1
|
Teo AJT, Gu J, Govyadinov A, Kornilovitch P, Wang P, Goh S, Tung NT, Peng Z, Koh K, Li KHH. Development of a Mass-Producible Microfluidic Device for Single and Bulk Mycobacteria Investigations. BIOSENSORS 2025; 15:108. [PMID: 39997010 PMCID: PMC11853077 DOI: 10.3390/bios15020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
We developed a mass-producible microfluidic device capable of long-term observations of single bacilli and bulk bacteria culture interactions for subsequent antimicrobial resistance (AMR) studies. The device provides high consistency across separate devices due to its standardized manufacturing process unlike conventional microfluidic devices. Mycobacteria bovis BCG and M. smegmatis are trapped within the microfluidic device using minimal equipment and capillary-based techniques, acting as a surrogate model for the highly pathogenic bacteria M. tuberculosis. Individual bacilli and bulk bacteria aggregates were observed across a span of ten growth cycles, revealing bacteria growth morphologies alike those in past research. We accordingly propose that this chip would be appropriate for observations of AMR trials involving M. tuberculosis.
Collapse
Affiliation(s)
- Adrian J. T. Teo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (A.J.T.T.); (K.K.)
| | - Jianhui Gu
- HP Singapore Pte Ltd., 1A Depot Close, Singapore 109842, Singapore; (J.G.); (P.W.); (S.G.)
| | | | - Pavel Kornilovitch
- HP Pte Ltd., Corvallis, OR 97330, USA; (A.G.); (P.K.)
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Peiyun Wang
- HP Singapore Pte Ltd., 1A Depot Close, Singapore 109842, Singapore; (J.G.); (P.W.); (S.G.)
| | - Serene Goh
- HP Singapore Pte Ltd., 1A Depot Close, Singapore 109842, Singapore; (J.G.); (P.W.); (S.G.)
| | - Nguyen Truong Tung
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore;
| | - Zhen Peng
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China;
| | - Keith Koh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (A.J.T.T.); (K.K.)
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (A.J.T.T.); (K.K.)
| |
Collapse
|
2
|
Zhao Q, Li S, Krall L, Li Q, Sun R, Yin Y, Fu J, Zhang X, Wang Y, Yang M. Deciphering cellular complexity: advances and future directions in single-cell protein analysis. Front Bioeng Biotechnol 2025; 12:1507460. [PMID: 39877263 PMCID: PMC11772399 DOI: 10.3389/fbioe.2024.1507460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Single-cell protein analysis has emerged as a powerful tool for understanding cellular heterogeneity and deciphering the complex mechanisms governing cellular function and fate. This review provides a comprehensive examination of the latest methodologies, including sophisticated cell isolation techniques (Fluorescence-Activated Cell Sorting (FACS), Magnetic-Activated Cell Sorting (MACS), Laser Capture Microdissection (LCM), manual cell picking, and microfluidics) and advanced approaches for protein profiling and protein-protein interaction analysis. The unique strengths, limitations, and opportunities of each method are discussed, along with their contributions to unraveling gene regulatory networks, cellular states, and disease mechanisms. The importance of data analysis and computational methods in extracting meaningful biological insights from the complex data generated by these technologies is also highlighted. By discussing recent progress, technological innovations, and potential future directions, this review emphasizes the critical role of single-cell protein analysis in advancing life science research and its promising applications in precision medicine, biomarker discovery, and targeted therapeutics. Deciphering cellular complexity at the single-cell level holds immense potential for transforming our understanding of biological processes and ultimately improving human health.
Collapse
Affiliation(s)
- Qirui Zhao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Shan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qianyu Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Rongyuan Sun
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuqi Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyi Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yonghua Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Azuaje-Hualde E, Alonso-Cabrera JA, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review. Anal Bioanal Chem 2024; 416:7249-7266. [PMID: 39048740 PMCID: PMC11584473 DOI: 10.1007/s00216-024-05435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integrating advanced monitoring technologies into these systems often disrupts the delicate balance of the microenvironment, making it difficult to achieve sensitivity and specificity. This review explored recent strategies for integrating the monitoring of cell secretion of signaling molecules, crucial for understanding and replicating cell microenvironments, within cell culture platforms, addressing challenges such as non-adherent cell models and the focus on single-cell methodologies. We highlight advancements in biosensors, microfluidics, and three-dimensional culture methods, and discuss their potential to enhance real-time, multiplexed cell monitoring. By examining the advantages, limitations, and future prospects of these technologies, we aim to contribute to the development of integrated systems that facilitate comprehensive cell monitoring, ultimately advancing biological research and pharmaceutical development.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juncal A Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
4
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
5
|
Shen F, Gao J, Zhang J, Ai M, Gao H, Liu Z. Vortex sorting of rare particles/cells in microcavities: A review. BIOMICROFLUIDICS 2024; 18:021504. [PMID: 38571909 PMCID: PMC10987199 DOI: 10.1063/5.0174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.
Collapse
Affiliation(s)
- Feng Shen
- Authors to whom correspondence should be addressed: and
| | - Jie Gao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jie Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Mingzhu Ai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Hongkai Gao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Zhaomiao Liu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
6
|
Ortega Quesada BA, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:25. [PMID: 38370397 PMCID: PMC10873338 DOI: 10.1038/s41378-024-00653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, an estrogen receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 s enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA 70118 USA
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
7
|
Slusher GA, Kottke PA, Culberson AL, Chilmonczyk MA, Fedorov AG. Microfluidics enabled multi-omics triple-shot mass spectrometry for cell-based therapies. BIOMICROFLUIDICS 2024; 18:011302. [PMID: 38268742 PMCID: PMC10807926 DOI: 10.1063/5.0175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
In recent years, cell-based therapies have transformed medical treatment. These therapies present a multitude of challenges associated with identifying the mechanism of action, developing accurate safety and potency assays, and achieving low-cost product manufacturing at scale. The complexity of the problem can be attributed to the intricate composition of the therapeutic products: living cells with complex biochemical compositions. Identifying and measuring critical quality attributes (CQAs) that impact therapy success is crucial for both the therapy development and its manufacturing. Unfortunately, current analytical methods and tools for identifying and measuring CQAs are limited in both scope and speed. This Perspective explores the potential for microfluidic-enabled mass spectrometry (MS) systems to comprehensively characterize CQAs for cell-based therapies, focusing on secretome, intracellular metabolome, and surfaceome biomarkers. Powerful microfluidic sampling and processing platforms have been recently presented for the secretome and intracellular metabolome, which could be implemented with MS for fast, locally sampled screening of the cell culture. However, surfaceome analysis remains limited by the lack of rapid isolation and enrichment methods. Developing innovative microfluidic approaches for surface marker analysis and integrating them with secretome and metabolome measurements using a common analytical platform hold the promise of enhancing our understanding of CQAs across all "omes," potentially revolutionizing cell-based therapy development and manufacturing for improved efficacy and patient accessibility.
Collapse
Affiliation(s)
| | - Peter A. Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | | | | | | |
Collapse
|
8
|
Popescu RC, Calin BS, Tanasa E, Vasile E, Mihailescu M, Paun IA. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Front Bioeng Biotechnol 2023; 11:1273277. [PMID: 38170069 PMCID: PMC10758856 DOI: 10.3389/fbioe.2023.1273277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, Magurele, Romania
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
| | - Eugenia Tanasa
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Mona Mihailescu
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| |
Collapse
|
9
|
Macaraniag C, Zhou J, Li J, Putzbach W, Hay N, Papautsky I. Microfluidic isolation of breast cancer circulating tumor cells from microvolumes of mouse blood. Electrophoresis 2023; 44:1859-1867. [PMID: 37528726 DOI: 10.1002/elps.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Liquid biopsy has shown significant research and clinical implications in cancer. Particularly, the isolation of circulating tumor cells (CTCs) in preclinical studies can provide crucial information about disease progression and therefore may guide treatment decisions. Microfluidic isolation systems have played a considerable role in CTC isolation for cancer studies, disease diagnosis, and prognosis. CTCs are often studied using preclinical animal models such as xenografts or syngeneic models. However, most isolation systems are tested on human cell lines and human blood, whereas less validation studies are done on preclinical samples such as CTCs from mouse models. Here, we demonstrate and evaluate a complete workflow of a sized-based inertial microfluidic device to isolate CTCs from blood using exclusively mouse blood and mouse cancer cell lines. We then incorporate the cytospin, a commonly used method for enumeration of small number of cells in a glass slide to quantify the total cell yield of our workflow.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - William Putzbach
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Nissim Hay
- University of Illinois Cancer Center, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
10
|
Murakami T, Teratani H, Aoki D, Noguchi M, Tsugane M, Suzuki H. Single-cell trapping and retrieval in open microfluidics. iScience 2023; 26:108323. [PMID: 38026163 PMCID: PMC10656270 DOI: 10.1016/j.isci.2023.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Among various single-cell analysis platforms, hydrodynamic cell trapping systems remain relevant because of their versatility. Among those, deterministic hydrodynamic cell-trapping systems have received significant interest; however, their applications are limited because trapped cells are kept within the closed microchannel, thus prohibiting access to external cell-picking devices. In this study, we develop a hydrodynamic cell-trapping system in an open microfluidics architecture to allow external access to trapped cells. A technique to render only the inside of a polydimethylsiloxane (PDMS) microchannel hydrophilic is developed, which allows the precise confinement of spontaneous capillary flow in the open-type microchannel with a width on the order of several tens of micrometers. Efficient trapping of single beads and single cells is achieved, in which trapped cells can be retrieved via automated robotic pipetting. The present system can facilitate the development of new single-cell analytical systems by bridging between microfluidic devices and macro-scale apparatus used in conventional biology.
Collapse
Affiliation(s)
- Tomoki Murakami
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Teratani
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Dai’ichiro Aoki
- Aeternus Co., Ltd, Minamidai 2-1-14, Fujimino, Saitama 356-0036, Japan
| | - Masao Noguchi
- Caravell Co., Ltd, Surugadai 1-29-39, Funabashi, Chiba 273-0862, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
11
|
Quesada BAO, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. RESEARCH SQUARE 2023:rs.3.rs-3399118. [PMID: 37886527 PMCID: PMC10602101 DOI: 10.21203/rs.3.rs-3399118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, a receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 seconds enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC, 29634
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA, 70118
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC, 29634
| |
Collapse
|
12
|
Van den Eeckhoudt R, Christiaens AS, Ceyssens F, Vangalis V, Verstrepen KJ, Boon N, Tavernier F, Kraft M, Taurino I. Full-electric microfluidic platform to capture, analyze and selectively release single cells. LAB ON A CHIP 2023; 23:4276-4286. [PMID: 37668159 DOI: 10.1039/d3lc00645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Current single-cell technologies require large and expensive equipment, limiting their use to specialized labs. In this paper, we present for the first time a microfluidic device which demonstrates a combined method for full-electric cell capturing, analyzing, and selectively releasing with single-cell resolution. All functionalities are experimentally demonstrated on Saccharomyces cerevisiae. Our microfluidic platform consists of traps centered around a pair of individually accessible coplanar electrodes, positioned under a microfluidic channel. Using this device, we validate our novel Two-Voltage method for trapping single cells by positive dielectrophoresis (pDEP). Cells are attracted to the trap when a high voltage (VH) is applied. A low voltage (VL) holds the already trapped cell in place without attracting additional cells, allowing full control over the number of trapped cells. After trapping, the cells are analyzed by broadband electrochemical impedance spectroscopy. These measurements allow the detection of single cells and the extraction of cell parameters. Additionally, these measurements show a strong correlation between average phase change and cell size, enabling the use of our system for size measurements in biological applications. Finally, our device allows selectively releasing trapped cells by turning off the pDEP signal in their trap. The experimental results show the techniques potential as a full-electric single-cell analysis tool with potential for miniaturization and automation which opens new avenues towards small-scale, high throughput single-cell analysis and sorting lab-on-CMOS devices.
Collapse
Affiliation(s)
- Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
| | - An-Sofie Christiaens
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Frederik Ceyssens
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Vasileios Vangalis
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Abedini-Nassab R, Sadeghidelouei N, Shields Iv CW. Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation. Anal Chim Acta 2023; 1272:341425. [PMID: 37355317 PMCID: PMC10317203 DOI: 10.1016/j.aca.2023.341425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Lab-on-a-chip tools have played a pivotal role in advancing modern biology and medicine. A key goal in this field is to precisely transport single particles and cells to specific locations on a chip for quantitative analysis. To address this large and growing need, magnetophoretic circuits have been developed in the last decade to manipulate a large number of single bioparticles in a parallel and highly controlled manner. Inspired by electrical circuits, magnetophoretic circuits are composed of passive and active circuit elements to offer commensurate levels of control and automation for transporting individual bioparticles. These specifications make them unique compared to other technologies in addressing crucial bioanalytical applications and answering fundamental questions buried in highly heterogeneous cell populations. In this comprehensive review, we describe key theoretical considerations for manufacturing and simulating magnetophoretic circuits. We provide a detailed tutorial for operating magnetophoretic devices containing different circuit elements (e.g., conductors, diodes, capacitors, and transistors). Finally, we provide a critical comparison of the utility of these devices to other microchip-based platforms for cellular manipulation, and discuss how they may address unmet needs in single-cell biology and medicine.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran.
| | - Negar Sadeghidelouei
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, United States
| |
Collapse
|
14
|
Cardona S, Mostafazadeh N, Luan Q, Zhou J, Peng Z, Papautsky I. Numerical Modeling of Physical Cell Trapping in Microfluidic Chips. MICROMACHINES 2023; 14:1665. [PMID: 37763828 PMCID: PMC10538085 DOI: 10.3390/mi14091665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Microfluidic methods have proven to be effective in separation and isolation of cells for a wide range of biomedical applications. Among these methods, physical trapping is a label-free isolation approach that relies on cell size as the selective phenotype to retain target cells on-chip for follow-up analysis and imaging. In silico models have been used to optimize the design of such hydrodynamic traps and to investigate cancer cell transmigration through narrow constrictions. While most studies focus on computational fluid dynamics (CFD) analysis of flow over cells and/or pillar traps, a quantitative analysis of mechanical interaction between cells and trapping units is missing. The existing literature centers on longitudinally extended geometries (e.g., micro-vessels) to understand the biological phenomenon rather than designing an effective cell trap. In this work, we aim to make an experimentally informed prediction of the critical pressure for a cell to pass through a trapping unit as a function of cell morphology and trapping unit geometry. Our findings show that a hyperelastic material model accurately captures the stress-related softening behavior observed in cancer cells passing through micro-constrictions. These findings are used to develop a model capable of predicting and extrapolating critical pressure values. The validity of the model is assessed with experimental data. Regression analysis is used to derive a mathematical framework for critical pressure. Coupled with CFD analysis, one can use this formulation to design efficient microfluidic devices for cell trapping and potentially perform downstream analysis of trapped cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
15
|
Nalupurackal G, Panja K, Chakraborty S, Roy S, Goswami J, Roy B, Singh R. Controlled roll rotation of a microparticle in a hydro-thermophoretic trap. PHYSICAL REVIEW RESEARCH 2023; 5:033005. [PMID: 37675386 PMCID: PMC7615027 DOI: 10.1103/physrevresearch.5.033005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In recent years, there has been a growing interest in controlling the motion of microparticles inside and outside a focused laser beam. A hydro-thermophoretic trap was recently reported [Nalupurackal et al., Soft Matter 18, 6825 (2022)], which can trap and manipulate microparticles and living cells outside a laser beam. Briefly, a hydro-thermophoretic trap works by the competition between thermoplasmonic flows due to laser heating of a substrate and thermophoresis away from the hotspot of the laser. Here, we extend that work to demonstrate the controlled roll rotation of a microparticle in a hydro-thermophoretic trap using experiments and theory. We experimentally measure the roll angular velocity of the trapped particle. We predict this roll rotation from theoretical computation of the fluid flow. The expression for the angular velocity fits the experimental data. Our method has potential applications in microrheology by employing a different mode of rotation.
Collapse
Affiliation(s)
- Gokul Nalupurackal
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Kingshuk Panja
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Snigdhadev Chakraborty
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Srestha Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Jayesh Goswami
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Basudev Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India
| |
Collapse
|
16
|
George A, Akbaridoust F, Zainal Abidin NA, Nesbitt WS, Marusic I. Characterisation of hydrodynamic trapping in microfluidic cross-slot devices for high strain rate applications. LAB ON A CHIP 2023. [PMID: 37305977 DOI: 10.1039/d3lc00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrodynamic trapping of a particle or cluster of particles based on contact and non-contact approaches has brought prominent insights to micro-nano scale applications. Of the non-contact methods, image-based real-time control in cross-slot microfluidic devices is one of the most promising potential platform for single cellular assays. Here, we report results from experiments conducted in two cross-slot microfluidic channels of different widths, with varying real-time delay of the control algorithm and different magnification. Sustained trapping of 5 μm diameter particles was achieved with high strain rates, of order 102 s-1, higher than in any previous studies. Our experiments show that the maximum attainable strain rate is a function of the real-time delay of the control algorithm and the particle resolution (pixel/μm). Therefore, we anticipate that with further reduced time delays and enhanced particle resolution, considerably higher strain rates can be attained, opening the platform to single cellular assay studies where very high strain rates are required.
Collapse
Affiliation(s)
- Aravind George
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| | - Nurul A Zainal Abidin
- The Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Warwick S Nesbitt
- The Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Ivan Marusic
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
17
|
Yang W, Hou L, Luo C. When Super-Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207341. [PMID: 36895074 DOI: 10.1002/smll.202207341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
Super-resolution microscopy is rapidly developed in recent years, allowing biologists to extract more quantitative information on subcellular processes in live cells that is usually not accessible with conventional techniques. However, super-resolution imaging is not fully exploited because of the lack of an appropriate and multifunctional experimental platform. As an important tool in life sciences, microfluidics is capable of cell manipulation and the regulation of the cellular environment because of its superior flexibility and biocompatibility. The combination of microfluidics and super-resolution microscopy revolutionizes the study of complex cellular properties and dynamics, providing valuable insights into cellular structure and biological functions at the single-molecule level. In this perspective, an overview of the main advantages of microfluidic technology that are essential to the performance of super-resolution microscopy are offered. The main benefits of performing super-resolution imaging with microfluidic devices are highlighted and perspectives on the diverse applications that are facilitated by combining these two powerful techniques are provided.
Collapse
Affiliation(s)
- Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
| | - Lei Hou
- UMR5298-LP2N, Institut d'Optique and CNRS, Rue François Mitterrand, Talence, 33400, France
| | - Chunxiong Luo
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, 5 Summer Palace Road, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 5 Summer Palace Road, Beijing, 100871, China
| |
Collapse
|
18
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
19
|
Torres-Castro K, Jarmoshti J, Xiao L, Rane A, Salahi A, Jin L, Li X, Caselli F, Honrado C, Swami NS. Multichannel impedance cytometry downstream of cell separation by deterministic lateral displacement to quantify macrophage enrichment in heterogeneous samples. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201463. [PMID: 37706194 PMCID: PMC10497222 DOI: 10.1002/admt.202201463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 09/15/2023]
Abstract
The integration of on-chip biophysical cytometry downstream of microfluidic enrichment for inline monitoring of phenotypic and separation metrics at single-cell sensitivity can allow for active control of separation and its application to versatile sample sets. We present integration of impedance cytometry downstream of cell separation by deterministic lateral displacement (DLD) for enrichment of activated macrophages from a heterogeneous sample, without the problems of biased sample loss and sample dilution caused by off-chip analysis. This required designs to match cell/particle flow rates from DLD separation into the confined single-cell impedance cytometry stage, the balancing of flow resistances across the separation array width to maintain unidirectionality, and the utilization of co-flowing beads as calibrated internal standards for inline assessment of DLD separation and for impedance data normalization. Using a heterogeneous sample with un-activated and activated macrophages, wherein macrophage polarization during activation causes cell size enlargement, on-chip impedance cytometry is used to validate DLD enrichment of the activated subpopulation at the displaced outlet, based on the multiparametric characteristics of cell size distribution and impedance phase metrics. This hybrid platform can monitor separation of specific subpopulations from cellular samples with wide size distributions, for active operational control and enhanced sample versatility.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Javad Jarmoshti
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Li Xiao
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Aditya Rane
- Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Armita Salahi
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Li Jin
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Xudong Li
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | | | - Carlos Honrado
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Nathan S. Swami
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
- Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA
| |
Collapse
|
20
|
Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnology 2023; 21:85. [PMID: 36906553 PMCID: PMC10008080 DOI: 10.1186/s12951-023-01846-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The advancement of microfluidics has enabled numerous discoveries and technologies in life sciences. However, due to the lack of industry standards and configurability, the design and fabrication of microfluidic devices require highly skilled technicians. The diversity of microfluidic devices discourages biologists and chemists from applying this technique in their laboratories. Modular microfluidics, which integrates the standardized microfluidic modules into a whole, complex platform, brings the capability of configurability to conventional microfluidics. The exciting features, including portability, on-site deployability, and high customization motivate us to review the state-of-the-art modular microfluidics and discuss future perspectives. In this review, we first introduce the working mechanisms of the basic microfluidic modules and evaluate their feasibility as modular microfluidic components. Next, we explain the connection approaches among these microfluidic modules, and summarize the advantages of modular microfluidics over integrated microfluidics in biological applications. Finally, we discuss the challenge and future perspectives of modular microfluidics.
Collapse
Affiliation(s)
- Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
21
|
Wang Y, Tong N, Li F, Zhao K, Wang D, Niu Y, Xu F, Cheng J, Wang J. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip. MICROMACHINES 2023; 14:159. [PMID: 36677221 PMCID: PMC9863554 DOI: 10.3390/mi14010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Precise trap and manipulation of individual cells is a prerequisite for single-cell analysis, which has a wide range of applications in biology, chemistry, medicine, and materials. Herein, a microfluidic trapping system with a 3D electrode based on AC dielectrophoresis (DEP) technology is proposed, which can achieve the precise trapping and release of specific microparticles. The 3D electrode consists of four rectangular stereoscopic electrodes with an acute angle near the trapping chamber. It is made of Ag-PDMS material, and is the same height as the channel, which ensures the uniform DEP force will be received in the whole channel space, ensuring a better trapping effect can be achieved. The numerical simulation was conducted in terms of electrode height, angle, and channel width. Based on the simulation results, an optimal chip structure was obtained. Then, the polystyrene particles with different diameters were used as the samples to verify the effectiveness of the designed trapping system. The findings of this research will contribute to the application of cell trapping and manipulation, as well as single-cell analysis.
Collapse
Affiliation(s)
- Yanjuan Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Ning Tong
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Fengqi Li
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Deguang Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Yijie Niu
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Fengqiang Xu
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Jiale Cheng
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
22
|
Tang X, Huang Q, Arai T, Liu X. Cell pairing for biological analysis in microfluidic devices. BIOMICROFLUIDICS 2022; 16:061501. [PMID: 36389274 PMCID: PMC9646252 DOI: 10.1063/5.0095828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cell pairing at the single-cell level usually allows a few cells to contact or seal in a single chamber and provides high-resolution imaging. It is pivotal for biological research, including understanding basic cell functions, creating cancer treatment technologies, developing drugs, and more. Laboratory chips based on microfluidics have been widely used to trap, immobilize, and analyze cells due to their high efficiency, high throughput, and good biocompatibility properties. Cell pairing technology in microfluidic devices provides spatiotemporal research on cellular interactions and a highly controlled approach for cell heterogeneity studies. In the last few decades, many researchers have emphasized cell pairing research based on microfluidics. They designed various microfluidic device structures for different biological applications. Herein, we describe the current physical methods of microfluidic devices to trap cell pairs. We emphatically summarize the practical applications of cell pairing in microfluidic devices, including cell fusion, cell immunity, gap junction intercellular communication, cell co-culture, and other applications. Finally, we review the advances and existing challenges of the presented devices and then discuss the possible development directions to promote medical and biological research.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
23
|
Chen X, Zhang C, Liu B, Chang Y, Pang W, Duan X. A self-contained acoustofluidic platform for biomarker detection. LAB ON A CHIP 2022; 22:3817-3826. [PMID: 36069822 DOI: 10.1039/d2lc00541g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-contained microfluidic platforms with on-chip integration of flow control units, microreactors, (bio)sensors, etc. are ideal systems for point-of-care (POC) testing. However, current approaches such as micropumps and microvalves, increase the cost and the control system, and it is rather difficult to integrate into a single chip. Herein, we demonstrated a versatile acoustofluidic platform actuated by a Lamb wave resonator (LWR) array, in which pumping, mixing, fluidic switching, and particle trapping are all achieved on a single chip. The high-speed microscale acoustic streaming triggered by the LWR in the confined microchannel can be utilized to realize a flow resistor and switch. Variable unidirectional pumping was realized by regulating the relative position of the LWR in various custom-designed microfluidic structures and adoption of different geometric parameters for the microchannel. In addition, to realize quantitative biomarker detection, the on-chip flow resistor, micropump, micromixer and particle trapper were also integrated with a CMOS photo sensor and electronic driver circuit, resulting in an automated handheld microfluidic system with no moving parts. Finally, the acoustofluidic platform was tested for prostate-specific antigen (PSA) sensing, which demonstrates the biocompatibility and applied potency of this proposed self-contained system in POC biomedical applications.
Collapse
Affiliation(s)
- Xian Chen
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chuanchao Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Barbosa VB, Rodrigues CF, Cerqueira L, Miranda JM, Azevedo NF. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front Bioeng Biotechnol 2022; 10:987669. [PMID: 36213081 PMCID: PMC9539416 DOI: 10.3389/fbioe.2022.987669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most prevalent healthcare-associated infection is the urinary tract infection (UTI), caused by opportunistic pathogens such as Candida albicans or non-albicans Candida species (NACS). Urine culture methods are routinely used for UTI diagnostics due to their specificity, sensitivity and low-cost. However, these methods are also laborious, time- and reagent-consuming. Therefore, diagnostic methods relying on nucleic acids have been suggested as alternatives. Nucleic acid-based methods can provide results within 24 h and can be adapted to point-of-care (POC) detection. Here, we propose to combine fluorescence in situ hybridization (FISH) with a microfluidic platform for the detection of Candida spp. As a case study we used C. tropicalis, which is reported as the second most common NACS urine isolate obtained from patients suspected with UTI. The microfluidic platform proposed in this study relies on hydrodynamic trapping, and uses physical barriers (e.g., microposts) for the separation of target cells from the suspension. Using a specific peptide nucleic acid (PNA) probe, the FISH procedure was applied onto previously trapped C. tropicalis cells present inside the microfluidic platform. Fluorescence signal intensity of hybridized cells was captured directly under the epifluorescence microscope. Overall, the PNA probe successfully detected C. tropicalis in pure culture and artificial urine (AU) using FISH combined with the microfluidic platform. Our findings reveal that FISH using nucleic acid mimics (PNA) in combination with microfluidics is a reliable method for the detection of microorganisms such as C. tropicalis. As such, this work provides the basis for the development of a POC detection platform in the future.
Collapse
Affiliation(s)
- Violina Baranauskaite Barbosa
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Célia F. Rodrigues
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - João M. Miranda
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- CEFT–Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Nalupurackal G, Gunaseelan M, Roy S, Lokesh M, Kumar S, Vaippully R, Singh R, Roy B. A hydro-thermophoretic trap for microparticles near a gold-coated substrate. SOFT MATTER 2022; 18:6825-6835. [PMID: 36040245 PMCID: PMC7613615 DOI: 10.1039/d2sm00627h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optical tweezers have revolutionised micromanipulation from physics and biology to material science. However, the high laser power involved in optical trapping can damage biological samples. In this context, indirect trapping of microparticles and objects using fluid flow fields has assumed great importance. It has recently been shown that cells and particles can be turned in the pitch sense by opto-plasmonic heating of a gold surface constituting one side of a sample chamber. We extend that work to place two such hotspots in close proximity to each other to form a very unique configuration of flow fields forming an effective quasi-three-dimensional 'trap', assisted by thermophoresis. This is effectively a harmonic trap confining particles in all three dimensions without relying on other factors to confine the particles close to the surface. We use this to show indirect trapping of different types of upconverting particles and cells, and also show that we can approach a trap stiffness of 40 fN μm-1 indicating a weak confinement regime without relying on feedback.
Collapse
Affiliation(s)
- Gokul Nalupurackal
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - M Gunaseelan
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Srestha Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Muruga Lokesh
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Sumeet Kumar
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Rahul Vaippully
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India.
| | - Basudev Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| |
Collapse
|
26
|
Macaraniag C, Luan Q, Zhou J, Papautsky I. Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters. APL Bioeng 2022; 6:031501. [PMID: 35856010 PMCID: PMC9288269 DOI: 10.1063/5.0093806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cell (CTC) clusters that are shed from the primary tumor into the bloodstream are associated with a poor prognosis, elevated metastatic potential, higher proliferation rate, and distinct molecular features compared to single CTCs. Studying CTC clusters may give us information on the differences in the genetic profiles, somatic mutations, and epigenetic changes in circulating cells compared to the primary tumor and metastatic sites. Microfluidic systems offer the means of studying CTC clusters through the ability to efficiently isolate these rare cells from the whole blood of patients in a liquid biopsy. Microfluidics can also be used to develop in vitro models of CTC clusters and make possible their characterization and analysis. Ultimately, microfluidic systems can offer the means to gather insight on the complexities of the metastatic process, the biology of cancer, and the potential for developing novel or personalized therapies. In this review, we aim to discuss the advantages and challenges of the existing microfluidic systems for working with CTC clusters. We hope that an improved understanding of the role microfluidics can play in isolation, formation, and characterization of CTC clusters, which can lead to increased sophistication of microfluidic platforms in cancer research.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
27
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
28
|
Wang Y, Nitta T, Hiratsuka Y, Morishima K. In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci Robot 2022; 7:eaba8212. [PMID: 36001686 DOI: 10.1126/scirobotics.aba8212] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microrobots have been developed for applications in the submillimeter domain such as the manipulation of micro-objects and microsurgery. Rapid progress has been achieved in developing miniaturized components for microrobotic systems, resulting in a variety of functional microactuators and soft components for creating untethered microrobots. Nevertheless, the integration of microcomponents, especially the assembly of actuators and mechanical components, is still time-consuming and has inherent restrictions, thus limiting efficient fabrications of microrobots and their potential applications. Here, we propose a method for fabricating microrobots in situ inspired by the construction of microsystems in living organisms. In a microfluidic chip, hydrogel mechanical components and artificial muscle actuators are successively photopatterned from hydrogel prepolymer and biomolecular motors, respectively, and integrated in situ into functional microrobots. The proposed method allows the fast fabrication of microrobots through simple operations and affordable materials while providing versatile functions through the precise spatiotemporal control of in situ integration and reconfiguration of artificial muscles. To validate the method, we fabricated microrobots to elicit different motions and on-chip robots with unique characteristics for microfluidic applications. This study may establish a new paradigm for microrobot integration and lead to the production of unique biohybrid microrobots with various advantages.
Collapse
Affiliation(s)
- Yingzhe Wang
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Nitta
- Applied Physics Course, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Yuichi Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Luan Q, Becker JH, Macaraniag C, Massad MG, Zhou J, Shimamura T, Papautsky I. Non-small cell lung carcinoma spheroid models in agarose microwells for drug response studies. LAB ON A CHIP 2022; 22:2364-2375. [PMID: 35551303 DOI: 10.1039/d2lc00244b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is a growing interest in developing personalized treatment strategies for each cancer patient, especially those with non-small cell lung carcinoma (NSCLC) which annually accounts for the majority of cancer related deaths in the US. Yet identifying the optimal NSCLC treatment strategy for each cancer patient is critical due to a multitude of mutations, some of which develop following initial therapy and can result in drug resistance. A key difficulty in developing personalized therapies in NSCLC is the lack of clinically relevant assay systems that are suitable to evaluate drug sensitivity using a minuscule amount of patient-derived material available following biopsies. Herein we leverage 3D printing to demonstrate a platform based on miniature microwells in agarose to culture cancer cell spheroids. The agarose wells were shaped by 3D printing molds with 1000 microwells with a U-shaped bottom. Three NSCLC cell lines (HCC4006, H1975 and A549) were used to demonstrate size uniformity, spheroid viability, biomarker expressions and drug response in 3D agarose microwells. Results show that our approach yielded spheroids of uniform size (coefficient of variation <22%) and high viability (>83% after 1 week-culture). Studies using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) drugs gefitinib and osimertinib showed clinically relevant responses. Based on the physical features, cell phenotypes, and responses to therapy of our spheroid models, we conclude that our platform is suitable for in vitro culture and drug evaluation, especially in cases when tumor sample is limited.
Collapse
Affiliation(s)
- Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
| | - Jeffrey H Becker
- Department of Surgery, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
| | - Malek G Massad
- Department of Surgery, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Takeshi Shimamura
- Department of Surgery, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Satta S, Shahabipour F, Gao W, Lentz SR, Perlman S, Ashammakhi N, Hsiai T. Engineering viral genomics and nano-liposomes in microfluidic platforms for patient-specific analysis of SARS-CoV-2 variants. Theranostics 2022; 12:4779-4790. [PMID: 35832078 PMCID: PMC9254234 DOI: 10.7150/thno.72339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs. As the COVID-19 pandemic lingers, there remains an unmet need to screen emerging mutations, to predict viral transmissibility and pathogenicity, and to assess the strength of neutralizing antibodies following vaccination or reinfection. Conventional detection of SARS-CoV-2 variants relies on two-dimensional (2-D) cell culture methods, whereas simulating the micro-environment requires three-dimensional (3-D) systems. To this end, analyzing SARS-CoV-2-mediated pathogenicity via microfluidic platforms minimizes the experimental cost, duration, and optimization needed for animal studies, and obviates the ethical concerns associated with the use of primates. In this context, this review highlights the state-of-the-art strategy to engineer the nano-liposomes that can be conjugated with SARS-CoV-2 Spike mutations or genomic sequences in the microfluidic platforms; thereby, allowing for screening the rising SARS-CoV-2 variants and predicting COVID-19-associated coagulation. Furthermore, introducing viral genomics to the patient-specific blood accelerates the discovery of therapeutic targets in the face of evolving viral variants, including B1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), c.37 (Lambda), and B.1.1.529 (Omicron). Thus, engineering nano-liposomes to encapsulate SARS-CoV-2 viral genomic sequences enables rapid detection of SARS-CoV-2 variants in the long COVID-19 era.
Collapse
Affiliation(s)
- Sandro Satta
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | - Fahimeh Shahabipour
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Wei Gao
- Medical Engineering, California Institute of Technology, California, Pasadena, USA
| | - Steven R. Lentz
- Section of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Medicine, College of Medicine, University of Iowa, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, College of Medicine, University of Iowa, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering & Applied Science, University of California, CA, USA
- Institute for Quantitative Health Science & Engineering and Department of Biomedical Engineering, College of Engineering, Michigan State University, MI, USA
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
31
|
Huang X, Torres‐Castro K, Varhue W, Rane A, Rasin A, Swami NS. On‐chip microfluidic buffer swap of biological samples in‐line with downstream dielectrophoresis. Electrophoresis 2022; 43:1275-1282. [PMID: 35286736 PMCID: PMC9203925 DOI: 10.1002/elps.202100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on‐chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100‐fold lower conductivity media by using tangential flows of low media conductivity at 200‐fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow‐focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow‐focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on‐chip sample preparation platform prior to or post‐dielectrophoresis, in‐line with on‐chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.
Collapse
Affiliation(s)
- Xuhai Huang
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Karina Torres‐Castro
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Walter Varhue
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Aditya Rane
- Department of Chemistry University of Virginia Charlottesville Virginia USA
| | - Ahmed Rasin
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Nathan S. Swami
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
- Department of Chemistry University of Virginia Charlottesville Virginia USA
| |
Collapse
|
32
|
Xiang N, Ni Z. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics. LAB ON A CHIP 2022; 22:757-767. [PMID: 35050294 DOI: 10.1039/d1lc00944c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
On-chip concentration of rare malignant tumor cells (MTCs) in malignant pleural effusions (MPEs) with a large volume is challenging. Previous microfluidic concentrators suffer from a low concentration factor (CF) and a limited processing throughput. This study describes a low-cost multiplexed microfluidic concentrator that can enable high-throughput (up to 16 mL min-1) and high CF (over 40-fold for single run) concentration of rare cells from large-volume biofluids (up to hundreds of milliliters). The multiplexed device was fabricated using inexpensive polymer-film materials using a quick non-clean-room process within 30 min. The multiplexing and flow distribution approaches applied in the device achieved high-throughput processing. By adopting serial cascading, an ultrahigh CF of approximately 1400 was achieved. Moreover, the microfluidic concentrator was successfully applied for the concentration and purification of rare MTCs within MPEs collected from patients with advanced metastatic lung and breast cancers. The provision of concentrated samples with low background cells could improve the sensitivity of cytology and thus reduce the time required for cytological examination. This novel concentrator offers the distinct advantages of a remarkable CF, high throughput, low device cost, and label-free processing and can therefore be readily integrated with other on-chip cell sorters to enhance the identification of MPEs.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
33
|
Torres-Castro K, Azimi MS, Varhue WB, Honrado C, Peirce SM, Swami NS. Biophysical quantification of reorganization dynamics of human pancreatic islets during co-culture with adipose-derived stem cells. Analyst 2022; 147:2731-2738. [DOI: 10.1039/d2an00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reorganization dynamics of human islets during co-culture with adipose stem cells depends on islet size and the heterogeneity can be assessed based on biomechanical opacity of individual islets.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Walter B. Varhue
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Carlos Honrado
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Nathan S. Swami
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| |
Collapse
|
34
|
Xiang N, Ni Z. Hand-Powered Inertial Microfluidic Syringe-Tip Centrifuge. BIOSENSORS 2021; 12:14. [PMID: 35049644 PMCID: PMC8774109 DOI: 10.3390/bios12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/05/2022]
Abstract
Conventional sample preparation techniques require bulky and expensive instruments and are not compatible with next-generation point-of-care diagnostic testing. Here, we report a manually operated syringe-tip inertial microfluidic centrifuge (named i-centrifuge) for high-flow-rate (up to 16 mL/min) cell concentration and experimentally demonstrate its working mechanism and performance. Low-cost polymer films and double-sided tape were used through a rapid nonclean-room process of laser cutting and lamination bonding to construct the key components of the i-centrifuge, which consists of a syringe-tip flow stabilizer and a four-channel paralleled inertial microfluidic concentrator. The unstable liquid flow generated by the manual syringe was regulated and stabilized with the flow stabilizer to power inertial focusing in a four-channel paralleled concentrator. Finally, we successfully used our i-centrifuge for manually operated cell concentration. This i-centrifuge offers the advantages of low device cost, simple hand-powered operation, high-flow-rate processing, and portable device volume. Therefore, it holds potential as a low-cost, portable sample preparation tool for point-of-care diagnostic testing.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China;
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China;
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
35
|
Amadeo F, Mukherjee P, Gao H, Zhou J, Papautsky I. Polycarbonate Masters for Soft Lithography. MICROMACHINES 2021; 12:1392. [PMID: 34832803 PMCID: PMC8622653 DOI: 10.3390/mi12111392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
Fabrication of microfluidic devices by soft lithography is by far the most popular approach due to its simplicity and low cost. The approach relies on casting of elastomers, such as polydimethylsiloxane (PDMS), on masters fabricated from photoresists on silicon substrates. These masters, however, can be expensive, complicated to fabricate, and fragile. Here we describe an optimized replica molding approach to preserve the original masters by heat molding of polycarbonate (PC) sheets on PDMS molds. The process is faster and simpler than previously reported methods and does not result in a loss of resolution or aspect ratio for the features. The generated PC masters were used to successfully replicate a wide range of microfluidic devices, including rectangular channels with aspect ratios from 0.025 to 7.3, large area spiral channels, and micropost arrays with 5 µm spacing. Moreover, fabrication of rounded features, such as semi-spherical microwells, was possible and easy. Quantitative analysis of the replicated features showed variability of <2%. The approach is low cost, does not require cleanroom setting or hazardous chemicals, and is rapid and simple. The fabricated masters are rigid and survive numerous replication cycles. Moreover, damaged or missing masters can be easily replaced by reproduction from previously cast PDMS replicas. All of these advantages make the PC masters highly desirable for long-term preservation of soft lithography masters for microfluidic devices.
Collapse
Affiliation(s)
| | | | | | | | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (F.A.); (P.M.); (H.G.); (J.Z.)
| |
Collapse
|
36
|
Wu Y, Zhao L, Chang Y, Zhao L, Guo G, Wang X. Ultra-thin temperature controllable microwell array chip for continuous real-time high-resolution imaging of living single cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Kim S, Song H, Ahn H, Kim T, Jung J, Cho SK, Shin DM, Choi JR, Hwang YH, Kim K. A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis. BIOSENSORS 2021; 11:412. [PMID: 34821628 PMCID: PMC8615569 DOI: 10.3390/bios11110412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/25/2023]
Abstract
Electrical impedance biosensors combined with microfluidic devices can be used to analyze fundamental biological processes for high-throughput analysis at the single-cell scale. These specialized analytical tools can determine the effectiveness and toxicity of drugs with high sensitivity and demonstrate biological functions on a single-cell scale. Because the various parameters of the cells can be measured depending on methods of single-cell trapping, technological development ultimately determine the efficiency and performance of the sensors. Identifying the latest trends in single-cell trapping technologies afford opportunities such as new structural design and combination with other technologies. This will lead to more advanced applications towards improving measurement sensitivity to the desired target. In this review, we examined the basic principles of impedance sensors and their applications in various biological fields. In the next step, we introduced the latest trend of microfluidic chip technology for trapping single cells and summarized the important findings on the characteristics of single cells in impedance biosensor systems that successfully trapped single cells. This is expected to be used as a leading technology in cell biology, pathology, and pharmacological fields, promoting the further understanding of complex functions and mechanisms within individual cells with numerous data sampling and accurate analysis capabilities.
Collapse
Affiliation(s)
- Soojung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Hyerin Song
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Heesang Ahn
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Taeyeon Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Jihyun Jung
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Soo Kyung Cho
- Division of Nano Convergence Technology, Pusan National University (PNU), Miryang 50463, Korea;
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Jong-ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Yoon-Hwae Hwang
- Department of Nano Energy Engineering, Pusan National University (PNU), Busan 46241, Korea
| | - Kyujung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
38
|
Erben E, Seelbinder B, Stoev ID, Klykov S, Maghelli N, Kreysing M. Feedback-based positioning and diffusion suppression of particles via optical control of thermoviscous flows. OPTICS EXPRESS 2021; 29:30272-30283. [PMID: 34614753 DOI: 10.1364/oe.432935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The ability to control the position of micron-size particles with high precision using tools such as optical tweezers has led to major advances in fields such as biology, physics and material science. In this paper, we present a novel optical strategy to confine particles in solution with high spatial control using feedback-controlled thermoviscous flows. We show that this technique allows micron-size particles to be positioned and confined with subdiffraction precision (24 nm), effectively suppressing their diffusion. Due to its physical characteristics, our approach might be particular attractive where laser exposure is of concern or materials are inherently incompatible with optical tweezing since it does not rely on contrast in the refractive index.
Collapse
|
39
|
Liu L, Dong X, Tu Y, Miao G, Zhang Z, Zhang L, Wei Z, Yu D, Qiu X. Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2021; 25:87. [PMID: 34580578 PMCID: PMC8457033 DOI: 10.1007/s10404-021-02485-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Single-cell nucleic acid analysis aims at discovering the genetic differences between individual cells which is well known as the cellular heterogeneity. This technology facilitates cancer diagnosis, stem cell research, immune system analysis, and other life science applications. The conventional platforms for single-cell nucleic acid analysis more rely on manual operation or bulky devices. Recently, the emerging microfluidic technology has provided a perfect platform for single-cell nucleic acid analysis with the characteristic of accurate and automatic single-cell manipulation. In this review, we briefly summarized the procedure of single-cell nucleic acid analysis including single-cell isolation, single-cell lysis, nucleic acid amplification, and genetic analysis. And then, three representative microfluidic platforms for single-cell nucleic acid analysis are concluded as valve-, microwell-, and droplet-based platforms. Furthermore, we described the state-of-the-art integrated single-cell nucleic acid analysis systems based on the three platforms. Finally, the future development and challenges of microfluidics-based single-cell nucleic acid analysis are discussed as well.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaobin Dong
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yunping Tu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Guijun Miao
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhongping Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Duli Yu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029 China
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| |
Collapse
|