, Sun DW. Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117498] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Konnikova MR, Cherkasova OP, Nazarov MM, Vrazhnov DA, Kistenev YV, Titov SE, Kopeikina EV, Shevchenko SP, Shkurinov AP. Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:1020-1035. [PMID: 33680557 PMCID: PMC7901318 DOI: 10.1364/boe.412715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 05/04/2023]
Abstract
The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated.
Collapse
Affiliation(s)
- Maria R. Konnikova
- Institute for Problems of Laser and Information Technologies of the Russian Academy of Sciences, Branch of Federal Scientific Research Center, “Crystallography and Photonics” of the RAS, Shatura 140700, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Olga P. Cherkasova
- Institute for Problems of Laser and Information Technologies of the Russian Academy of Sciences, Branch of Federal Scientific Research Center, “Crystallography and Photonics” of the RAS, Shatura 140700, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maxim M. Nazarov
- National Research Centre Kurchatov Institute, Moscow, 123182, Russia
| | - Denis A. Vrazhnov
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, 634055, Russia
| | - Yuri V. Kistenev
- Tomsk State University, Tomsk, 634050, Russia
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Sergei E. Titov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | | | - Alexander P. Shkurinov
- Institute for Problems of Laser and Information Technologies of the Russian Academy of Sciences, Branch of Federal Scientific Research Center, “Crystallography and Photonics” of the RAS, Shatura 140700, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
21
|
Kageyama Kaneshima A, Motoyama A, Takayama M. Influence of hydrophilic additives on the signal intensity in electrospray ionization of flavonoid glycosides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8914. [PMID: 32761969 DOI: 10.1002/rcm.8914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The influence of hydrophilic additives glycine, glucose, and glycerol on electrospray ionization (ESI) signal intensity of flavonoid glycosides and a nonreducing disaccharide is examined. The addition of excess glycine to the ESI solution would affect signal intensity more than glucose and glycerol due to its strong hydration capability. METHODS The ESI signal response upon the addition of excess additives prepared was estimated in both selected ion monitoring and scan mode. All the mass spectrometry data were acquired in negative ion mode, because negative ion mode is recommended for saccharide compounds. RESULTS The addition of glycine to the ESI solution of flavonoid glycosides and trehalose enhanced signal intensity, whereas the addition of glucose and glycerol had little effect. The signal intensity of rutin was higher than that of naringin and hesperidin, in accordance with their solubility in ESI solution. Trehalose molecules specifically interacted with glycine molecules to form a 1:1 trehalose-glycine complex, whereas the flavonoid glycosides did not produce such complex ions. CONCLUSIONS The ESI signal enhancement of the saccharides with the additive glycine can be explained by its strong hydration capability, with the deprotonated carboxylic oxygens of zwitterionic glycine molecules strongly interacting with water hydrogen atoms resulting in strong hydration enthalpy. Consequently, glycine molecules set the analytes free from solvation with water molecules in the ESI droplets.
Collapse
Affiliation(s)
- Ami Kageyama Kaneshima
- Mass Spectrometry Laboratory, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Akira Motoyama
- Mass Spectrometry Laboratory, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Mitsuo Takayama
- Mass Spectrometry Laboratory, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
22
|
Liu Y, Zhao K, Ma Q. Insight into the glucose cosolvent induced gelation of κ-carrageenan by broadband dielectric spectroscopy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Arai K, Shikata T. Hydration/Dehydration Behavior of Hydroxyethyl Cellulose Ether in Aqueous Solution. Molecules 2020; 25:molecules25204726. [PMID: 33076298 PMCID: PMC7587591 DOI: 10.3390/molecules25204726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/03/2022] Open
Abstract
Hydroxyethyl cellulose (HeC) maintains high water solubility over a wide temperature range even in a high temperature region where other nonionic chemically modified cellulose ethers, such as methyl cellulose (MC) and hydroxypropylmethyl cellulose (HpMC), demonstrate cloud points. In order to clarify the reason for the high solubility of HeC, the temperature dependence of the hydration number per glucopyranose unit, nH, for the HeC samples was examined by using extremely high frequency dielectric spectrum measuring techniques up to 50 GHz over a temperature range from 10 to 70 °C. HeC samples with a molar substitution number (MS) per glucopyranose unit by hydroxyethyl groups ranging from 1.3 to 3.6 were examined in this study. All HeC samples dissolve into water over the examined temperature range and did not show their cloud points. The value of nH for the HeC sample possessing the MS of 1.3 was 14 at 20 °C and decreased gently with increasing temperature and declined to 10 at 70 °C. The nH values of the HeC samples are substantially larger than the minimum critical nH value of ca. 5 necessary to be dissolved into water for cellulose ethers such as MC and HpMC, even in a high temperature range. Then, the HeC molecules possess water solubility over the wide temperature range. The temperature dependence of nH for the HeC samples and triethyleneglycol, which is a model compound for substitution groups of HeC, is gentle and they are similar to each other. This observation strongly suggests that the hydration/dehydration behavior of the HeC samples was essentially controlled by that of their substitution groups.
Collapse
Affiliation(s)
- Kengo Arai
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Toshiyuki Shikata
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Correspondence:
| |
Collapse
|
24
|
Shiraga K, Urabe M, Matsui T, Kikuchi S, Ogawa Y. Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor. Phys Chem Chem Phys 2020; 22:19468-19479. [PMID: 32761010 DOI: 10.1039/d0cp02265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological functions of proteins depend on harmonization with hydration water surrounding them. Indeed, the dynamical transition of proteins, such as thermal denaturation, is dependent on the changes in the mobility of hydration water. However, the role of hydration water during dynamical transition is yet to be fully understood due to technical limitations in precisely characterizing the amount of hydration water. A state-of-the-art CMOS dielectric sensor consisting of 65 GHz LC resonators addressed this issue by utilizing the feature that oscillation frequency sensitively shifts in response to the complex dielectric constant at 65 GHz with extremely high precision. This study aimed to establish an analytical algorithm to derive the hydration number from the measured frequency shift and to demonstrate the transition of hydration number upon the thermal denaturation of human serum albumin. The determined hydration number in the native state drew a "global" hydration picture beyond the first solvation shell, with substantially reduced uncertainty of the hydration number (about ±1%). This allowed the detection of a rapid increase in the hydration number at about 55 °C during the heating process, which was in excellent phase with the irreversible rupture of the α-helical structure into solvent-exposed extended chains, whereas the hydration number did not trace the forward path in the subsequent cooling process. Our result indicates that the weakening of water hydrogen bonds trigger the unfolding of the protein structure first, followed by the changes in the number of hydration water as a consequence of thermal denaturation.
Collapse
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | |
Collapse
|
25
|
Brender JR, Kishimoto S, Eaton GR, Eaton SS, Saida Y, Mitchell J, Krishna MC. Trehalose as an alternative to glycerol as a glassing agent for in vivo DNP MRI. Magn Reson Med 2020; 85:42-48. [PMID: 32697878 DOI: 10.1002/mrm.28405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE In dynamic nuclear polarization (DNP), the solution needs to form a glass to attain significant levels of polarization in reasonable time periods. Molecules that do not form glasses by themselves are often mixed with glass forming excipients. Although glassing agents are often essential in DNP studies, they have the potential to perturb the metabolic measurements that are being studied. Glycerol, the glassing agent of choice for in vivo DNP studies, is effective in reducing ice crystal formation during freezing, but is rapidly metabolized, potentially altering the redox and adenosine triphosphate balance of the system. METHODS DNP buildup curves of 13 C urea and alanine with OX063 in the presence of trehalose, glycerol, and other polyol excipients were measured as a function of concentration. T1 and Tm relaxation times for OX063 in the presence of trehalose were measured by EPR. RESULTS Approximately 15-20 wt% trehalose gives a glass that polarizes samples more rapidly than the commonly used 60%-wt formulation of glycerol and yields similar polarization levels within clinically relevant timeframes. CONCLUSIONS Trehalose may be an attractive biologically inert alternative to glycerol for situations where there may be concerns about glycerol's glucogenic potential and possible alteration of the adenosine triphosphate/adenosine diphosphate and redox balance.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gareth R Eaton
- Department of Chemistry & Biochemistry, University of Denver, Denver, CO, USA
| | - Sandra S Eaton
- Department of Chemistry & Biochemistry, University of Denver, Denver, CO, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Abstract
The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
Collapse
|
27
|
Hirai M, Ajito S, Iwasa T, Wen D, Igarashi N, Shimizu N. Short-Distance Intermolecular Correlations of Mono- and Disaccharides in Condensed Solutions: Bulky Character of Trehalose. ACS OMEGA 2020; 5:10815-10825. [PMID: 32455202 PMCID: PMC7240834 DOI: 10.1021/acsomega.0c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organisms with tolerance to extreme environmental conditions (cryptobiosis) such as desiccation and freezing are known to accumulate stress proteins and/or sugars. Trehalose, a disaccharide, has received considerable attention in the context of cryptobiosis. It has already been shown to have the highest glass-transition temperature and different hydration properties from other mono- and disaccharides. In spite of the importance of understanding cryptobiosis by experimentally clarifying sugar-sugar interactions such as the clustering in concentrated sugar solutions, there is little direct experimental evidence of sugar solution structures formed by intermolecular interactions and/or correlation. Using a wide-angle X-ray scattering method with the real-space resolution from ∼3 to 120 Å, we clarified the characteristics of the structures of sugar solutions (glucose, fructose, mannose, sucrose, and trehalose), over a wide concentration range of 0.05-0.65 g/mL. At low concentrations, the second virial coefficients obtained indicated the repulsive intermolecular interactions for all sugars and also the differences among them depending on the type of sugar. In spite of the presence of such repulsive force, a short-range intermolecular correlation was found to appear at high concentrations for every sugar. The concentration dependence of the observed scattering data and p(r) functions clearly showed that trehalose prefers a more disordered arrangement in solution compared to other sugars, that is, bulky arrangement. The present findings will afford a new insight into the molecular mechanism of the protective functions of the sugars relevant to cryptobiosis, particularly that of trehalose.
Collapse
Affiliation(s)
- Mitsuhiro Hirai
- Graduate
School of Science and Technology, Gunma
University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Satoshi Ajito
- Graduate
School of Science and Technology, Gunma
University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuo Iwasa
- Course
of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Durige Wen
- Course
of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Noriyuki Igarashi
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
28
|
Abstract
![]()
The
two sugar molecules sucrose and trehalose are both considered
as stabilizing molecules for the purpose of preserving biological
materials during, for example, lyophilization or cryo-preservation.
Although these molecules share a similar molecular structure, there
are several important differences in their properties when they interact
with water, such as differences in solubility, viscosity, and glass
transition temperature. In general, trehalose has been shown to be
more efficient than other sugar molecules in preserving different
biological molecules against stress, and thus by investigating how
these two disaccharides differ in their water interaction, it is possible
to further understand what makes trehalose special in its stabilizing
properties. For this purpose, the structure of aqueous solutions of
these disaccharides was studied by using neutron and X-ray diffraction
in combination with empirical potential structure refinement (EPSR)
modeling. The results show that there are surprisingly few differences
in the overall structure of the solutions, although there are indications
for that trehalose perturbs the water structure slightly more than
sucrose.
Collapse
Affiliation(s)
- Christoffer Olsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
29
|
Zhang J, Wu X, Liu L, Huang C, Chen X, Tian Z, Ouyang C, Gu J, Zhang X, He M, Han J, Luo X, Zhang W. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. OPTICS EXPRESS 2019; 27:25595-25602. [PMID: 31510429 DOI: 10.1364/oe.27.025595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The absorption region of a water-based absorber was expanded by introducing tetramethylurea (TMU) into the inclusion, whose dielectric properties are tunable through the concentration of TMU. The dielectric spectroscopy of a TMU/water mixture was deconstructed using a Debye model. We designed a four-layer ultra-broadband microwave absorber with a supernatant micro-structure. Simulation and experiment results indicate that the absorber can achieve 90% perfect absorption, covering a broad frequency range of 4-40 GHz. The concentration dependence of the absorber was also studied experimentally and numerically. The concentration control provides a more practical and large frequency-region modulation of perfect absorption.
Collapse
|
30
|
Morales-Hernández JA, Singh AK, Villanueva-Rodriguez SJ, Castro-Camus E. Hydration shells of carbohydrate polymers studied by calorimetry and terahertz spectroscopy. Food Chem 2019; 291:94-100. [DOI: 10.1016/j.foodchem.2019.03.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/15/2022]
|
31
|
Rodríguez-Salazar N, Valle-Guadarrama S. Separation of phenolic compounds from roselle (Hibiscus sabdariffa) calyces with aqueous two-phase extraction based on sodium citrate and polyethylene glycol or acetone. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1634730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Yu G, Li R, Hubel A. Interfacial Interactions of Sucrose during Cryopreservation Detected by Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7388-7395. [PMID: 30398347 PMCID: PMC8023323 DOI: 10.1021/acs.langmuir.8b01616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is considerable interest in the use of sugars to preserve cells. In this study, low temperature Raman spectroscopy was used to characterize the behaviors of sucrose during freezing. The hydrogen bond network between sucrose and water was investigated at -10 °C and -50 °C, and the Raman spectra showed strengthened sucrose-water and sucrose-sucrose hydrogen bonds in more concentrated sucrose solution at -50 °C. The concentration of sucrose at the ice interface increased as the ice density decreased, and it plateaued across a narrow channel of nonfrozen sucrose solution before it decreased toward the next ice interface. The biophysical environment at interfaces between the cell and nonfrozen sucrose solution and between the cell and extracellular ice was also studied. A thin layer of nonfrozen sucrose solution was observed at the interface between the cell and extracellular ice. The extracellular concentration of sucrose at this interface was generally lower than that of bulk nonfrozen sucrose solution. The variation of sucrose concentration outside different regions of the cell membrane suggests that the chemical environment around the cell during freezing may be more heterogeneous than previously thought. Raman spectra and images also showed colocalization of nonfrozen sucrose solution and the cell, which implied that direct interaction between sucrose and cell membrane might be responsible for protective properties of sucrose. Sucrose was predominantly distributed outside the cell, and the observation of strong partitioning of sucrose across the cell membrane is consistent with substantial cell dehydration detected by the Raman spectra. This work enhances our understanding of the behaviors of sucrose solution and its interactions with cells at low temperature and can improve cryopreservation protocols of cells frozen in a sucrose-based media.
Collapse
Affiliation(s)
- Guanglin Yu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Allison Hubel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Heid E, Honegger P, Braun D, Szabadi A, Stankovic T, Steinhauser O, Schröder C. Computational spectroscopy of trehalose, sucrose, maltose, and glucose: A comprehensive study of TDSS, NQR, NOE, and DRS. J Chem Phys 2019; 150:175102. [DOI: 10.1063/1.5095058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Esther Heid
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Daniel Braun
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - András Szabadi
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Toda Stankovic
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Othmar Steinhauser
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Zhang J, Liu L, Chen Y, Wang B, Ouyang C, Tian Z, Gu J, Zhang X, He M, Han J, Zhang W. Water Dynamics in the Hydration Shell of Amphiphilic Macromolecules. J Phys Chem B 2019; 123:2971-2977. [DOI: 10.1021/acs.jpcb.9b02040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaqi Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Liyuan Liu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300354, China
| | - Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Chunmei Ouyang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Zhen Tian
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jianqiang Gu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xueqian Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Mingxia He
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Weili Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
35
|
AJITO S, HIRAI M. Recovery Effects of Trehalose on Acid Denaturation/Aggregation of Proteins. BUNSEKI KAGAKU 2019. [DOI: 10.2116/bunsekikagaku.68.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Satoshi AJITO
- Graduate School of Science and Technology, Gunma University
| | | |
Collapse
|
36
|
Arai K, Shikata T. Molecular motions, structure and hydration behaviour of glucose oligomers in aqueous solution. Phys Chem Chem Phys 2019; 21:25379-25388. [DOI: 10.1039/c9cp05214c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of helical fragment configurations is confirmed for glucose oligomers in aqueous solution at temperatures lower than 40 °C.
Collapse
Affiliation(s)
- Kengo Arai
- Department of Symbiotic Science of Environment and Natural Resources
- The United Graduate School of Agricultural Science
- Tokyo University of Agriculture and Technology
- Tokyo 183-8509
- Japan
| | - Toshiyuki Shikata
- Department of Symbiotic Science of Environment and Natural Resources
- The United Graduate School of Agricultural Science
- Tokyo University of Agriculture and Technology
- Tokyo 183-8509
- Japan
| |
Collapse
|
37
|
Liu B, Zhang Q, Zhao Y, Ren L, Yuan X. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. J Mater Chem B 2019; 7:5695-5703. [DOI: 10.1039/c9tb01089k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine- and trehalose-modified ε-polylysine (ε-PL) demonstrated a high synergistic function with trehalose for RBC cryopreservation.
Collapse
Affiliation(s)
- Bo Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Qifa Zhang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
38
|
Płowaś-Korus I, Buchner R. Structure, molecular dynamics, and interactions in aqueous xylitol solutions. Phys Chem Chem Phys 2019; 21:24061-24069. [DOI: 10.1039/c9cp04547c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broad-band dielectric relaxation studies of xylitol-water mixture show distinctly different dynamics for distal and central –OH of xylitol molecules and indicates the presence of loose xylitol aggregates.
Collapse
Affiliation(s)
- Iwona Płowaś-Korus
- Institute of Molecular Physics
- Polish Academy of Sciences
- 60-179 Poznań
- Poland
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
39
|
Pi CH, Yu G, Petersen A, Hubel A. Characterizing the "sweet spot" for the preservation of a T-cell line using osmolytes. Sci Rep 2018; 8:16223. [PMID: 30385865 PMCID: PMC6212455 DOI: 10.1038/s41598-018-34638-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
This study examined the post-thaw recovery of Jurkat cells cryopreserved in single osmolyte solutions containing sucrose, glycerol or isoleucine, as well as in a combination of the three osmolytes. Cell response was determined using low temperature Raman Spectroscopy and variation in post-thaw recovery with composition was analyzed using statistical modeling. Post-thaw recovery of Jurkat cells in single osmolyte was low. A combination of the osmolytes displayed a non-linear relationship between composition and post-thaw recovery, suggesting that interactions exist between the different solutes. The post-thaw recovery for an optimized multicomponent solution was comparable to that observed using 10% dimethyl sulfoxide and a cooling rate of 1 °C/min. Statistical modeling was used to characterize the importance of each osmolyte in the combination and test for interactions between osmolytes. Higher concentrations of glycerol increase post-thaw recovery and interactions between sucrose and glycerol, as well as sucrose and isoleucine improve post-thaw recovery. Raman images clearly demonstrated that damaging intracellular ice formation was observed more often in the presence of single osmolytes as well as non-optimized multi-component solution compositions.
Collapse
Affiliation(s)
- Chia-Hsing Pi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, USA
| | - Ashley Petersen
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, USA.
| |
Collapse
|
40
|
Hinrikus H, Bachmann M, Lass J. Understanding physical mechanism of low-level microwave radiation effect. Int J Radiat Biol 2018; 94:877-882. [PMID: 29775391 DOI: 10.1080/09553002.2018.1478158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE This topic review aims to explain the mechanism of low-level microwave (MW) radiation effect based on published research results. The review presents the analysis of theoretical and experimental results comprising underlying physics and derived biological-physiological consequences supported by experimental data. CONCLUSIONS The rotation of dipolar molecules causes polarization of dielectric medium and restructuring of hydrogen bonds between these molecules. The weakened hydrogen bonds decrease viscosity and enhance diffusion at constant temperature. All steps of proposed model have no critical frequency restrictions at MW frequencies and have been confirmed by electromagnetic field (EMF) theory and/or published experimental results. The synchronous cumulative impact of coherent MW electric field makes possible the field-induced effect despite the field strengths are much weaker than intermolecular fields. The rotation of dipolar molecules results in restructuring hydrogen bonds between the molecules despite the energy of MW radiation is much less than the energy of bonding. The cumulative impact of coherent MW field in a medium has been convincingly confirmed by the measurable dielectric permittivity of the medium. The described mechanism of MW field-induced effect confirms that the nature of the effect differs from the thermal effect and that the exposure by MW radiation can create the specific consequences in biology and materials not characteristic for conventional heating.
Collapse
Affiliation(s)
- Hiie Hinrikus
- a Department of Health Technologies, Centre for Biomedical Engineering , Tallinn University of Technology , Tallinn , Estonia
| | - Maie Bachmann
- a Department of Health Technologies, Centre for Biomedical Engineering , Tallinn University of Technology , Tallinn , Estonia
| | - Jaanus Lass
- a Department of Health Technologies, Centre for Biomedical Engineering , Tallinn University of Technology , Tallinn , Estonia
| |
Collapse
|
41
|
Hernández-Meza JM, Sampedro JG. Trehalose Mediated Inhibition of Lactate Dehydrogenase from Rabbit Muscle. The Application of Kramers' Theory in Enzyme Catalysis. J Phys Chem B 2018; 122:4309-4317. [PMID: 29595977 DOI: 10.1021/acs.jpcb.8b01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate to lactate by using NADH. LDH kinetics has been proposed to be dependent on the dynamics of a loop over the active site. Kramers' theory has been useful in the study of enzyme catalysis dependent on large structural dynamics. In this work, LDH kinetics was studied in the presence of trehalose and at different temperatures. In the absence of trehalose, temperature increase raised exponentially the LDH Vmax and revealed a sigmoid transition of Km toward a low-affinity state similar to protein unfolding. Notably, LDH Vmax diminished when in the presence of trehalose, while pyruvate affinity increased and the temperature-mediated binding site transition was hindered. The effect of trehalose on kcat was viscosity dependent as described by Kramers' theory since Vmax correlated inversely with the viscosity of the medium. As a result, activation energy ( Ea) for pyruvate reduction was dramatically increased by trehalose presence. This work provides experimental evidence that the dynamics of a structural component in LDH is essential for catalysis, i.e., the closing of the loop on the active site. While the trehalose mediated-increased of pyruvate affinity is proposed to be due to the compaction and/or increase of structural order at the binding site.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| |
Collapse
|
42
|
Shiraga K, Ogawa Y, Tanaka K, Arikawa T, Yoshikawa N, Nakamura M, Ajito K, Tajima T. Coexistence of Kosmotropic and Chaotropic Impacts of Urea on Water As Revealed by Terahertz Spectroscopy. J Phys Chem B 2018; 122:1268-1277. [DOI: 10.1021/acs.jpcb.7b11839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences (IMS), Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | - Koichiro Tanaka
- Institute
for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | - Masahito Nakamura
- NTT
Device Technology Labs, NTT Corporation, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Katsuhiro Ajito
- NTT
Device Technology Labs, NTT Corporation, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Takuro Tajima
- NTT
Device Technology Labs, NTT Corporation, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
43
|
Nazarov M, Cherkasova O, Shkurinov A. Spectroscopy of solutions in the low frequency extended THz frequency range. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819510008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Pulikkathara M, Mark C, Kumar N, Zaske AM, Serda RE. Sucrose modulation of radiofrequency-induced heating rates and cell death. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017; 3. [PMID: 29177085 DOI: 10.1088/2057-1739/aa757b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Applied radiofrequency (RF) energy induces hyperthermia in tissues, facilitating vascular perfusion This study explores the impact of RF radiation on the integrity of the luminal endothelium, and then predominately explores the impact of altering the conductivity of biologically-relevant solutions on RF-induced heating rates and cell death. The ability of cells to survive high sucrose (i.e. hyperosmotic conditions) to achieve lower conductivity as a mechanism for directing hyperthermia is evaluated. Methods RF radiation was generated using a capacitively-coupled radiofrequency system operating at 13.56 MHz. Temperatures were recorded using a FLIR SC 6000 infrared camera. Results RF radiation reduced cell-to-cell connections among endothelial cells and altered cell morphology towards a more rounded appearance at temperatures reported to cause in vivo vessel deformation. Isotonic solutions containing high sucrose and low levels of NaCl displayed low conductivity and faster heating rates compared to high salt solutions. Heating rates were positively correlated with cell death. Addition of sucrose to serum similarly reduced conductivity and increased heating rates in a dose-dependent manner. Cellular proliferation was normal for cells grown in media supplemented with 125 mM sucrose for 24 hours or for cells grown in 750 mM sucrose for 10 minutes followed by a 24 h recovery period. Conclusions Sucrose is known to form weak hydrogen bonds in fluids as opposed to ions, freeing water molecules to rotate in an oscillating field of electromagnetic radiation and contributing to heat induction. The ability of cells to survive temporal exposures to hyperosmotic (i.e. elevated sucrose) conditions creates an opportunity to use sucrose or other saccharides to selectively elevate heating in specific tissues upon exposure to a radiofrequency field.
Collapse
Affiliation(s)
- Merlyn Pulikkathara
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed)
| | - Colette Mark
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed)
| | - Natasha Kumar
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed)
| | - Ana Maria Zaske
- IM Bioscope 2 UT Core Facility, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Rita E Serda
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed).,Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87106, USA (current location)
| |
Collapse
|
45
|
Affiliation(s)
- Kengo Arai
- Department
of Symbiotic Science of Environment and Natural Resources,
The United Graduate School of Agriculture, and ‡Division of Natural Resources and
Eco-materials, Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology, 3-5-8
Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Shikata
- Department
of Symbiotic Science of Environment and Natural Resources,
The United Graduate School of Agriculture, and ‡Division of Natural Resources and
Eco-materials, Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology, 3-5-8
Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
46
|
Characterization of the hydrogen-bond network of water around sucrose and trehalose: H-O-H bending analysis. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Zeng Z, Bernstein ER. Photoelectron spectroscopy and density functional theory studies of (fructose + (H 2O) n) − ( n = 1–5) anionic clusters. Phys Chem Chem Phys 2017; 19:31121-31137. [DOI: 10.1039/c7cp06625b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
(Fructose + (H2O)n)− (n = 1–5) cluster anions mainly exist as open chain structures. Some cyclic structures of (fructose + (H2O)n)− (n = 3, 4) are present too.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Chemistry
- NSF ERC for Extreme Ultraviolet Science and Technology
- Colorado State University
- Fort Collins
- USA
| | - Elliot R. Bernstein
- Department of Chemistry
- NSF ERC for Extreme Ultraviolet Science and Technology
- Colorado State University
- Fort Collins
- USA
| |
Collapse
|