1
|
Bäuml L, de Vivie-Riedle R. Coupled Nuclear and Electron Dynamics in Chlorophyll Unraveled by XMS-CASPT2 X-ray Absorption Spectra. J Phys Chem B 2025; 129:2159-2167. [PMID: 39960808 DOI: 10.1021/acs.jpcb.4c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Attosecond spectroscopy, especially time-resolved X-ray absorption spectra (XAS), enables direct observation of ultrafast molecular dynamics. The complementary and even preceding development of theoretical simulations can offer the necessary guidance and stimulate new experiments. In this work, we simulated high-level XAS for the magnesium and nitrogen K-edge of chlorophyll a. In our previous work on the ultrafast relaxation process in the Q-band, our quantum dynamics simulations found the Qx and Qy states to be energetically close and therefore strongly coupled. Here, we analyze the strong coupling between Qx and Qy via XAS, indicating promising possibilities for experimental observation. The excited-state energies, potential energy surfaces, and XAS are computed at the XMS-CASPT2 level of theory to capture the complex multireference character of chlorophyll excitations. In our simulated spectra, we could follow the ultrafast population transfer between Qx and Qy and thus draw conclusions about the strong vibrational coupling between them.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | |
Collapse
|
2
|
Gao RY, Zou JW, Shi YP, Li DH, Zheng J, Zhang JP. The Q-Band Energetics and Relaxation of Chlorophylls a and b as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy. J Phys Chem Lett 2025; 16:789-794. [PMID: 39805070 DOI: 10.1021/acs.jpclett.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (fs-TA) absorption spectroscopy in 430-1,700 nm to Chls a and b in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the Bx,y ← Qy and Bx,y ← Qx transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Qx(0,0)-state energy that lies 1,000 ± 400 and 600 ± 400 cm-1 above the Qy(0,0)-state for Chls a and b, respectively. In addition, the Qx-to-Qy internal conversion time constants are estimated to be less than 80 fs for Chls a and b. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.
Collapse
Affiliation(s)
- Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Jian-Wei Zou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yan-Ping Shi
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
3
|
Rukin PS, Fortino M, Prezzi D, Rozzi CA. Complementing Adiabatic and Nonadiabatic Methods To Understand Internal Conversion Dynamics in Porphyrin Derivatives. J Chem Theory Comput 2024; 20:10759-10769. [PMID: 39662887 DOI: 10.1021/acs.jctc.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We analyze the internal conversion dynamics within the Qy and Qx excited states of both bare and functionalized porphyrins, which are known to exhibit significantly different time constants experimentally. Through the integration of two complementary approaches, static calculation of per-mode reorganization energies and nonadiabatic molecular dynamics, we achieve a comprehensive understanding of the factors determining the different behavior of the two molecules. We identify the key normal and essential modes responsible for the population transfer between excited states and discuss the efficacy of different statistical and nonstatistical analyses in providing a full physics-based description of the phenomenon.
Collapse
Affiliation(s)
- Pavel S Rukin
- Istituto Nanoscienze - CNR, via Campi 213/A, 41125 Modena, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, 88100 Catanzaro, Italy
| | - Deborah Prezzi
- Istituto Nanoscienze - CNR, via Campi 213/A, 41125 Modena, Italy
| | | |
Collapse
|
4
|
Barretta P, Ponte F, Escudero D, Mazzone G. Computational Exploration of the Mechanism of Action of a Sorafenib-Containing Ruthenium Complex as an Anticancer Agent for Photoactivated Chemotherapy. Molecules 2024; 29:4298. [PMID: 39339293 PMCID: PMC11433670 DOI: 10.3390/molecules29184298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Ruthenium(II) polypyridyl complexes are being tested as potential anticancer agents in different therapies, which include conventional chemotherapy and light-activated approaches. A mechanistic study on a recently synthesized dual-action Ru(II) complex [Ru(bpy)2(sora)Cl]+ is described here. It is characterized by two mono-dentate leaving ligands, namely, chloride and sorafenib ligands, which make it possible to form a di-aquo complex able to bind DNA. At the same time, while the released sorafenib can induce ferroptosis, the complex is also able to act as a photosensitizer according to type II photodynamic therapy processes, thus generating one of the most harmful cytotoxic species, 1O2. In order to clarify the mechanism of action of the drug, computational strategies based on density functional theory are exploited. The photophysical properties of the complex, which include the absorption spectrum, the kinetics of ISC, and the character of all the excited states potentially involved in 1O2 generation, as well as the pathway providing the di-aquo complex, are fully explored. Interestingly, the outcomes show that light is needed to form the mono-aquo complex, after releasing both chloride and sorafenib ligands, while the second solvent molecule enters the coordination sphere of the metal once the system has come back to the ground-state potential energy surface. In order to simulate the interaction with canonical DNA, the di-aquo complex interaction with a guanine nucleobase as a model has also been studied. The whole study aims to elucidate the intricate details of the photodissociation process, which could help with designing tailored metal complexes as potential anticancer agents.
Collapse
Affiliation(s)
- Pierraffaele Barretta
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| |
Collapse
|
5
|
Bando M, Fortino M, Pietropaolo A, Shichibu Y, Konishi K, Nakano T. Molecular ordering-enhanced circularly polarized luminescence of chiral 1,10-phenanthroline derivatives. Chem Commun (Camb) 2024; 60:8625-8628. [PMID: 39046808 DOI: 10.1039/d4cc01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
2,9-Bis((1R,2S,5R)-2-isopropyl-5-methylcyclohexanoxy)-1,10-phenanthroline [2,9-di-L-menthoxy-1,10-phenanthroline] (Men2Phen) and 2,9-bis(2-(S)-methylbutoxy)-1,10-phenanthroline (MB2Phen) were synthesized as chiral derivatives of 1,10-phenanthroline (Phen). Differences in rigidity and bulkiness of the chiral substituents at the 2- and 9-positions of the Phen backbone led to distinctive molecular dissymmetry in the ground state resulting in remarkable differences in circular dichroism. Men2Phen exhibited efficient circularly polarized luminescence (CPLm) at an anisotropy factor of 10-2 in the solid state based on molecular ordering disclosed by X-ray crystal analysis, while it showed much lower anisotropy factor in solution. MB2Phen, which was rather amorphous and did not afford good crystals, showed only negligible CPLm both in the solid state and in solution.
Collapse
Affiliation(s)
- Masayoshi Bando
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo, 001-0021, Japan.
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Yukatsu Shichibu
- Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Katsuaki Konishi
- Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo, 001-0021, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Institute for Catalysis, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
6
|
Fortino M, Arnesano F, Pietropaolo A. Unraveling Copper Exchange in the Atox1-Cu(I)-Mnk1 Heterodimer: A Simulation Approach. J Phys Chem B 2024; 128:5336-5343. [PMID: 38780400 DOI: 10.1021/acs.jpcb.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Copper, an essential metal for various cellular processes, requires tight regulation to prevent cytotoxicity. Intracellular pathways crucial for maintaining optimal copper levels involve soluble and membrane transporters, namely, metallochaperones and P-type ATPases, respectively. In this study, we used a simulation workflow based on free-energy perturbation (FEP) theory and parallel bias metadynamics (PBMetaD) to predict the Cu(I) exchange mechanism between the human Cu(I) chaperone, Atox1, and one of its two physiological partners, ATP7A. ATP7A, also known as the Menkes disease protein, is a transmembrane protein and one of the main copper-transporting ATPases. It pumps copper into the trans-Golgi network for the maturation of cuproenzymes and is also essential for the efflux of excess copper across the plasma membrane. In this analysis, we utilized the nuclear magnetic resonance (NMR) structure of the Cu(I)-mediated complex between Atox1 and the first soluble domain of the Menkes protein (Mnk1) as a starting point. Independent free-energy simulations were conducted to investigate the dissociation of both Atox1 and Mnk1. The calculations revealed that the two dissociations require free energy values of 6.3 and 6.2 kcal/mol, respectively, following a stepwise dissociation mechanism.
Collapse
Affiliation(s)
- Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Fabio Arnesano
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Rukin P, Prezzi D, Rozzi CA. Excited-state normal-mode analysis: The case of porphyrins. J Chem Phys 2023; 159:244103. [PMID: 38131481 DOI: 10.1063/5.0173336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
We systematically applied excited-state normal mode analysis to investigate and compare the relaxation and internal conversion dynamics of a free-base porphyrin (BP) with those of a novel functional porphyrin (FP) derivative. We discuss the strengths and limitations of this method and employ it to predict very different dynamical behaviors of the two compounds and to clarify the role of high reorganization energy modes in driving the system toward critical regions of the potential energy landscape. We identify the modes of vibrations along which the energy gap between two excited-state potential energy surfaces within the Q band manifold may vanish and find that the excess energy to reach this "touching" region is significantly reduced in the case of FP (0.16 eV) as compared to the one calculated for BP (0.92 eV). Our findings establish a link between the chemical functionalization and the electronic and vibrational structure that can be exploited to control the internal conversion pathways in a systematic way.
Collapse
Affiliation(s)
- Pavel Rukin
- S3 Center, Nanoscience Institute - National Research Council (CNR-NANO), Via Campi 213/a, Modena, Italy
| | - Deborah Prezzi
- S3 Center, Nanoscience Institute - National Research Council (CNR-NANO), Via Campi 213/a, Modena, Italy
| | - Carlo Andrea Rozzi
- S3 Center, Nanoscience Institute - National Research Council (CNR-NANO), Via Campi 213/a, Modena, Italy
| |
Collapse
|
8
|
Fortino M, Schifino G, Pietropaolo A. Simulation workflows to predict the circular dichroism and circularly polarized luminescence of chiral materials. Chirality 2023; 35:673-680. [PMID: 36896846 DOI: 10.1002/chir.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Chiral materials are attracting considerable interest in various fields in view of their unique properties and optical activity. Indeed, the peculiar features of chiral materials to absorb and emit circularly polarized light enable their use in an extensive range of applications. Motivated by the interest in boosting the development of chiral materials characterized by enhanced chiroptical properties such as circular dichroism (CD) and circular polarized luminescence (CPL), we herein illustrate in this tutorial how theoretical simulations can be used for the predictions and interpretations of chiroptical data and for the identification of chiral geometries. We are focusing on computational frameworks that can be used to investigate the theoretical aspects of chiral materials' photophysical and conformational characteristics. We will then illustrate ab initio methods based on density functional theory (DFT) and its time-dependent extension (TD-DFT) to simulate CD and CPL signals, and we will exemplify a variety of enhanced sampling techniques useful for an adequate sampling of the configurational space for chiral systems.
Collapse
Affiliation(s)
- Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Gioacchino Schifino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| |
Collapse
|
9
|
Seibt J, Lindorfer D, Renger T. Signatures of intramolecular vibrational and vibronic Q
x
-Q
y
coupling effects in absorption and CD spectra of chlorophyll dimers. PHOTOSYNTHESIS RESEARCH 2023; 156:19-37. [PMID: 36040654 PMCID: PMC10070234 DOI: 10.1007/s11120-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
An electron-vibrational coupling model that includes the vibronic (non-adiabatic) coupling between the Qy and Qx transitions of chlorophyll (Chl), created by Reimers and coworkers (Scientific Rep. 3, 2761, 2013) is extended here to chlorophyll dimers with interchlorophyll excitonic coupling. The model is applied to a Chl a dimer of the water-soluble chlorophyll binding protein (WSCP). As for isolated chlorophyll, the vibronic coupling is found to have a strong influence on the high-frequency vibrational sideband in the absorption spectrum, giving rise to a band splitting. In contrast, in the CD spectrum the interplay of vibronic coupling and static disorder leads to a strong suppression of the vibrational sideband in excellent agreement with the experimental data. The conservative nature of the CD spectrum in the low-energy region is found to be caused by a delicate balance of the intermonomer excitonic coupling between the purely electronic Qy transition and the Qy transition involving intramolecular vibrational excitations on one hand and the coupling to higher-energy electronic transitions on the other hand.
Collapse
Affiliation(s)
- Joachim Seibt
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria.
| | - Dominik Lindorfer
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria
| |
Collapse
|
10
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
11
|
Reiter S, Bäuml L, Hauer J, de Vivie-Riedle R. Q-Band relaxation in chlorophyll: new insights from multireference quantum dynamics. Phys Chem Chem Phys 2022; 24:27212-27223. [DOI: 10.1039/d2cp02914f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ultrafast relaxation within the Q-bands of chlorophyll plays a crucial role in photosynthetic light-harvesting. We investigate this process via nuclear and electronic quantum dynamics on multireference potential energy surfaces.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Lena Bäuml
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| |
Collapse
|
12
|
Guo H, Worth G, Domcke W. Quantum dynamics with ab initio potentials. J Chem Phys 2021; 155:080401. [PMID: 34470339 DOI: 10.1063/5.0066234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Graham Worth
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|