1
|
Borne K, O'Neal JT, Wang J, Isele E, Obaid R, Berrah N, Cheng X, Bucksbaum PH, James J, Kamalov A, Larsen KA, Li X, Lin MF, Liu Y, Marinelli A, Summers AM, Thierstein E, Wolf TJA, Rolles D, Walter P, Cryan JP, Driver T. Design and performance of a magnetic bottle electron spectrometer for high-energy photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:125110. [PMID: 39704606 DOI: 10.1063/5.0223334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
We describe the design and performance of a magnetic bottle electron spectrometer (MBES) for high-energy electron spectroscopy. Our design features a 2 m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with a close to 4π collection solid angle. A segmented anode electron detector enables the simultaneous collection of photoelectron spectra in high resolution and high collection efficiency modes. This versatile instrument is installed at the time-resolved molecular and optical sciences instrument at the Linac Coherent Light Source x-ray free-electron laser (XFEL). In this paper, we demonstrate its high resolution, collection efficiency, and spatial selectivity in measurements where it is coupled to an XFEL source. These combined characteristics are designed to enable high-resolution time-resolved measurements using x-ray photoelectron, absorption, and Auger-Meitner spectroscopy. We also describe the pervasive artifact in MBES time-of-flight spectra that arises from a periodic modulation in electron collection efficiency and present a robust analysis procedure for its removal.
Collapse
Affiliation(s)
- Kurtis Borne
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jordan T O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Jun Wang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Erik Isele
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Razib Obaid
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Xinxin Cheng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Justin James
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Andrei Kamalov
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kirk A Larsen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Xiang Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yusong Liu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Agostino Marinelli
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Adam M Summers
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Emily Thierstein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Thomas J A Wolf
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Peter Walter
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Taran Driver
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Assefa TA, Seaberg MH, Reid AH, Shen L, Esposito V, Dakovski GL, Schlotter W, Holladay B, Streubel R, Montoya SA, Hart P, Nakahara K, Moeller S, Kevan SD, Fischer P, Fullerton EE, Colocho W, Lutman A, Decker FJ, Sinha SK, Roy S, Blackburn E, Turner JJ. The fluctuation-dissipation measurement instrument at the Linac Coherent Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083902. [PMID: 36050107 DOI: 10.1063/5.0091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The development of new modes at x-ray free electron lasers has inspired novel methods for studying fluctuations at different energies and timescales. For closely spaced x-ray pulses that can be varied on ultrafast time scales, we have constructed a pair of advanced instruments to conduct studies targeting quantum materials. We first describe a prototype instrument built to test the proof-of-principle of resonant magnetic scattering using ultrafast pulse pairs. This is followed by a description of a new endstation, the so-called fluctuation-dissipation measurement instrument, which was used to carry out studies with a fast area detector. In addition, we describe various types of diagnostics for single-shot contrast measurements, which can be used to normalize data on a pulse-by-pulse basis and calibrate pulse amplitude ratios, both of which are important for the study of fluctuations in materials. Furthermore, we present some new results using the instrument that demonstrates access to higher momentum resolution.
Collapse
Affiliation(s)
- T A Assefa
- Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - A H Reid
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - L Shen
- Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - V Esposito
- Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G L Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - W Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - B Holladay
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - R Streubel
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Physics Department, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - S A Montoya
- Center for Memory and Recording Research, University of California-San Diego, La Jolla, California 92093, USA
| | - P Hart
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - K Nakahara
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - S Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - S D Kevan
- Department of Physics, University of Oregon, Eugene, Oregon 97401, USA
| | - P Fischer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Physics Department, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - E E Fullerton
- Center for Memory and Recording Research, University of California-San Diego, La Jolla, California 92093, USA
| | - W Colocho
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - A Lutman
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - F-J Decker
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA
| | - S K Sinha
- Department of Physics, University of California-San Diego, La Jolla, California 92093, USA
| | - S Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - E Blackburn
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
| | - J J Turner
- Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
3
|
Walter P, Osipov T, Lin MF, Cryan J, Driver T, Kamalov A, Marinelli A, Robinson J, Seaberg MH, Wolf TJA, Aldrich J, Brown N, Champenois EG, Cheng X, Cocco D, Conder A, Curiel I, Egger A, Glownia JM, Heimann P, Holmes M, Johnson T, Lee L, Li X, Moeller S, Morton DS, Ng ML, Ninh K, O’Neal JT, Obaid R, Pai A, Schlotter W, Shepard J, Shivaram N, Stefan P, Van X, Wang AL, Wang H, Yin J, Yunus S, Fritz D, James J, Castagna JC. The time-resolved atomic, molecular and optical science instrument at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:957-968. [PMID: 35787561 PMCID: PMC9255571 DOI: 10.1107/s1600577522004283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.
Collapse
Affiliation(s)
- Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Timur Osipov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James Cryan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Taran Driver
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrei Kamalov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Agostino Marinelli
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Joe Robinson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew H. Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas J. A. Wolf
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jeff Aldrich
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Nolan Brown
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Elio G. Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xinxin Cheng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniele Cocco
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alan Conder
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan Curiel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adam Egger
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James M. Glownia
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Heimann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Michael Holmes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Tyler Johnson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Lance Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xiang Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Stefan Moeller
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel S. Morton
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - May Ling Ng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kayla Ninh
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jordan T. O’Neal
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Razib Obaid
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Allen Pai
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - William Schlotter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jackson Shepard
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Niranjan Shivaram
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Peter Stefan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xiong Van
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Anna Li Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hengzi Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jing Yin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sameen Yunus
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - David Fritz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Justin James
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jean-Charles Castagna
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
4
|
Assalauova D, Ignatenko A, Isensee F, Trofimova D, Vartanyants IA. Classification of diffraction patterns using a convolutional neural network in single-particle-imaging experiments performed at X-ray free-electron lasers. J Appl Crystallogr 2022; 55:444-454. [PMID: 35719305 PMCID: PMC9172041 DOI: 10.1107/s1600576722002667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Single particle imaging (SPI) at X-ray free-electron lasers is particularly well suited to determining the 3D structure of particles at room temperature. For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns. It is proposed that this task could be formulated as an image-classification problem and solved using convolutional neural network (CNN) architectures. Two CNN configurations are developed: one that maximizes the F1 score and one that emphasizes high recall. The CNNs are also combined with expectation-maximization (EM) selection as well as size filtering. It is observed that the CNN selections have lower contrast in power spectral density functions relative to the EM selection used in previous work. However, the reconstruction of the CNN-based selections gives similar results. Introducing CNNs into SPI experiments allows the reconstruction pipeline to be streamlined, enables researchers to classify patterns on the fly, and, as a consequence, enables them to tightly control the duration of their experiments. Incorporating non-standard artificial-intelligence-based solutions into an existing SPI analysis workflow may be beneficial for the future development of SPI experiments.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexandr Ignatenko
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabian Isensee
- Applied Computer Vision Lab, Helmholtz Imaging, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Darya Trofimova
- Applied Computer Vision Lab, Helmholtz Imaging, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Ilchen M, Schmidt P, Novikovskiy NM, Hartmann G, Rupprecht P, Coffee RN, Ehresmann A, Galler A, Hartmann N, Helml W, Huang Z, Inhester L, Lutman AA, MacArthur JP, Maxwell T, Meyer M, Music V, Nuhn HD, Osipov T, Ray D, Wolf TJA, Bari S, Walter P, Li Z, Moeller S, Knie A, Demekhin PV. Site-specific interrogation of an ionic chiral fragment during photolysis using an X-ray free-electron laser. Commun Chem 2021; 4:119. [PMID: 36697819 PMCID: PMC9814667 DOI: 10.1038/s42004-021-00555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.
Collapse
Affiliation(s)
- Markus Ilchen
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany ,Stanford PULSE Institute, Menlo Park, CA USA
| | - Philipp Schmidt
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nikolay M. Novikovskiy
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.182798.d0000 0001 2172 8170Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
| | - Gregor Hartmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Patrick Rupprecht
- grid.419604.e0000 0001 2288 6103Max-Planck-Institut für Kernphysik Heidelberg, Heidelberg, Germany
| | - Ryan N. Coffee
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Arno Ehresmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Andreas Galler
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nick Hartmann
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Wolfram Helml
- grid.5675.10000 0001 0416 9637Fakultät für Physik, Technische Universität Dortmund, Dortmund, Germany
| | - Zhirong Huang
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Ludger Inhester
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alberto A. Lutman
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - James P. MacArthur
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timothy Maxwell
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Meyer
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Valerija Music
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Heinz-Dieter Nuhn
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timur Osipov
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Dipanwita Ray
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Thomas J. A. Wolf
- Stanford PULSE Institute, Menlo Park, CA USA ,grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Sadia Bari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Peter Walter
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Zheng Li
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Stefan Moeller
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - André Knie
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Philipp V. Demekhin
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| |
Collapse
|
6
|
Ignatenko A, Assalauova D, Bobkov SA, Gelisio L, Teslyuk AB, Ilyin VA, Vartanyants IA. Classification of diffraction patterns in single particle imaging experiments performed at x-ray free-electron lasers using a convolutional neural network. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abd916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Single particle imaging (SPI) is a promising method of native structure determination, which has undergone fast progress with the development of x-ray free-electron lasers. Large amounts of data are collected during SPI experiments, driving the need for automated data analysis. The necessary data analysis pipeline has a number of steps including binary object classification (single versus non-single hits). Classification and object detection are areas where deep neural networks currently outperform other approaches. In this work, we use the fast object detector networks YOLOv2 and YOLOv3. By exploiting transfer learning, a moderate amount of data is sufficient to train the neural network. We demonstrate here that a convolutional neural network can be successfully used to classify data from SPI experiments. We compare the results of classification for the two different networks, with different depth and architecture, by applying them to the same SPI data with different data representation. The best results are obtained for diffracted intensity represented by color images on a linear scale using YOLOv2 for classification. It shows an accuracy of about 95% with precision and recall of about 50% and 60%, respectively, in comparison to manual data classification.
Collapse
|
7
|
Electron-ion coincidence measurements of molecular dynamics with intense X-ray pulses. Sci Rep 2021; 11:505. [PMID: 33436816 PMCID: PMC7804145 DOI: 10.1038/s41598-020-79818-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_2$$\end{document}2 molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.
Collapse
|
8
|
Li H, Nazari R, Abbey B, Alvarez R, Aquila A, Ayyer K, Barty A, Berntsen P, Bielecki J, Pietrini A, Bucher M, Carini G, Chapman HN, Contreras A, Daurer BJ, DeMirci H, Flűckiger L, Frank M, Hajdu J, Hantke MF, Hogue BG, Hosseinizadeh A, Hunter MS, Jönsson HO, Kirian RA, Kurta RP, Loh D, Maia FRNC, Mancuso AP, Morgan AJ, McFadden M, Muehlig K, Munke A, Reddy HKN, Nettelblad C, Ourmazd A, Rose M, Schwander P, Marvin Seibert M, Sellberg JA, Sierra RG, Sun Z, Svenda M, Vartanyants IA, Walter P, Westphal D, Williams G, Xavier PL, Yoon CH, Zaare S. Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source. Sci Data 2020; 7:404. [PMID: 33214568 PMCID: PMC7678860 DOI: 10.1038/s41597-020-00745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 μm x 1.7 μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
Collapse
Affiliation(s)
- Haoyuan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
- Physics Department, Stanford University, 450 Serra Mall, Stanford, California, 94305, USA
| | - Reza Nazari
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Roberto Alvarez
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA.
| | - Kartik Ayyer
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Anton Barty
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
- DESY, Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - Peter Berntsen
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Johan Bielecki
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Maximilian Bucher
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - Gabriella Carini
- Brookhaven National Laboratory, Bldg 535B, Upton, NY, 11973, USA
| | - Henry N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Alice Contreras
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| | - Benedikt J Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Hasan DeMirci
- Stanford PULSE Institute, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
- Koc University, Rumelifeneri, Sariyer Rumeli Feneri Yolu, 34450, Sariyer/Istanbul, Turkey
| | - Leonie Flűckiger
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, California, 94550, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
- The European Extreme Light Infrastructure, Institute of Physics, Academy of Sciences of the Czech Republic, Za Radnicic 835, 25241, Dolní Břežany, Czech Republic
| | - Max F Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Brenda G Hogue
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| | - Ahmad Hosseinizadeh
- University of Wisconsin Milwaukee, 3135N. Maryland Ave, Milwaukee, Wisconsin, 53211, USA
| | - Mark S Hunter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - H Olof Jönsson
- Department of Applied Physics, KTH Royal Institute of Technology, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91, Stockholm, Sweden
| | - Richard A Kirian
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| | | | - Duane Loh
- Department of Physics, National University of Singapore, 14 Science Drive 4, Blk S1A, Level 2, S1A-02-07, Lee Wee Kheng Building, Singapore, 117557, Singapore
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Andrew J Morgan
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Matthew McFadden
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| | - Kerstin Muehlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Hemanth Kumar Narayana Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Abbas Ourmazd
- University of Wisconsin Milwaukee, 3135N. Maryland Ave, Milwaukee, Wisconsin, 53211, USA
| | - Max Rose
- DESY, Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - Peter Schwander
- University of Wisconsin Milwaukee, 3135N. Maryland Ave, Milwaukee, Wisconsin, 53211, USA
| | - M Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Jonas A Sellberg
- Department of Applied Physics, KTH Royal Institute of Technology, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91, Stockholm, Sweden
| | - Raymond G Sierra
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - Zhibin Sun
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
- Photon Science Division, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Martin Svenda
- Department of Applied Physics, KTH Royal Institute of Technology, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91, Stockholm, Sweden
| | - Ivan A Vartanyants
- DESY, Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
- NRNU MEPhI, Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Garth Williams
- Brookhaven National Laboratory, Bldg 535B, Upton, NY, 11973, USA
| | - P Lourdu Xavier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Chun Hong Yoon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - Sahba Zaare
- Arizona State University, 1001S. McAllister Avenue, Tempe, AZ, 85287, USA
| |
Collapse
|
9
|
Assalauova D, Kim YY, Bobkov S, Khubbutdinov R, Rose M, Alvarez R, Andreasson J, Balaur E, Contreras A, DeMirci H, Gelisio L, Hajdu J, Hunter MS, Kurta RP, Li H, McFadden M, Nazari R, Schwander P, Teslyuk A, Walter P, Xavier PL, Yoon CH, Zaare S, Ilyin VA, Kirian RA, Hogue BG, Aquila A, Vartanyants IA. An advanced workflow for single-particle imaging with the limited data at an X-ray free-electron laser. IUCRJ 2020; 7:1102-1113. [PMID: 33209321 PMCID: PMC7642788 DOI: 10.1107/s2052252520012798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Sergey Bobkov
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
| | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| | - Max Rose
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Roberto Alvarez
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School of Mathematics and Statistical Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
| | - Eugeniu Balaur
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alice Contreras
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Molecular Biology and Genetics, Koc University, Istanbul, 34450, Turkey
| | - Luca Gelisio
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Janos Hajdu
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, SE-75124, Sweden
| | - Mark S. Hunter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Haoyuan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Physics Department, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305-2004, USA
| | - Matthew McFadden
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Reza Nazari
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | | | - Anton Teslyuk
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - P. Lourdu Xavier
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg, D-22761, Germany
| | - Chun Hong Yoon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sahba Zaare
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Viacheslav A. Ilyin
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| |
Collapse
|
10
|
O'Neal JT, Champenois EG, Oberli S, Obaid R, Al-Haddad A, Barnard J, Berrah N, Coffee R, Duris J, Galinis G, Garratt D, Glownia JM, Haxton D, Ho P, Li S, Li X, MacArthur J, Marangos JP, Natan A, Shivaram N, Slaughter DS, Walter P, Wandel S, Young L, Bostedt C, Bucksbaum PH, Picón A, Marinelli A, Cryan JP. Electronic Population Transfer via Impulsive Stimulated X-Ray Raman Scattering with Attosecond Soft-X-Ray Pulses. PHYSICAL REVIEW LETTERS 2020; 125:073203. [PMID: 32857563 DOI: 10.1103/physrevlett.125.073203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.
Collapse
Affiliation(s)
- Jordan T O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Elio G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Solène Oberli
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Razib Obaid
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Andre Al-Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jonathan Barnard
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ryan Coffee
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gediminas Galinis
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Douglas Garratt
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Phay Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Siqi Li
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Xiang Li
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - James MacArthur
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jon P Marangos
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Adi Natan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Niranjan Shivaram
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel S Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Scott Wandel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Antonio Picón
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Agostino Marinelli
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
11
|
Liu Y, Seaberg M, Feng Y, Li K, Ding Y, Marcus G, Fritz D, Shi X, Grizolli W, Assoufid L, Walter P, Sakdinawat A. X-ray free-electron laser wavefront sensing using the fractional Talbot effect. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:254-261. [PMID: 32153264 PMCID: PMC7064100 DOI: 10.1107/s1600577519017107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Wavefront sensing at X-ray free-electron lasers is important for quantitatively understanding the fundamental properties of the laser, for aligning X-ray instruments and for conducting scientific experimental analysis. A fractional Talbot wavefront sensor has been developed. This wavefront sensor enables measurements over a wide range of energies, as is common on X-ray instruments, with simplified mechanical requirements and is compatible with the high average power pulses expected in upcoming X-ray free-electron laser upgrades. Single-shot measurements were performed at 500 eV, 1000 eV and 1500 eV at the Linac Coherent Light Source. These measurements were applied to study both mirror alignment and the effects of undulator tapering schemes on source properties. The beamline focal plane position was tracked to an uncertainty of 0.12 mm, and the source location for various undulator tapering schemes to an uncertainty of 1 m, demonstrating excellent sensitivity. These findings pave the way to use the fractional Talbot wavefront sensor as a routine, robust and sensitive tool at X-ray free-electron lasers as well as other high-brightness X-ray sources.
Collapse
Affiliation(s)
- Yanwei Liu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Yiping Feng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kenan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gabriel Marcus
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - David Fritz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xianbo Shi
- Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Walan Grizolli
- Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lahsen Assoufid
- Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Anne Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
12
|
Bielecki J, Hantke MF, Daurer BJ, Reddy HKN, Hasse D, Larsson DSD, Gunn LH, Svenda M, Munke A, Sellberg JA, Flueckiger L, Pietrini A, Nettelblad C, Lundholm I, Carlsson G, Okamoto K, Timneanu N, Westphal D, Kulyk O, Higashiura A, van der Schot G, Loh NTD, Wysong TE, Bostedt C, Gorkhover T, Iwan B, Seibert MM, Osipov T, Walter P, Hart P, Bucher M, Ulmer A, Ray D, Carini G, Ferguson KR, Andersson I, Andreasson J, Hajdu J, Maia FRNC. Electrospray sample injection for single-particle imaging with x-ray lasers. SCIENCE ADVANCES 2019; 5:eaav8801. [PMID: 31058226 PMCID: PMC6499549 DOI: 10.1126/sciadv.aav8801] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/19/2019] [Indexed: 05/11/2023]
Abstract
The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
Collapse
Affiliation(s)
- Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Max F. Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Laura H. Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Jonas A. Sellberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Leonie Flueckiger
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lägerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - Ida Lundholm
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Gunilla Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Olena Kulyk
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Akifumi Higashiura
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Ne-Te Duane Loh
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Taylor E. Wysong
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Tais Gorkhover
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Bianca Iwan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Timur Osipov
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Philip Hart
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Dipanwita Ray
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Gabriella Carini
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ken R. Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
13
|
Shi Y, Yin K, Tai X, DeMirci H, Hosseinizadeh A, Hogue BG, Li H, Ourmazd A, Schwander P, Vartanyants IA, Yoon CH, Aquila A, Liu H. Evaluation of the performance of classification algorithms for XFEL single-particle imaging data. IUCRJ 2019; 6:331-340. [PMID: 30867930 PMCID: PMC6400180 DOI: 10.1107/s2052252519001854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/31/2019] [Indexed: 05/22/2023]
Abstract
Using X-ray free-electron lasers (XFELs), it is possible to determine three-dimensional structures of nanoscale particles using single-particle imaging methods. Classification algorithms are needed to sort out the single-particle diffraction patterns from the large amount of XFEL experimental data. However, different methods often yield inconsistent results. This study compared the performance of three classification algorithms: convolutional neural network, graph cut and diffusion map manifold embedding methods. The identified single-particle diffraction data of the PR772 virus particles were assembled in the three-dimensional Fourier space for real-space model reconstruction. The comparison showed that these three classification methods lead to different datasets and subsequently result in different electron density maps of the reconstructed models. Interestingly, the common dataset selected by these three methods improved the quality of the merged diffraction volume, as well as the resolutions of the reconstructed maps.
Collapse
Affiliation(s)
- Yingchen Shi
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Haidian, Beijing 100084, People’s Republic of China
- Complex Systems Division, Beijing Computational Science Research Centre, 8 E Xibeiwang Rd, Haidian, Beijing 100193, People’s Republic of China
| | - Ke Yin
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Xuecheng Tai
- Department of Mathematics, University of Bergen, PO Box 7800, Bergen, 5020, Norway
| | - Hasan DeMirci
- Biosciences Division, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin USA
| | - Brenda G. Hogue
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute at Arizona State University, Tempe, 85287, USA
| | - Haoyuan Li
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Physics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin USA
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russian Federation
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Centre, 8 E Xibeiwang Rd, Haidian, Beijing 100193, People’s Republic of China
| |
Collapse
|
14
|
A Versatile Velocity Map Ion-Electron Covariance Imaging Spectrometer for High-Intensity XUV Experiments. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|