1
|
Crego A, Severino S, Mai L, Medeghini F, Vismarra F, Frassetto F, Poletto L, Lucchini M, Reduzzi M, Nisoli M, Borrego-Varillas R. Sub-20-fs UV-XUV beamline for ultrafast molecular spectroscopy. Sci Rep 2024; 14:26016. [PMID: 39472747 PMCID: PMC11522506 DOI: 10.1038/s41598-024-77841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
We present an ultraviolet (UV) - extreme-ultraviolet (XUV) pump-probe beamline with applications in ultrafast time-resolved photoelectron spectroscopy. The UV pump pulses, tuneable between 255 and 285 nm and with µJ-level energy, are generated by frequency up-conversion between ultrashort visible/infrared pulses and visible narrow-band pulses. Few-femtosecond XUV probe pulses are produced by a high-order harmonic generation source equipped with a state-of-the-art time-delay compensated monochromator. Two-colour UV-XUV sidebands are used for a complete in situ temporal characterization of the pulses, demonstrating a temporal resolution of better than 20 fs. We validate the performances of the beamline through a UV-XUV pump-probe measurement on 1,3-cyclohexadiene, resolving the ultrashort dynamics of the first conical intersection. This instrument opens exciting possibilities for investigating ultrafast UV-induced dynamics of organic molecules in ultrashort time scales.
Collapse
Affiliation(s)
- Aurora Crego
- CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Stefano Severino
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Lorenzo Mai
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Fabio Medeghini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Federico Vismarra
- CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Fabio Frassetto
- CNR, Istituto di Fotonica e Nanotecnologie, via Trasea 7, 35131, Padova, Italy
| | - Luca Poletto
- CNR, Istituto di Fotonica e Nanotecnologie, via Trasea 7, 35131, Padova, Italy
| | - Matteo Lucchini
- CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Maurizio Reduzzi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mauro Nisoli
- CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Rocío Borrego-Varillas
- CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
2
|
Gabalski I, Allum F, Seidu I, Britton M, Brenner G, Bromberger H, Brouard M, Bucksbaum PH, Burt M, Cryan JP, Driver T, Ekanayake N, Erk B, Garg D, Gougoula E, Heathcote D, Hockett P, Holland DMP, Howard AJ, Kumar S, Lee JWL, Li S, McManus J, Mikosch J, Milesevic D, Minns RS, Neville S, Atia-Tul-Noor, Papadopoulou CC, Passow C, Razmus WO, Röder A, Rouzée A, Simao A, Unwin J, Vallance C, Walmsley T, Wang J, Rolles D, Stolow A, Schuurman MS, Forbes R. Time-Resolved X-ray Photoelectron Spectroscopy: Ultrafast Dynamics in CS 2 Probed at the S 2p Edge. J Phys Chem Lett 2023; 14:7126-7133. [PMID: 37534743 PMCID: PMC10431593 DOI: 10.1021/acs.jpclett.3c01447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Recent developments in X-ray free-electron lasers have enabled a novel site-selective probe of coupled nuclear and electronic dynamics in photoexcited molecules, time-resolved X-ray photoelectron spectroscopy (TRXPS). We present results from a joint experimental and theoretical TRXPS study of the well-characterized ultraviolet photodissociation of CS2, a prototypical system for understanding non-adiabatic dynamics. These results demonstrate that the sulfur 2p binding energy is sensitive to changes in the nuclear structure following photoexcitation, which ultimately leads to dissociation into CS and S photoproducts. We are able to assign the main X-ray spectroscopic features to the CS and S products via comparison to a first-principles determination of the TRXPS based on ab initio multiple-spawning simulations. Our results demonstrate the use of TRXPS as a local probe of complex ultrafast photodissociation dynamics involving multimodal vibrational coupling, nonradiative transitions between electronic states, and multiple final product channels.
Collapse
Affiliation(s)
- Ian Gabalski
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Felix Allum
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Issaka Seidu
- National
Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Mathew Britton
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Günter Brenner
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Mark Brouard
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Philip H. Bucksbaum
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
- Department
of Physics, Stanford University, Stanford, California 94305, United States
| | - Michael Burt
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - James P. Cryan
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Taran Driver
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Nagitha Ekanayake
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Diksha Garg
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Eva Gougoula
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David Heathcote
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Paul Hockett
- National
Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | - Andrew J. Howard
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Sonu Kumar
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jason W. L. Lee
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Siqi Li
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Joseph McManus
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jochen Mikosch
- Institut
für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Dennis Milesevic
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Russell S. Minns
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon Neville
- National
Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Atia-Tul-Noor
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Christopher Passow
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Weronika O. Razmus
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Anja Röder
- Max-Born-Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max-Born-Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Alcides Simao
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - James Unwin
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Claire Vallance
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Tiffany Walmsley
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jun Wang
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Daniel Rolles
- J.
R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Albert Stolow
- National
Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
- Department
of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- NRC-uOttawa Joint Centre
for Extreme Photonics, Ottawa, Ontario K1A 0R6, Canada
| | - Michael S. Schuurman
- National
Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ruaridh Forbes
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| |
Collapse
|
3
|
Acheson K, Kirrander A. Robust Inversion of Time-Resolved Data via Forward-Optimization in a Trajectory Basis. J Chem Theory Comput 2023; 19:2721-2734. [PMID: 37129988 DOI: 10.1021/acs.jctc.2c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An inversion method for time-resolved data from ultrafast experiments is introduced, based on forward-optimization in a trajectory basis. The method is applied to experimental data from X-ray scattering of the photochemical ring-opening reaction of 1,3-cyclohexadiene and electron diffraction of the photodissociation of CS2. In each case, inversion yields a model that reproduces the experimental data, identifies the main dynamic motifs, and agrees with independent experimental observations. Notably, the method explicitly accounts for continuity constraints and is robust even for noisy data.
Collapse
Affiliation(s)
- Kyle Acheson
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
4
|
Gabalski I, Sere M, Acheson K, Allum F, Boutet S, Dixit G, Forbes R, Glownia JM, Goff N, Hegazy K, Howard AJ, Liang M, Minitti MP, Minns RS, Natan A, Peard N, Rasmus WO, Sension RJ, Ware MR, Weber PM, Werby N, Wolf TJA, Kirrander A, Bucksbaum PH. Transient vibration and product formation of photoexcited CS 2 measured by time-resolved x-ray scattering. J Chem Phys 2022; 157:164305. [PMID: 36319419 PMCID: PMC9625835 DOI: 10.1063/5.0113079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/14/2022] Open
Abstract
We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C-S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.
Collapse
Affiliation(s)
- Ian Gabalski
- Author to whom correspondence should be addressed:
| | | | - Kyle Acheson
- School of Chemistry, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | | | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - James M. Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nathan Goff
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Russell S. Minns
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Adi Natan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nolan Peard
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Weronika O. Rasmus
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Roseanne J. Sension
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew R. Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QX Oxford, United Kingdom
| | | |
Collapse
|
5
|
Razmus WO, Acheson K, Bucksbaum P, Centurion M, Champenois E, Gabalski I, Hoffman MC, Howard A, Lin MF, Liu Y, Nunes P, Saha S, Shen X, Ware M, Warne EM, Weinacht T, Wilkin K, Yang J, Wolf TJA, Kirrander A, Minns RS, Forbes R. Multichannel photodissociation dynamics in CS 2 studied by ultrafast electron diffraction. Phys Chem Chem Phys 2022; 24:15416-15427. [PMID: 35707953 DOI: 10.1039/d2cp01268e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural dynamics of photoexcited gas-phase carbon disulfide (CS2) molecules are investigated using ultrafast electron diffraction. The dynamics were triggered by excitation of the optically bright 1B2(1Σu+) state by an ultraviolet femtosecond laser pulse centred at 200 nm. In accordance with previous studies, rapid vibrational motion facilitates a combination of internal conversion and intersystem crossing to lower-lying electronic states. Photodissociation via these electronic manifolds results in the production of CS fragments in the electronic ground state and dissociated singlet and triplet sulphur atoms. The structural dynamics are extracted from the experiment using a trajectory-fitting filtering approach, revealing the main characteristics of the singlet and triplet dissociation pathways. Finally, the effect of the time-resolution on the experimental signal is considered and an outlook to future experiments provided.
Collapse
Affiliation(s)
- Weronika O Razmus
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Kyle Acheson
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Philip Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Elio Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ian Gabalski
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthias C Hoffman
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Andrew Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ming-Fu Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Pedro Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Sajib Saha
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Matthew Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Emily M Warne
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kyle Wilkin
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Russell S Minns
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Ruaridh Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| |
Collapse
|
6
|
Karashima S, Suzuki YI, Suzuki T. Ultrafast Extreme Ultraviolet Photoelectron Spectroscopy of Nonadiabatic Photodissociation of CS 2 from 1B 2 ( 1Σ u+) State: Product Formation via an Intermediate Electronic State. J Phys Chem Lett 2021; 12:3755-3761. [PMID: 33844534 DOI: 10.1021/acs.jpclett.1c00864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We studied nonadiabatic dissociation of CS2 from the 1B2 (1Σu+) state using ultrafast extreme ultraviolet photoelectron spectroscopy. A deep UV (200 nm) laser using the filamentation four-wave mixing method and an extreme UV (21.7 eV) laser using the high-order harmonic generation method were employed to achieve the pump-probe laser cross-correlation time of 48 fs. Spectra measured with a high signal-to-noise ratio revealed clear dynamical features of vibrational wave packet motion in the 1B2 state; its electronic decay to lower electronic state(s) within 630 fs; and dissociation into S(1D2), S(3PJ), and CS fragments within 300 fs. The results suggest that both singlet and triplet dissociation occur via intermediate electronic state(s) produced by electronic relaxation from the 1B2 (1Σu+) state.
Collapse
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Yoshi-Ichi Suzuki
- School of Medical Technology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido 061-0293, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|