1
|
Hayman A, Levy N, Goshen Y, Fraenkel M, Kraisler E, Stein T. Spin migration in density functional theory: Energy, potential, and density perspectives. J Chem Phys 2025; 162:114301. [PMID: 40094232 DOI: 10.1063/5.0241200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Spin is a fundamental property of any many-electron system. The ability of density functional theory to accurately predict the physical properties of a system, while varying its spin, is crucial for describing magnetic materials and high-spin molecules, spin flips, and magnetization and demagnetization processes. Within density functional theory, when using various exchange-correlation approximations, the exact dependence of the energy on the spin often deviates from the exact constant or piecewise-linear behavior, which is directly related to the problem of strong (static) correlation and challenges the description of molecular dissociation. In this paper, we study the behavior of the energy, the frontier Kohn-Sham (KS) and generalized KS (GKS) orbitals, the KS potentials, and the electron density, with respect to fractional spin, in different atomic systems. We analyze seven standard exchange-correlation functionals and find two main scenarios of deviation from the expected exact results. We clearly recognize a jump in the frontier orbital energies upon spin variation in the exact exchange and in hybrid functionals, as well as the related plateau in the corresponding KS potential, when using the optimized effective potential method within the KS scheme. When calculations are performed using the GKS approach, no jumps are observed, as expected. Moreover, we demonstrate that for high-spin systems, a full three-dimensional treatment is crucial; the spherical approximation commonly used in atoms causes a qualitative deviation. Our results are instrumental for the assessment of the quality of existing approximations from a new perspective and for the development of advanced functionals with sensitivity to magnetic properties.
Collapse
Affiliation(s)
- Alon Hayman
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - Nevo Levy
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - Yuli Goshen
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - Malachi Fraenkel
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - Eli Kraisler
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - Tamar Stein
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| |
Collapse
|
2
|
Karton A, Haasler M, Kaupp M. Post-CCSD(T) Thermochemistry of Chlorine Fluorides as a Challenging Test Case for Evaluating Density Functional Theory and Composite Ab Initio Methods. Chemphyschem 2025; 26:e202400750. [PMID: 39462206 DOI: 10.1002/cphc.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Quantum chemistry plays a key role in exploring the chemical properties of highly reactive chlorine polyfluoride compounds (ClFn). Here, we investigate the thermochemical properties of ClFn species (n=2-6) by means of high-level thermochemical procedures approximating the CCSDT(Q) and CCSDTQ5 energies at the complete basis set limit. We consider total atomization energies (TAEs), Cl-F bond dissociation energies (BDEs), F2 elimination energies (F2 elim.), ionization potentials (IPs), and electron affinities (EAs). The TAEs have significant contributions from post-CCSD(T) correlation effects. The higher-order triple excitations, CCSDT-CCSD(T), are negative and amount to -0.338 (ClF2), -0.727 (ClF3), -0.903 (ClF4), -1.335 (ClF5), and -1.946 (ClF6) kcal/mol. However, the contributions from quadruple (and, where available, also quintuple) excitations are much larger and positive and amount to +1.335 (ClF2), +1.387 (ClF3), +2.367 (ClF4), +2.399 (ClF5), and +3.432 (ClF6) kcal/mol. Thus, the contributions from post-CCSD(T) excitations exceed the threshold of chemical accuracy in nearly all cases. Due to their increasing hyper-valency and multireference character, the ClFn series provides an interesting and challenging test case for both density functional theory and low-level composite ab initio procedures. Here, we highlight the limitations in achieving overall chemical accuracy across all DFT and most composite ab initio procedures.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale NSW, 2351, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Matthias Haasler
- Institut für Chemie, Theoretische Chemie/Quantenchemie Technische, Sekr. C7, Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie Technische, Sekr. C7, Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| |
Collapse
|
3
|
Ketzel A, Li X, Kaupp M, Sun H, Schattenberg CJ. Benchmark of Density Functional Theory in the Prediction of 13C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation. J Chem Theory Comput 2025; 21:871-885. [PMID: 39761482 PMCID: PMC11780741 DOI: 10.1021/acs.jctc.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set. Additionally, we investigate the representation of the DFT-predicted shielding tensors, such as the eigenvalues and eigenvectors. Moreover, we evaluated how various DFT methods influence the discrimination of possible relative configurations using recently published ΔΔRCSA data for a set of structurally diverse natural products. Our findings demonstrate that accurate interpretation of RCSAs for configurational and conformational analysis is possible with semilocal DFT methods, which also reduce computational demands compared to hybrid functionals such as the commonly used B3LYP.
Collapse
Affiliation(s)
- Anton
Florian Ketzel
- Institut
für Chemie, Strukturelle Chemische Biologie und Cheminformatik, Technische Universität Berlin, Berlin 10623, Germany
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Xiaolu Li
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Medical Sciences, The Second Hospital
of Shandong University, 250033 Jinan, China
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Han Sun
- Institut
für Chemie, Strukturelle Chemische Biologie und Cheminformatik, Technische Universität Berlin, Berlin 10623, Germany
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Caspar Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| |
Collapse
|
4
|
Wodyński A, Glodny K, Kaupp M. Data-Driven Improvement of Local Hybrid Functionals: Neural-Network-Based Local Mixing Functions and Power-Series Correlation Functionals. J Chem Theory Comput 2025; 21:762-775. [PMID: 39805000 PMCID: PMC11780747 DOI: 10.1021/acs.jctc.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network. The input features are of meta-GGA character, while the W4-17 atomization-energy and BH76 reaction-barrier test sets have been used for training. Simply replacing the widely used "t-LMF" of the LH20t functional by the n-LMF provides the LH24n-B95 functional. Augmented by DFT-D4 dispersion corrections, LH24n-B95-D4 remarkably improves the WTMAD-2 value for the large GMTKN55 test suite of general main-group thermochemistry, kinetics, and noncovalent interactions (NCIs) from 4.55 to 3.49 kcal/mol. As we found the limited flexibility of the B95c correlation functional to disfavor much further improvement on NCIs, we proceeded to replace it by an optimized B97c-type power-series expansion. This gives the LH24n functional. LH24n-D4 gives a WTMAD-2 value of 3.10 kcal/mol, the so far lowest value of a rung 4 functional in self-consistent calculations. The new functionals perform moderately well for organometallic transition-metal energetics while leaving room for further data-driven improvements in that area. Compared to complete neural-network functionals like DM21, the present more tailored approach to train just the LMF in a flexible but well-defined human-designed LH functional retains the possibility of graphical LMF analyses to gain deeper understanding. We find that both the present n-LMF and the recent x-LMF suppress the so-called gauge problem of local hybrids without adding a calibration function as required for other LMFs. LMF plots show that this can be traced back to large LMF values in the small-density region between the interacting atoms in NCIs for n- and x-LMFs and low values for the t-LMF. We also find that the trained n-LMF has relatively large values in covalent bonds without deteriorating binding energies. The current approach enables fast and efficient routine self-consistent calculations using n-LMFs in Turbomole.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universitát
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Kilian Glodny
- Technische Universitát
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Martin Kaupp
- Technische Universitát
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany
| |
Collapse
|
5
|
Arbuznikov AV, Wodyński A, Kaupp M. Suppressing the gauge problem in local hybrid functionals without a calibration function: The choice of local mixing function. J Chem Phys 2024; 161:164104. [PMID: 39440756 DOI: 10.1063/5.0233312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Modern functionals based on the exact-exchange (EXX) energy density like local hybrid functionals (LHs) or range-separated LHs have recently received additional attention due to their advantages over established functionals when it comes to the local balance between self-interaction errors and static-correlation errors. A possible theoretical drawback of such functionals over the years has been the so-called gauge problem due to the inherent ambiguity of exchange-energy densities. Modern LHs like LH20t or more sophisticated functionals based thereon have been constructed using suitably optimized calibration functions (CFs) to minimize the mismatch of the semi-local and EXX energy densities. Here, we show that the unphysical contributions arising from the gauge problem may also be reduced significantly without a CF by tailoring the position-dependence of the EXX admixture (local mixing function, LMF) in a way to suppress spurious positive energy-density contributions locally in space. This is achieved by building the so-called x-LMFs upon the ratio between EXX and semi-local exchange-energy densities. The resulting LH24x functional provides similar accuracy, e.g., for the GMTKN55 test suite, as LH20t, but without introduction of a CF! We provide detailed comparative analyses of integrated energies and spatially resolved energy densities. The good performances of LHs for chemically relevant energy differences are to some extent due to the core nature of unphysical artifacts that cancel out efficiently.
Collapse
Affiliation(s)
- Alexei V Arbuznikov
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
6
|
Kaupp M, Wodyński A, Arbuznikov AV, Fürst S, Schattenberg CJ. Toward the Next Generation of Density Functionals: Escaping the Zero-Sum Game by Using the Exact-Exchange Energy Density. Acc Chem Res 2024; 57:1815-1826. [PMID: 38905497 PMCID: PMC11223257 DOI: 10.1021/acs.accounts.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
ConspectusKohn-Sham density functional theory (KS DFT) is arguably the most widely applied electronic-structure method with tens of thousands of publications each year in a wide variety of fields. Its importance and usefulness can thus hardly be overstated. The central quantity that determines the accuracy of KS DFT calculations is the exchange-correlation functional. Its exact form is unknown, or better "unknowable", and therefore the derivation of ever more accurate yet efficiently applicable approximate functionals is the "holy grail" in the field. In this context, the simultaneous minimization of so-called delocalization errors and static correlation errors is the greatest challenge that needs to be overcome as we move toward more accurate yet computationally efficient methods. In many cases, an improvement on one of these two aspects (also often termed fractional-charge and fractional-spin errors, respectively) generates a deterioration in the other one. Here we report on recent notable progress in escaping this so-called "zero-sum-game" by constructing new functionals based on the exact-exchange energy density. In particular, local hybrid and range-separated local hybrid functionals are discussed that incorporate additional terms that deal with static correlation as well as with delocalization errors. Taking hints from other coordinate-space models of nondynamical and strong electron correlations (the B13 and KP16/B13 models), position-dependent functions that cover these aspects in real space have been devised and incorporated into the local-mixing functions determining the position-dependence of exact-exchange admixture of local hybrids as well as into the treatment of range separation in range-separated local hybrids. While initial functionals followed closely the B13 and KP16/B13 frameworks, meanwhile simpler real-space functions based on ratios of semilocal and exact-exchange energy densities have been found, providing a basis for relatively simple and numerically convenient functionals. Notably, the correction terms can either increase or decrease exact-exchange admixture locally in real space (and in interelectronic-distance space), leading even to regions with negative admixture in cases of particularly strong static correlations. Efficient implementations into a fast computer code (Turbomole) using seminumerical integration techniques make such local hybrid and range-separated local hybrid functionals promising new tools for complicated composite systems in many research areas, where simultaneously small delocalization errors and static correlation errors are crucial. First real-world application examples of the new functionals are provided, including stretched bonds, symmetry-breaking and hyperfine coupling in open-shell transition-metal complexes, as well as a reduction of static correlation errors in the computation of nuclear shieldings and magnetizabilities. The newest versions of range-separated local hybrids (e.g., ωLH23tdE) retain the excellent frontier-orbital energies and correct asymptotic exchange-correlation potential of the underlying ωLH22t functional while improving substantially on strong-correlation cases. The form of these functionals can be further linked to the performance of the recent impactful deep-neural-network "black-box" functional DM21, which itself may be viewed as a range-separated local hybrid.
Collapse
Affiliation(s)
- Martin Kaupp
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Susanne Fürst
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Caspar J. Schattenberg
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
7
|
Schattenberg C, Kaupp M. Implementation and First Evaluation of Strong-Correlation-Corrected Local Hybrid Functionals for the Calculation of NMR Shieldings and Shifts. J Phys Chem A 2024; 128:2253-2271. [PMID: 38456430 PMCID: PMC10961831 DOI: 10.1021/acs.jpca.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Local hybrid functionals containing strong-correlation factors (scLHs) and range-separated local hybrids (RSLHs) have been integrated into an efficient coupled-perturbed Kohn-Sham implementation for the calculation of nuclear shielding constants. Several scLHs and the ωLH22t RSLH have then been evaluated for the first time for the extended NS372 benchmark set of main-group shieldings and shifts and the TM70 benchmark of 3d transition-metal shifts. The effects of the strong-correlation corrections have been analyzed with respect to the spatial distribution of the sc-factors, which locally diminish exact-exchange admixture at certain regions in a molecule. The scLH22t, scLH23t-mBR, and scLH23t-mBR-P functionals, which contain a "damped" strong-correlation factor to retain the excellent performance of the underlying LH20t functional for weakly correlated situations, tend to make smaller corrections to shieldings and shifts than the "undamped" scLH22ta functional. While the latter functional can also deteriorate agreement with the reference data in certain weakly correlated cases, it provides overall better performance, in particular for systems where static correlation is appreciable. This pertains only to a minority of systems in the NS372 main-group test set but to many more systems in the TM70 transition-metal test set, in particular for high-oxidation-state complexes, e.g., Cr(+VI) complexes and other systems with stretched bonds. Another undamped scLH, the simpler LDA-based scLH21ct-SVWN-m, also tends to provide significant improvements in many cases. The differences between the functionals and species can be rationalized on the basis of one-dimensional plots of the strong-correlation factors, augmented by isosurface plots of the fractional orbital density (FOD). Position-dependent exact-exchange admixture is thus shown to provide substantial flexibility in treating response properties like NMR shifts for both weakly and strongly correlated systems.
Collapse
Affiliation(s)
- Caspar
Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie
(FMP), Robert-Roessle-Str.
10, 13125 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
8
|
Wodyński A, Lauw B, Reimann M, Kaupp M. Spin-Symmetry Breaking and Hyperfine Couplings in Transition-Metal Complexes Revisited Using Density Functionals Based on the Exact-Exchange Energy Density. J Chem Theory Comput 2024; 20:2033-2048. [PMID: 38411554 PMCID: PMC10938646 DOI: 10.1021/acs.jctc.3c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
A small set of mononuclear manganese complexes evaluated previously for their Mn hyperfine couplings (HFCs) has been analyzed using density functionals based on the exact-exchange energy density─in particular, the spin symmetry breaking (SSB) found previously when using hybrid functionals. Employing various strong-correlation corrected local hybrids (scLHs) and strong-correlation corrected range-separated local hybrids (scRSLHs) with or without additional corrections to their local mixing functions (LMFs) to mitigate delocalization errors (DE), the SSB and the associated dipolar HFCs of [Mn(CN)4]2-, MnO3, [Mn(CN)4N]-, and [Mn(CN)5NO]2- (the latter with cluster embedding) have been examined. Both strong-correlation (sc)-correction and DE-correction terms help to diminish SSB and correct the dipolar HFCs. The DE corrections are more effective, and the effects of the sc corrections depend on their damping factors. Interestingly, the DE-corrections reduce valence-shell spin polarization (VSSP) and thus SSB by locally enhancing exact-exchange (EXX) admixture near the metal center and thereby diminishing spin-density delocalization onto the ligand atoms. In contrast, sc corrections diminish EXX admixture locally, mostly on specific ligand atoms. This then reduces VSSP and SSB as well. The performance of scLHs and scRSLHs for the isotropic Mn HFCs has also been analyzed, with particular attention to core-shell spin-polarization contributions. Further sc-corrected functionals, such as the KP16/B13 construction and the DM21 deep-neural-network functional, have been examined.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Bryan Lauw
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Marc Reimann
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Martin Kaupp
- Technische Universität
Berlin, Institut für Chemie, Theoretische
Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin, D-10623, Germany
| |
Collapse
|
9
|
Goshen Y, Kraisler E. Ensemble Ground State of a Many-Electron System with Fractional Electron Number and Spin: Piecewise-Linearity and Flat-Plane Condition Generalized. J Phys Chem Lett 2024; 15:2337-2343. [PMID: 38386920 PMCID: PMC10926161 DOI: 10.1021/acs.jpclett.3c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Description of many-electron systems with a fractional electron number (Ntot) and fractional spin (Mtot) is of great importance in physical chemistry, solid-state physics, and materials science. In this Letter, we provide an exact description of the zero-temperature ensemble ground state of a general, finite, many-electron system and characterize the dependence of the energy and the spin-densities on both Ntot and Mtot, when the total spin is at its equilibrium value. We generalize the piecewise-linearity principle and the flat-plane condition and determine which pure states contribute to the ground-state ensemble. We find a new derivative discontinuity, which manifests for spin variation at a constant Ntot, as a jump in the Kohn-Sham potential. We identify a previously unknown degeneracy of the ground state, such that the total energy and density are unique, but the spin-densities are not. Our findings serve as a basis for development of advanced approximations in density functional theory and other many-electron methods.
Collapse
Affiliation(s)
- Yuli Goshen
- Fritz Haber Research Center for Molecular
Dynamics and Institute of Chemistry, The
Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - Eli Kraisler
- Fritz Haber Research Center for Molecular
Dynamics and Institute of Chemistry, The
Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| |
Collapse
|
10
|
Schattenberg C, Wodyński A, Åström H, Sundholm D, Kaupp M, Lehtola S. Revisiting Gauge-Independent Kinetic Energy Densities in Meta-GGAs and Local Hybrid Calculations of Magnetizabilities. J Phys Chem A 2023; 127:10896-10907. [PMID: 38100678 PMCID: PMC10758120 DOI: 10.1021/acs.jpca.3c06244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
In a recent study [J. Chem. Theory Comput. 2021, 17, 1457-1468], some of us examined the accuracy of magnetizabilities calculated with density functionals representing the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (mGGA), as well as global hybrid (GH) and range-separated (RS) hybrid functionals by assessment against accurate reference values obtained with coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)]. Our study was later extended to local hybrid (LH) functionals by Holzer et al. [J. Chem. Theory Comput. 2021, 17, 2928-2947]; in this work, we examine a larger selection of LH functionals, also including range-separated LH (RSLH) functionals and strong-correlation LH (scLH) functionals. Holzer et al. also studied the importance of the physically correct handling of the magnetic gauge dependence of the kinetic energy density (τ) in mGGA calculations by comparing the Maximoff-Scuseria formulation of τ used in our aforementioned study to the more physical current-density extension derived by Dobson. In this work, we also revisit this comparison with a larger selection of mGGA functionals. We find that the newly tested LH, RSLH, and scLH functionals outperform all of the functionals considered in the previous studies. The various LH functionals afford the seven lowest mean absolute errors while also showing remarkably small standard deviations and mean errors. Most strikingly, the best two functionals are scLHs that also perform remarkably well in cases with significant multiconfigurational character, such as the ozone molecule, which is traditionally excluded from statistical error evaluations due to its large errors with common density functionals.
Collapse
Affiliation(s)
- Caspar
J. Schattenberg
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Hugo Åström
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Susi Lehtola
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Fürst S, Kaupp M, Wodyński A. Range-Separated Local Hybrid Functionals with Small Fractional-Charge and Fractional-Spin Errors: Escaping the Zero-Sum Game of DFT Functionals. J Chem Theory Comput 2023. [PMID: 37972297 DOI: 10.1021/acs.jctc.3c00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Extending recent developments on strong-correlation (sc) corrections to local hybrid functionals to the recent accurate ωLH22t range-separated local hybrid, a series of highly flexible strong-correlation-corrected range-separated local hybrids (scRSLHs) has been constructed and evaluated. This has required the position-dependent reduction of both short- and long-range exact-exchange admixtures in regions of space characterized by strong static correlations. Using damping procedures provides scRSLHs that retain largely the excellent performance of ωLH22t for weakly correlated situations and, in particular, for accurate quasiparticle energies of a wide variety of systems while reducing dramatically static-correlation errors, e.g., in stretched-bond situations. An additional correction to the local mixing function to reduce delocalization errors in abnormal open-shell situations provides further improvements in thermochemical and kinetic parameters, making scRSLH functionals such as ωLH23tdE or ωLH23tdP promising tools for complex molecular or condensed-phase systems, where low fractional-charge and fractional-spin errors are simultaneously important. The proposed rung 4 functionals thereby largely escape the usual zero-sum game between these two quantities and are expected to open new areas of accurate computations by Kohn-Sham DFT. At the same time, they require essentially no extra computational effort over the underlying ωLH22t functional, which means that their use is only moderately more demanding than that of global, local, or range-separated hybrid functionals.
Collapse
Affiliation(s)
- Susanne Fürst
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
12
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
13
|
Fürst S, Haasler M, Grotjahn R, Kaupp M. Full Implementation, Optimization, and Evaluation of a Range-Separated Local Hybrid Functional with Wide Accuracy for Ground and Excited States. J Chem Theory Comput 2023; 19:488-502. [PMID: 36625881 DOI: 10.1021/acs.jctc.2c00782] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the first full and efficient implementation of range-separated local hybrid functionals (RSLHs) into the TURBOMOLE program package. This enables the computation of ground-state energies and nuclear gradients as well as excitation energies. Regarding the computational effort, RSLHs scale like regular local hybrid functionals (LHs) with system or basis set size and increase timings by a factor of 2-3 in total. An advanced RSLH, ωLH22t, has been optimized for atomization energies and reaction barriers. It is an extension of the recent LH20t local hybrid and is based on short-range PBE and long-range HF exchange-energy densities, a pig2 calibration function to deal with the gauge ambiguity of exchange-energy densities, and reoptimized B95c correlation. ωLH22t has been evaluated for a wide range of ground-state and excited-state quantities. It further improves upon the already successful LH20t functional for the GMTKN55 main-group energetics test suite, and it outperforms any global hybrid while performing close to the top rung-4 functional, ωB97M-V, for these evaluations when augmented by D4 dispersion corrections. ωLH22t performs excellently for transition-metal reactivity and provides good balance between delocalization errors and left-right correlation for mixed-valence systems, with a somewhat larger bias toward localized states compared to LH20t. It approaches the accuracy of the best local hybrids to date for core, valence singlet and triplet, and Rydberg excitation energies while improving strikingly on intra- and intermolecular charge-transfer excitations, comparable to the most successful range-separated hybrids available.
Collapse
Affiliation(s)
- Susanne Fürst
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Matthias Haasler
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
14
|
Eschenbach P, Artiukhin DG, Neugebauer J. Reliable Isotropic Electron-Paramagnetic-Resonance Hyperfine Coupling Constants from the Frozen-Density Embedding Quasi-Diabatization Approach. J Phys Chem A 2022; 126:8358-8368. [DOI: 10.1021/acs.jpca.2c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Denis G. Artiukhin
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
15
|
Wodyński A, Kaupp M. Local Hybrid Functional Applicable to Weakly and Strongly Correlated Systems. J Chem Theory Comput 2022; 18:6111-6123. [PMID: 36170626 DOI: 10.1021/acs.jctc.2c00795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent idea (Wodyński, A.; Arbuznikov, A. V.; Kaupp M. J. Chem. Phys. 2021, 155, 144101) to augment local hybrid functionals by a strong-correlation (sc) factor obtained from the adiabatic connection in the spirit of the KP16 model has been extended and applied to generate the accurate sc-corrected local hybrid functional scLH22t. By damping small values of the ratio between nondynamical and dynamical correlation entering the correction factor, it has become possible to avoid double counting of nondynamical correlation for weakly correlated situations and thereby preserve the excellent accuracy of the underlying LH20t local hybrid for such cases almost perfectly. On the other hand, scLH22t improves substantially over LH20t in reducing fractional-spin errors (FSEs), in providing improved spin-restricted bond dissociation curves, and in treating some typical systems with multireference character. The obtained FSEs are similar to those of the KP16/B13 model and slightly larger than for B13, but performance for weakly correlated systems is better than for these two related methods, which are also difficult to use self-consistently. The recent DM21 functional based on the training of a deep neural network still performs somewhat better than scLH22t but allows no physical insights into the origins of reduced FSEs. Examination of local mixing functions (LMFs) for the corrected scLH22t and uncorrected LH20t functionals provides further insights: in weakly correlated situations, the LMF remains essentially unchanged. Strong-correlation effects manifest in a reduction of the LMF values in certain regions of space, even to the extent of producing negative LMF values. It is suggested that this is the mechanism by which also DM21, which may be viewed as a range-separated local hybrid, is able to reduce FSEs.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
16
|
Bryenton KR, Adeleke AA, Dale SG, Johnson ER. Delocalization error: The greatest outstanding challenge in density‐functional theory. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle R. Bryenton
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
| | | | - Stephen G. Dale
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Erin R. Johnson
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
- Department of Chemistry Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|