1
|
Chin-Smith EC, Willey FR, Slater DM, Taggart MJ, Tribe RM. Nuclear factor of activated T-cell isoform expression and regulation in human myometrium. Reprod Biol Endocrinol 2015; 13:83. [PMID: 26238508 PMCID: PMC4523953 DOI: 10.1186/s12958-015-0086-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During pregnancy, myometrial gene and protein expression is tightly regulated to accommodate fetal growth, promote quiescence and ultimately prepare for the onset of labour. It is proposed that changes in calcium signalling, may contribute to regulating gene expression and that nuclear factor of activated T-cell (NFAT) transcription factors (isoforms c1-c4) may be involved. Currently, there is little information regarding NFAT expression and regulation in myometrium. METHODS This study examined NFAT isoform mRNA expression in human myometrial tissue and cells from pregnant women using quantitative PCR. The effects of the Ca(2+) ionophore A23187 and in vitro stretch (25 % elongation, static strain; Flexercell FX-4000 Tension System) on NFAT expression were determined in cultured human myometrial cells. RESULTS Human myometrial tissue and cultured cells expressed NFATc1-c4 mRNA. NFATc2 gene expression in cultured cells was increased in response to 6 h stretch (11.5 fold, P < 0.001, n = 6) and calcium ionophore (A23187, 5 μM) treatment (20.6 fold, P < 0.001, n = 6). This response to stretch was significantly reduced (90 %, P < 0.001, n = 10) in the presence of an intracellular calcium chelator, BAPTA-AM (20 μM). CONCLUSIONS These data suggest that NFATc2 expression is regulated by intracellular calcium and in vitro stretch, and that the stretch response in human myometrial cells is dependent upon intracellular calcium signalling pathways. Our findings indicate a potentially unique role for NFATc2 in mediating stretch-induced gene expression per se and warrant further exploration in relation to the mechanisms promoting uterine smooth muscle growth in early pregnancy and/or labour.
Collapse
Affiliation(s)
- Evonne C Chin-Smith
- Division of Women's Health, King's College London, Women's Health Academic Centre KHP, St Thomas' Hospital, 10th Floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Frances R Willey
- Division of Women's Health, King's College London, Women's Health Academic Centre KHP, St Thomas' Hospital, 10th Floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Donna M Slater
- Physiology and Pharmacology, Cumming School of Medicine, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Alberta, T2N 4 N1, Canada.
| | - Michael J Taggart
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Rachel M Tribe
- Division of Women's Health, King's College London, Women's Health Academic Centre KHP, St Thomas' Hospital, 10th Floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
2
|
Le Billan F, Khan JA, Lamribet K, Viengchareun S, Bouligand J, Fagart J, Lombès M. Cistrome of the aldosterone-activated mineralocorticoid receptor in human renal cells. FASEB J 2015; 29:3977-89. [PMID: 26054365 DOI: 10.1096/fj.15-274266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023]
Abstract
Aldosterone exerts its effects mainly by activating the mineralocorticoid receptor (MR), a transcription factor that regulates gene expression through complex and dynamic interactions with coregulators and transcriptional machinery, leading to fine-tuned control of vectorial ionic transport in the distal nephron. To identify genome-wide aldosterone-regulated MR targets in human renal cells, we set up a chromatin immunoprecipitation (ChIP) assay by using a specific anti-MR antibody in a differentiated human renal cell line expressing green fluorescent protein (GFP)-MR. This approach, coupled with high-throughput sequencing, allowed identification of 974 genomic MR targets. Computational analysis identified an MR response element (MRE) including single or multiple half-sites and palindromic motifs in which the AGtACAgxatGTtCt sequence was the most prevalent motif. Most genomic MR-binding sites (MBSs) are located >10 kb from the transcriptional start sites of target genes (84%). Specific aldosterone-induced recruitment of MR on the first most relevant genomic sequences was further validated by ChIP-quantitative (q)PCR and correlated with concomitant and positive aldosterone-activated transcriptional regulation of the corresponding gene, as assayed by RT-qPCR. It was notable that most MBSs lacked MREs but harbored DNA recognition motifs for other transcription factors (FOX, EGR1, AP1, PAX5) suggesting functional interaction. This work provides new insights into aldosterone MR-mediated renal signaling and opens relevant perspectives for mineralocorticoid-related pathophysiology.
Collapse
Affiliation(s)
- Florian Le Billan
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Junaid A Khan
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Khadija Lamribet
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Say Viengchareun
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Jérôme Fagart
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Marc Lombès
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
3
|
Patra AK, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, Serfling E, Bommhardt UH. PKB Rescues Calcineurin/NFAT-Induced Arrest of Rag Expression and Pre-T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2006; 177:4567-76. [PMID: 16982894 DOI: 10.4049/jimmunol.177.7.4567] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase B (PKB), an Ag receptor activated serine-threonine kinase, controls various cellular processes including proliferation and survival. However, PKB function in thymocyte development is still unclear. We report PKB as an important negative regulator of the calcineurin (CN)-regulated transcription factor NFAT in early T cell differentiation. Expression of a hyperactive version of CN induces a profound block at the CD25+CD44- double-negative (DN) 3 stage of T cell development. We correlate this arrest with up-regulation of Bcl-2, CD2, CD5, and CD27 proteins and constitutive activation of NFAT but a severe impairment of Rag1, Rag2, and intracellular TCR-beta as well as intracellular TCR-gammadelta protein expression. Intriguingly, simultaneous expression of active myristoylated PKB inhibits nuclear NFAT activity, restores Rag activity, and enables DN3 cells to undergo normal differentiation and expansion. A correlation between the loss of NFAT activity and Rag1 and Rag2 expression is also found in myristoylated PKB-induced CD4+ lymphoma cells. Furthermore, ectopic expression of NFAT inhibits Rag2 promoter activity in EL4 cells, and in vivo binding of NFATc1 to the Rag1 and Rag2 promoter and cis-acting transcription regulatory elements is verified by chromatin immunoprecipitation analysis. The regulation of CN/NFAT signaling by PKB may thus control receptor regulated changes in Rag expression and constitute a signaling pathway important for differentiation processes in the thymus and periphery.
Collapse
Affiliation(s)
- Amiya K Patra
- Institute of Virology and Immunobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Glud SZ, Sørensen AB, Andrulis M, Wang B, Kondo E, Jessen R, Krenacs L, Stelkovics E, Wabl M, Serfling E, Palmetshofer A, Pedersen FS. A tumor-suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus. Blood 2005; 106:3546-52. [PMID: 16051745 PMCID: PMC1895049 DOI: 10.1182/blood-2005-02-0493] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nuclear factor of activated T cell (NFAT) transcription factors play a central role in differentiation, activation, and elimination of lymphocytes. We here report on the finding of provirus integration into the Nfatc3 locus in T-cell lymphomas induced by the murine lymphomagenic retrovirus SL3-3 and show that NFATc3 expression is repressed in these lymphomas. The provirus insertions are positioned close to the Nfatc3 promoter or a putative polyadenylated RNA (polyA) region. Furthermore, we demonstrate that NFATc3-deficient mice infected with SL3-3 develop T-cell lymphomas faster and with higher frequencies than wild-type mice or NFATc2-deficient mice. These results identify NFATc3 as a tumor suppressor for the development of murine T-cell lymphomas induced by the retrovirus SL3-3.
Collapse
|
5
|
DeRyckere D, Mann DL, DeGregori J. Characterization of transcriptional regulation during negative selection in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:802-11. [PMID: 12847248 DOI: 10.4049/jimmunol.171.2.802] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Negative selection is the process whereby immature thymocytes expressing TCRs with high affinity for self-peptide:MHC complexes are induced to undergo apoptosis. The transcriptional events that occur as a result of TCR signaling during negative selection are not well-characterized. Using oligonucleotide arrays, we have identified 33 genes that exhibit changes in RNA levels in CD4(+)CD8(+) thymocytes during negative selection in vivo. Of 18 genes that have been further characterized, 13 are regulated in response to stimulation with Ag or anti-CD3 and anti-CD28 Abs ex vivo, indicating that these genes are regulated independently of activation of the peripheral immune system. These data also support the idea that anti-CD3/CD28-mediated thymocyte apoptosis is a valid model for negative selection in vivo. A detailed examination of the regulation of many of the identified genes in response to treatment with dexamethasone or gamma-radiation or in response to anti-CD3/anti-CD28 stimulation in the presence of pharmacological inhibitors of mitogen-activated protein kinase kinase kinase 1, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase, calcineurin, and cyclin-dependent kinase 2 has facilitated the elucidation of a map of the transcriptional events that occur downstream of the TCR. These studies support a model whereby similar signal transduction pathways are activated by stimuli that induce positive and negative selection and are consistent with the idea that the balance between opposing proapoptotic and antiapoptotic pathways determines cell fate. The data presented in this study also suggest that calcineurin functions to amplify TCR signals by promoting sustained increases in the levels of specific transcripts.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|