1
|
Monika M, Tyagi JS, Sonale N, Biswas A, Murali D, Sky, Tiwari AK, Rokade JJ. Evaluating the efficacy of Lactobacillus acidophilus derived postbiotics on growth metrics, Health, and Gut Integrity in broiler chickens. Sci Rep 2024; 14:24768. [PMID: 39433775 PMCID: PMC11494069 DOI: 10.1038/s41598-024-74078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Continuous use of antibiotics in poultry feed as growth promoters poses a grave threat to humanity through the emergence of antibiotic resistance, necessitating the exploration of novel and sustainable alternatives. The present study was carried out to evaluate the performance of postbiotics derived from Lactobacillus acidophilus in broiler birds. The postbiotics were harvested by culturing probiotic bacteria from the stock cultures at the required temperature and duration under laboratory conditions and supplemented to broilers via feed. For experimentation, 480-day-old CARI-Bro Dhanraja (slow-growing broiler) straight-run chicks were randomly split up into six groups. Treatment groups diets are as follows: T1- Basal diet (BD)+0.2%(v/w) MRS Broth/ uninoculated media; T2 - BD + Antibiotic (CTC); T3- BD + Probiotic; T4, T5 & T6 - BD + postbiotics supplementation of 0.2%, 0.4% and 0.6% (v/w) respectively. The chicks were raised under an intensive, deep litter system with standard protocol for 6 weeks. Results showed that 0.2% of postbiotics (T4) had significantly (P < 0.001) higher body weight (1677.52 g) with better FCR (1.75) and immune response. Postbiotic supplementation altered various serum attributes positively, in this study. Significant (P < 0.001) reductions in total plate counts (TPC), coliform counts, and maximum Lactobacillus counts were recorded in all postbiotic-supplemented groups. The villus height (1379.25 μm), width (216.06 μm) and crept depth (179.25 μm) showed significant (P < 0.001) improvement among the treatment groups on the 21st and 42nd day of the experimental trial, with the highest value in the T4 group (0.2% postbiotic supplementation). Jejunal antioxidant values also noted significantly (P < 0.001) higher values in T4 group. The study concludes that 0.2% postbiotic supplementation can act as a substitute to antibiotic growth promoters and also combat the disfavour activity of probiotics in broilers.
Collapse
Affiliation(s)
- M Monika
- ICAR-Indian Agricultural Research Institute, Hazaribagh, Jharkhand, 825405, India
| | - Jagbir Singh Tyagi
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India.
| | - Nagesh Sonale
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Avishek Biswas
- ICAR- Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250001, India
| | - Dinesh Murali
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Sky
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | - A K Tiwari
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | | |
Collapse
|
2
|
Li C, Yan X, Yang Y, Nou X, Sun Z, Lillehoj HS, Lu M, Harlow K, Rivera I. In vitro and genomic mining studies of anti-Clostridium perfringens Compounds Derived from Bacillus amyloliquefaciens. Poult Sci 2024; 103:103871. [PMID: 38848632 PMCID: PMC11214307 DOI: 10.1016/j.psj.2024.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Clostridium perfringens is an important opportunistic microorganism in commercial poultry production that is implicated in necrotic enteritis (NE) outbreaks. This disease poses a severe financial burden on the global poultry industry, causing estimated annual losses of $6 billion globally. The ban on in-feed antibiotic growth promoters has spurred investigations into approaches of alternatives to antibiotics, among which Bacillus probiotics have demonstrated varying degrees of effectiveness against NE. However, the precise mechanisms underlying Bacillus-mediated beneficial effects on host responses in NE remain to be further elucidated. In this manuscript, we conducted in vitro and genomic mining analysis to investigate anti-C. perfringens activity observed in the supernatants derived from 2 Bacillus amyloliquefaciens strains (FS1092 and BaD747). Both strains demonstrated potent anti-C. perfringens activities in in vitro studies. An analysis of genomes from 15 B. amyloliquefaciens, 11 B. velezensis, and 2 B. subtilis strains has revealed an intriguing clustering pattern among strains known to possess anti-C. perfringens activities. Furthermore, our investigation has identified 7 potential antimicrobial compounds, predicted as secondary metabolites through antiSMASH genomic mining within the published genomes of B. amyloliquefaciens species. Based on in vitro analysis, BaD747 may have the potential as a probiotic in the control of NE. These findings not only enhance our understanding of B. amyloliquefaciens's action against C. perfringens but also provide a scientific rationale for the development of novel antimicrobial therapeutic agents against NE.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA.
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Yishan Yang
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - KaLynn Harlow
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Israel Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Kim YB, Park J, Lee HG, Song JY, Kim DH, Ji W, Joo SS, Kim M, Jung JY, Kim M, Lee KW. Dietary probiotic Lacticaseibacillus paracasei NSMJ56 modulates gut immunity and microbiota in laying hens. Poult Sci 2024; 103:103505. [PMID: 38359769 PMCID: PMC10877954 DOI: 10.1016/j.psj.2024.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.
Collapse
Affiliation(s)
- Yoo Bhin Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea; Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration (NIAS-RDA), Wanju 55365, South Korea
| | - Jina Park
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hyun-Gwan Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Ju-Yong Song
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Woonhak Ji
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea
| | - Sang Seok Joo
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, South Korea; Institute for Future Earth, JYS Institute for Basic Science, Pusan National University, Busan 46241, South Korea
| | - Ji Young Jung
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, South Korea
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration (NIAS-RDA), Wanju 55365, South Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
4
|
Lee KW, Lillehoj HS. Role of Clostridium perfringens Necrotic Enteritis B-like Toxin in Disease Pathogenesis. Vaccines (Basel) 2021; 10:vaccines10010061. [PMID: 35062722 PMCID: PMC8780507 DOI: 10.3390/vaccines10010061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type A/G that impacts the global poultry industry by compromising the performance, health, and welfare of chickens. Coccidiosis is a major contributing factor to NE. Although NE pathogenesis was believed to be facilitated by α-toxin, a chromosome-encoded phospholipase C enzyme, recent studies have indicated that NE B-like (NetB) toxin, a plasmid-encoded pore-forming heptameric protein, is the primary virulence factor. Since the discovery of NetB toxin, the occurrence of NetB+ C. perfringens strains has been increasingly reported in NE-afflicted poultry flocks globally. It is generally accepted that NetB toxin is the primary virulent factor in NE pathogenesis although scientific evidence is emerging that suggests other toxins contribute to NE. Because of the complex nature of the host-pathogen interaction in NE pathogenesis, the interaction of NetB with other potential virulent factors of C. perfringens needs better characterization. This short review will summarize the primary virulence factors involved in NE pathogenesis with an emphasis on NetB toxin, and a new detection method for large-scale field screening of NetB toxin in biological samples from NE-afflicted commercial broiler flocks.
Collapse
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0495
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
| |
Collapse
|
5
|
Frimpong Y, Boateng M, Amoah K, Atuahene P, Okungbowa S, Baah J, Okai D. Response of large white gilts to diets containing differing probiotic products. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals (Basel) 2020; 10:ani10101863. [PMID: 33066185 PMCID: PMC7602066 DOI: 10.3390/ani10101863] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Probiotics are live bacteria, fungi, or yeasts that supplement the gastrointestinal flora and help to maintain a healthy digestive system, thereby promoting the growth performance and overall health of poultry. Probiotics are increasingly being included in poultry diets as an alternative to antibiotics. This systematic review provides a summary of the use of probiotics in poultry production and the potential role of probiotics in the nutrient utilization, growth and laying performance, and gut health of poultry. Abstract Probiotics are live microorganisms which, when administered in adequate amounts, confer health benefits to the host. The use of probiotics in poultry has increased steadily over the years due to higher demand for antibiotic-free poultry. The objective of this systematic review is to present and evaluate the effects of probiotics on the nutrient utilization, growth and laying performance, gut histomorphology, immunity, and gut microbiota of poultry. An electronic search was conducted using relevant keywords to include papers pertinent to the topic. Seventeen commonly used probiotic species were critically assessed for their roles in the performance and gut health of poultry under existing commercial production conditions. The results showed that probiotic supplementation could have the following effects: (1) modification of the intestinal microbiota, (2) stimulation of the immune system, (3) reduction in inflammatory reactions, (4) prevention of pathogen colonization, (5) enhancement of growth performance, (6) alteration of the ileal digestibility and total tract apparent digestibility coefficient, and (7) decrease in ammonia and urea excretion. Thus, probiotics can serve as a potential alternative to antibiotic growth promoters in poultry production. However, factors such as the intestinal health condition of birds, the probiotic inclusion level; and the incubation conditions, feedstuff, and water quality offered to birds may affect the outcome. This systematic review provides a summary of the use of probiotics in poultry production, as well as the potential role of probiotics in the nutrient utilization, growth and laying performance, and gut health of poultry.
Collapse
|
7
|
Flores C, Duong T, Augspurger N, Lee J. Efficacy of Bacillus subtilis administered as a direct-fed microorganism in comparison to an antibiotic growth promoter and in diets with low and high DDGS inclusion levels in broiler chickens. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
8
|
An BK, Kim JH, Zheng L, Moon BH, Lee KW. Effects of dietary supplementation with detoxified Rhus verniciflua sap on egg production, yolk lipid and intestinal microflora in laying hens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:86-90. [PMID: 28728393 PMCID: PMC5756928 DOI: 10.5713/ajas.17.0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to investigate the effects of dietary detoxified Rhus verniciflua sap (RVS) on production performance, egg quality, lipid fractions of egg yolk, liver and serum, and the profile of cecal microflora in laying hens. Methods Two hundred 52-week-old Hy-Line Brown layers were randomly divided into 4 groups with 5 replicates per group (2 hens per cage, 5 cages per replicate) and were provided with one of 4 experimental diets containing 0%, 0.05%, 0.1%, or 0.2% RVS, for 6 weeks. Due to unequal intervals of RVS doses, the interactive matrix language procedure of the SAS program was used to correct the contrast coefficients of orthogonal polynomials. Results There were no differences in feed intake and egg weight among the groups. Egg production increased (linearly and quadratically, p<0.05) with increasing levels of RVS. Eggshell thickness increased (linear, p<0.05) as the level of RVS in diets increased. The levels of blood cholesterol and activities of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase were not altered by dietary treatments. Increasing level of RVS increased (linear, p<0.05) the populations of cecal lactic acid bacteria. The content of yolk cholesterol decreased (linear, p< 0.05) with increasing levels of dietary RVS, although there were no significant differences in each lipid fraction of the liver. Conclusion This study indicates that dietary RVS could improve laying performance and eggshell quality, and affect cecal lactic acid bacteria in a dose-dependent manner.
Collapse
Affiliation(s)
- Byoung-Ki An
- Laboratory of Poultry Science, Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Je-Hun Kim
- Laboratory of Poultry Science, Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Lan Zheng
- Laboratory of Poultry Science, Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | | | - Kyung-Woo Lee
- Laboratory of Poultry Science, Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|