1
|
House A, Santillan A, Correa E, Youssef V, Guvendiren M. Cellular Alignment and Matrix Stiffening Induced Changes in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Adv Healthc Mater 2025; 14:e2402228. [PMID: 39468891 DOI: 10.1002/adhm.202402228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Biological processes are inherently dynamic, necessitating biomaterial platforms capable of spatiotemporal control over cellular organization and matrix stiffness for accurate study of tissue development, wound healing, and disease. However, most in vitro platforms remain static. In this study, a dynamic biomaterial platform comprising a stiffening hydrogel is introduced and achieved through a stepwise approach of addition followed by light-mediated crosslinking, integrated with an elastomeric substrate featuring strain-responsive lamellar surface patterns. Employing this platform, the response of human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) is investigated to dynamic stiffening from healthy to fibrotic tissue stiffness. The results demonstrate that culturing hIPSC-CMs on physiologically relevant healthy stiffness significantly enhances their function, as evidenced by increased sarcomere fraction, wider sarcomere width, significantly higher connexin-43 content, and elevated cell beating frequency compared to cells cultured on fibrotic matrix. Conversely, dynamic matrix stiffening negatively impacts hIPSC-CM function, with earlier stiffening events exerting a more pronounced hindering effect. These findings provide valuable insights into material-based approaches for addressing existing challenges in hIPSC-CM maturation and have broader implications across various tissue models, including muscle, tendon, nerve, and cornea, where both cellular alignment and matrix stiffening play pivotal roles in tissue development and regeneration.
Collapse
Affiliation(s)
- Andrew House
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Anjeli Santillan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Evan Correa
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Victoria Youssef
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Murat Guvendiren
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Moheimani H, Stealey S, Neal S, Ferchichi E, Zhang J, Foston M, Setton LA, Genin G, Huebsch N, Zustiak SP. Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Adv Healthc Mater 2024; 13:e2401550. [PMID: 39075933 PMCID: PMC11671294 DOI: 10.1002/adhm.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Alginate hydrogels are widely used as biomaterials for cell culture and tissue engineering due to their biocompatibility and tunable mechanical properties. Reducing alginate molecular weight is an effective strategy for modulating hydrogel viscoelasticity and stress relaxation behavior, which can significantly impact cell spreading and fate. However, current methods like gamma irradiation to produce low molecular weight alginates suffer from high cost and limited accessibility. Here, a facile and cost-effective approach to reduce alginate molecular weight in a highly controlled manner using serial autoclaving is presented. Increasing the number of autoclave cycles results in proportional reductions in intrinsic viscosity, hydrodynamic radius, and molecular weight of the polymer while maintaining its chemical composition. Hydrogels fabricated from mixtures of the autoclaved alginates exhibit tunable mechanical properties, with inclusion of lower molecular weight alginate leading to softer gels with faster stress relaxation behaviors. The method is demonstrated by establishing how viscoelastic relaxation affects the spreading of encapsulated fibroblasts and glioblastoma cells. Results establish repetitive autoclaving as an easily accessible technique to generate alginates with a range of molecular weights and to control the viscoelastic properties of alginate hydrogels, and demonstrate utility across applications in mechanobiology, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Hamidreza Moheimani
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, MO, 63130
| | - Samuel Stealey
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO, 63103
| | - Sydney Neal
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130
| | - Eya Ferchichi
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, MO, 63130
| | - Jialang Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in Saint Louis, Saint Louis, MO, 63130
| | - Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University in Saint Louis, Saint Louis, MO, 63130
| | - Lori A. Setton
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130
| | - Guy Genin
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, MO, 63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130
| | - Nathaniel Huebsch
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, MO, 63130
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130
| | - Silviya P. Zustiak
- NSF Science and Technology Center for Engineering MechanoBiology (CEMB), Washington University in Saint Louis, MO, 63130
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO, 63103
| |
Collapse
|
3
|
Wagh H, Bhattacharya S. Targeted therapy with polymeric nanoparticles in PBRM1-mutant biliary tract cancers: Harnessing DNA damage repair mechanisms. Crit Rev Oncol Hematol 2024; 204:104505. [PMID: 39255911 DOI: 10.1016/j.critrevonc.2024.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Biliary tract cancers (BTCs) are aggressive malignancies with a dismal prognosis that require intensive targeted therapy. Approximately 10 % of BTCs have PBRM1 mutations, which impede DNA damage repair pathways and make cancer cells more susceptible to DNA-damaging chemicals. This review focus on development of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeting delivery system to selectively deliver chemotherapy into PBRM1-deficient BTC cells. These nanoparticles improve therapy efficacy by increasing medication targeting and retention at tumour locations. In preclinical studies, pharmacokinetic profile of this nanoparticle was encouraging and supported its ability to achieve extended circulation time with high drug accumulation in tumor. The review also highlights potential of Pou3F3:I54N to expedite bioassays for patient selection in BTC targeted therapies.
Collapse
Affiliation(s)
- Hrushikesh Wagh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
4
|
Matsumoto K, Nakagawa K, Asanuma D, Fukuhara G. Recent advances in cancer detection using dynamic, stimuli-responsive supramolecular chemosensors. a focus review. Front Chem 2024; 12:1478034. [PMID: 39435264 PMCID: PMC11491855 DOI: 10.3389/fchem.2024.1478034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
In current chemistry, supramolecular materials that respond to a wide variety of external stimuli, such as solvents, temperature, light excitation, pH, and mechanical forces (pressure, stress, strain, and tension), have attracted considerable attention; for example, we have developed cyclodextrins, cucurbiturils, pillararenes, calixarenes, crown ether-based chemical sensors, or chemosensors. These supramolecular chemosensors have potential applications in imaging, probing, and cancer detection. Recently, we focused on pressure, particularly solution-state hydrostatic pressure, from the viewpoint of cancer therapy. This Mini Review summarizes (i) why hydrostatic pressure is important, particularly in biology, and (ii) what we can do using hydrostatic pressure stimulation.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Keiichi Nakagawa
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Asanuma
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
5
|
Gracheva E, Wang Y, Zhu J, Wang F, Matt A, Fishman M, Liang H, Zhou C. Dual color optogenetic tool enables heart arrest, bradycardic, and tachycardic pacing in Drosophila melanogaster. Commun Biol 2024; 7:1056. [PMID: 39191986 PMCID: PMC11349975 DOI: 10.1038/s42003-024-06703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
In order to facilitate cardiovascular research to develop non-invasive optical heart pacing methods, we have generated a double-transgenic Drosophila melanogaster (fruit fly) model suitable for optogenetic pacing. We created a fly stock with both excitatory H134R-ChR2 and inhibitory eNpHR2.0 opsin transgenes. Opsins were expressed in the fly heart using the Hand-GAL4 driver. Here we describe Hand > H134R-ChR2; eNpHR2.0 model characterization including bi-directional heart control (activation and inhibition) upon illumination of light with distinct wavelengths. Optical control and real-time visualization of the heart function were achieved non-invasively using an integrated light stimulation and optical coherence microscopy (OCM) system. OCM produced high-speed and high-resolution imaging; simultaneously, the heart function was modulated by blue (470 nm) or red (617 nm) light pulses causing tachycardia, bradycardia and restorable cardiac arrest episodes in the same animal. The irradiance power levels and illumination schedules were optimized to achieve successful non-invasive bi-directional heart pacing in Drosophila larvae and pupae.
Collapse
Affiliation(s)
- Elena Gracheva
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Yuxuan Wang
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Jiantao Zhu
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Abigail Matt
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Matthew Fishman
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
- Department of Computer Science and Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Hongwu Liang
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Dr, St Louis, MO, USA.
| |
Collapse
|
6
|
Schuftan D, Kooh YKG, Guo J, Sun Y, Aryan L, Stottlemire B, Berkland C, Genin GM, Huebsch N. Dynamic control of contractile resistance to iPSC-derived micro-heart muscle arrays. J Biomed Mater Res A 2024; 112:534-548. [PMID: 37952251 PMCID: PMC10922390 DOI: 10.1002/jbm.a.37642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Many types of cardiovascular disease are linked to the mechanical forces placed on the heart. However, our understanding of how mechanical forces exactly affect the cellular biology of the heart remains incomplete. In vitro models based on cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CM) enable researchers to develop medium to high-throughput systems to study cardiac mechanobiology at the cellular level. Previous models have been developed to enable the study of mechanical forces, such as cardiac afterload. However, most of these models require exogenous extracellular matrix (ECM) to form cardiac tissues. Recently, a system was developed to simulate changes in afterload by grafting ECM-free micro-heart muscle arrays to elastomeric substrates of discrete stiffnesses. In the present study, we extended this system by combining the elastomer-grafted tissue arrays with a magnetorheological elastomeric substrate. This system allows iPSC-CM based micro-heart muscle arrays to experience dynamic changes in contractile resistance to mimic dynamically altered afterload. Acute changes in substrate stiffness led to acute changes in the calcium dynamics and contractile forces, illustrating the system's ability to dynamically elicit changes in tissue mechanics by dynamically changing contractile resistance.
Collapse
Affiliation(s)
- David Schuftan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yasaman Kargar Gaz Kooh
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yuwen Sun
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lavanya Aryan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bryce Stottlemire
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- NSF Center for Engineering Mechanobiology, St. Louis, Missouri, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- NSF Center for Engineering Mechanobiology, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
8
|
Abdelrahman S, Ge R, Susapto HH, Liu Y, Samkari F, Moretti M, Liu X, Hoehndorf R, Emwas AH, Jaremko M, Rawas RH, Hauser CAE. The Impact of Mechanical Cues on the Metabolomic and Transcriptomic Profiles of Human Dermal Fibroblasts Cultured in Ultrashort Self-Assembling Peptide 3D Scaffolds. ACS NANO 2023; 17:14508-14531. [PMID: 37477873 DOI: 10.1021/acsnano.3c01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on in vitro two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) in vivo systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to in vivo systems. Despite the emergence of a plethora of 3D matrices to address this challenge, there are few reports offering a proper characterization of these matrices or studying how the cell-matrix interaction influences cellular metabolism in correlation with gene expression. In this study, two tetrameric ultrashort self-assembling peptide sequences, FFIK and FIIK, were used to create in vitro 3D models using well-described human dermal fibroblast cells. The peptide sequences are derived from naturally occurring amino acids that are capable of self-assembling into stable hydrogels without UV or chemical cross-linking. Our results showed that 2D cultured fibroblasts exhibited distinct metabolic and transcriptomic profiles compared to 3D cultured cells. The observed changes in the metabolomic and transcriptomic profiles were closely interconnected and influenced several important metabolic pathways including the TCA cycle, glycolysis, MAPK signaling cascades, and hemostasis. Data provided here may lead to clearer insights into the influence of the surrounding microenvironment on human dermal fibroblast metabolic patterns and molecular mechanisms, underscoring the importance of utilizing efficient 3D in vitro models to study such complex mechanisms.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang Liu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xinzhi Liu
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ranim H Rawas
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Forró C, Musall S, Montes VR, Linkhorst J, Walter P, Wessling M, Offenhäusser A, Ingebrandt S, Weber Y, Lampert A, Santoro F. Toward the Next Generation of Neural Iontronic Interfaces. Adv Healthc Mater 2023; 12:e2301055. [PMID: 37434349 PMCID: PMC11468917 DOI: 10.1002/adhm.202301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Neural interfaces are evolving at a rapid pace owing to advances in material science and fabrication, reduced cost of scalable complementary metal oxide semiconductor (CMOS) technologies, and highly interdisciplinary teams of researchers and engineers that span a large range from basic to applied and clinical sciences. This study outlines currently established technologies, defined as instruments and biological study systems that are routinely used in neuroscientific research. After identifying the shortcomings of current technologies, such as a lack of biocompatibility, topological optimization, low bandwidth, and lack of transparency, it maps out promising directions along which progress should be made to achieve the next generation of symbiotic and intelligent neural interfaces. Lastly, it proposes novel applications that can be achieved by these developments, ranging from the understanding and reproduction of synaptic learning to live-long multimodal measurements to monitor and treat various neuronal disorders.
Collapse
Affiliation(s)
- Csaba Forró
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| | - Simon Musall
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute for ZoologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Viviana Rincón Montes
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
| | - John Linkhorst
- Chemical Process EngineeringRWTH AachenForckenbeckstr. 5152074AachenGermany
| | - Peter Walter
- Department of OphthalmologyUniversity Hospital RWTH AachenPauwelsstr. 3052074AachenGermany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH AachenForckenbeckstr. 5152074AachenGermany
- DWI Leibniz Institute for Interactive MaterialsRWTH AachenForckenbeckstr. 5052074AachenGermany
| | - Andreas Offenhäusser
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| | - Yvonne Weber
- Department of EpileptologyNeurology, RWTH AachenPauwelsstr. 3052074AachenGermany
| | - Angelika Lampert
- Institute of NeurophysiologyUniklinik RWTH AachenPauwelsstrasse 3052074AachenGermany
| | - Francesca Santoro
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| |
Collapse
|
10
|
Martino S. Mechanobiology in Cells and Tissues. Int J Mol Sci 2023; 24:ijms24108564. [PMID: 37239910 DOI: 10.3390/ijms24108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This Editorial is a comment on the success of the Special Issue "Mechanobiology in Cells and Tissues" published in the International Journal of Molecular Sciences [...].
Collapse
Affiliation(s)
- Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|