1
|
Höffmann L, Blei M, Reissig F, Kopka K, Mamat C. Preparation of Macrobicyclic Cryptands for Radiometal Complexation: Preparation of Macropa-Based Cryptands for Efficient Complexation of Radiometals. J Labelled Comp Radiopharm 2025; 68:e4136. [PMID: 40040466 PMCID: PMC11880877 DOI: 10.1002/jlcr.4136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Macrobicyclic cryptands and especially derivatives with functionalized side arms (picolinate, pyrimidine carboxylate, and bipyridine carboxylate) are able to complex metal ions effectively. In this regard, four new functionalized cryptands were prepared in a convenient two-step synthesis procedure starting from basic compound 4,10,16,22,27-pentaoxa-1,7,13,19-tetraazabicyclo[11.11.5]nonacosane and fully characterized. Their complexation behavior was tested via 1H NMR titration with Ba2+, Sc3+, La3+, Lu3+, In3+, and Pb2+ pointing out log K values between 1.4 and 4.0. Radiolabeling with selected cations of radiopharmaceutical relevance (131Ba, 225Ac, and 133La) was performed.
Collapse
Affiliation(s)
- Laura Höffmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitut für Radiopharmazeutische KrebsforschungDresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieDresdenGermany
| | - Magdalena Blei
- Helmholtz‐Zentrum Dresden‐RossendorfInstitut für Radiopharmazeutische KrebsforschungDresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieDresdenGermany
| | - Falco Reissig
- Helmholtz‐Zentrum Dresden‐RossendorfInstitut für Radiopharmazeutische KrebsforschungDresdenGermany
| | - Klaus Kopka
- Helmholtz‐Zentrum Dresden‐RossendorfInstitut für Radiopharmazeutische KrebsforschungDresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieDresdenGermany
- National Center for Tumor Diseases (NCT)University Cancer Center, University Hospital Carl Gustav Carus DresdenDresdenGermany
- German Cancer Consortium (DKTK), Partner Site DresdenDresdenGermany
| | - Constantin Mamat
- Helmholtz‐Zentrum Dresden‐RossendorfInstitut für Radiopharmazeutische KrebsforschungDresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieDresdenGermany
| |
Collapse
|
2
|
Currie GM, Rohren EM. Sharpening the Blade of Precision Theranostics. Semin Nucl Med 2025:S0001-2998(25)00007-8. [PMID: 40000269 DOI: 10.1053/j.semnuclmed.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
While theranostics is a new term for long-standing principles in nuclear medicine, recent advances have facilitated more personalized healthcare and precision medicine. Despite the widespread enthusiasm for theranostics and well established and standardized procedures, there are a number of opportunities to enhance practice and sharpen the blade of precision theranostics. A clear understanding of the requisites of an authentic theranostic pair reveals limitations in current approaches. Indeed, standardized dosing regimes based on activity dose as opposed to absorbed dose highlight the potential enhancements to outcomes and precision medicine that predictive dosimetry could bring. Such advances increase the demand for closer matching of biological and chemical properties of theranostic pairs. In turn, the need for more authentic or true theranostic pairs is revealed. While theranostics has provided a revolutionary toolkit for cancer management, advances in instrumentation, radiochemistry or clinical domains requires similar advances in the remaining domains. This discussion explores key considerations for an evolving theranostics landscape, recognising current best practice may fall short of precision medicine over coming years.
Collapse
Affiliation(s)
- Geoffrey M Currie
- Charles Sturt University, New South Wales, Australia; Baylor College of Medicine, TX, USA.
| | - Eric M Rohren
- Charles Sturt University, New South Wales, Australia; Baylor College of Medicine, TX, USA
| |
Collapse
|
3
|
Ossadnik D, Qi M, Voss J, Keller K, Yulikov M, Godt A. A Set of Three Gd III Spin Labels with Methanethiosulfonyl Groups for Bioconjugation Covering a Wide Range of EPR Line Widths. J Org Chem 2025; 90:1847-1876. [PMID: 39854636 DOI: 10.1021/acs.joc.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Spin labels based on GdIII complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of GdIII complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful. We prepared three GdIII complexes with DO3APic, NO3Pic, and PyMTA as the basic ligand units. They cover a wide range of EPR line widths but have in common a cysteine-targeting methanethiosulfonyl (MTS) group connected to a pyridine ring, which is an intrinsic part of the ligand. The reaction with a cysteine-containing pentapeptide (0.45 mM in the peptide, pH ∼ 7) was complete within 90 s and chemoselective. The MTS group hydrolyzed with half-lives of >24, 8, 2, and 1 h at pH 5, 6, 7, and 8, respectively. The structurally related nicotinic acid-substituted disulfide (NDS) group was found to be hydrolytically much more stable. However, the MTS spin label clearly won the competition for the pentapeptide over the NDS spin label. If high reactivity is essential, MTS is clearly the better choice.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Jona Voss
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Katharina Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| |
Collapse
|
4
|
Kanagasundaram T, Sun Y, Lee KK, MacMillan SN, Brugarolas P, Wilson JJ. Fluorine-18 incorporation and radiometal coordination in macropa ligands for PET imaging and targeted alpha therapy. Chem Commun (Camb) 2024; 60:11940-11943. [PMID: 39352495 DOI: 10.1039/d4cc04165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The development of theranostic agents for radiopharmaceuticals based on therapeutic alpha emitters marks an important clinical need. We describe a strategy for the development of theranostic agents of this type via the functionalization of the ligand with the diagnostic radionuclide fluorine-18. An analogue of macropa, an 18-membered macrocyclic chelator with high affinity for alpha therapeutic radiometals, was synthesized and its complexation properties with metal ions were determined. The new macropa-F ligand was used for quantitative radiometal complexation with lead-203 and bismuth-207, as surrogates for their alpha-emitting radioisotopes. As a diagnostic partner, a radiofluorinated macropa ligand was used for quantitative bismuth(III) and lead(II) complexation. All fluorine-18 and radiometal complexes are highly stable in human serum over several days. This study presents a new proof-of-principle approach for developing theranostic agents based on alpha-emitting radionuclides and fluorine-18.
Collapse
Affiliation(s)
- Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| |
Collapse
|
5
|
Kovács A, Varga Z. Theoretical Study of Metal-Ligand Interactions in Lead Complexes with Radiopharmaceutical Interest. Molecules 2024; 29:4198. [PMID: 39275046 PMCID: PMC11397547 DOI: 10.3390/molecules29174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024] Open
Abstract
The 203Pb and 212Pb lead radioisotopes are attracting growing interest as they can aid in the development of personalized, targeted radionuclide treatment for advanced and currently untreatable cancers. In the present study, the bonding interactions of Pb2+ with twelve macrocyclic ligands, having an octa and nona coordination, were assessed using Density Functional Theory (DFT) calculations. The molecular structures in an aqueous solution were computed utilizing the polarized continuum model. The preference for the twisted square antiprismatic (TSAP) structure was confirmed for ten out of the eleven cyclen-based complexes. The characteristics of the bonding were assessed using a Natural Energy Decomposition Analysis (NEDA). The analysis revealed a strong electrostatic character of the bonding in the complexes, with minor variations in electrical terms. The charge transfer (CT) had a comparable energetic contribution only in the case of neutral ligands, while in general, it showed notable variations regarding the various donor groups. Our data confirmed the general superiority of the carboxylate O and aromatic N donors. The combination of the selected efficient pendant arms pointed out the superiority of the acetate pendant arms and the lack of significant cooperation between the different pendant arms in the probed ligands. Altogether, the combination led only to a marginal enhancement in the total CTs in the complexes.
Collapse
Affiliation(s)
- Attila Kovács
- European Commission, Joint Research Centre (JRC), 76125 Karlsruhe, Germany
| | - Zoltán Varga
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Merdzo I, Travagin F, Boccalon M, Alessio E, Lattuada L, Baranyai Z, Giovenzana GB. TRASUTA: The Effect of the Structural Rigidity of a Mesocyclic AAZTA-like Chelating Agent on the Thermodynamic, Kinetic, and Structural Properties of Some Divalent Metal and Ga 3+ Complexes. Inorg Chem 2024; 63:12525-12537. [PMID: 38905138 DOI: 10.1021/acs.inorgchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mesocyclic chelating agents such as AAZTA and its derivatives have been recently reported to overcome the relatively low thermodynamic stability of metal complexes of acyclic chelating agents and the slow complexation kinetics of macrocyclic chelating agents. This work reports the preparation of a spirobicyclic hexadentate AAZTA-like chelating agent (TRASUTA) and the investigation of the thermodynamic, kinetic, and structural properties of the corresponding chelates with the PET-relevant Ga3+ and selected metal ions. A combination of analytical techniques allowed identification of a coordination isomerization process, involving the coordinating side arms and the inversion of a nitrogen atom and leading to lower thermodynamic and kinetic inertness with respect to mononuclear mesocyclic analogues. The bicyclic system of TRASUTA retains significant dynamics despite the conformational constraint imposed by the spiro-fusion, resulting in a lower stability of the corresponding metal chelates.
Collapse
Affiliation(s)
- Ileana Merdzo
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, Colleretto Giacosa 10010, (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| |
Collapse
|
7
|
Sathekge M, Morgenstern A. Advances in targeted alpha therapy of cancer. Eur J Nucl Med Mol Imaging 2024; 51:1205-1206. [PMID: 38376807 DOI: 10.1007/s00259-024-06658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Affiliation(s)
- Mike Sathekge
- Steve Biko Academic Hospital, Nuclear Medicine Research Infrastructure (NuMeRI), University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
8
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Kopp I, Cieslik P, Anger K, Josephy T, Neupert L, Velmurugan G, Gast M, Wadepohl H, Brühlmann SA, Walther M, Kopka K, Bachmann M, Stephan H, Kubeil M, Comba P. Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions. Inorg Chem 2023; 62:20754-20768. [PMID: 37707798 DOI: 10.1021/acs.inorgchem.3c02340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
Collapse
Affiliation(s)
- Ina Kopp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Karl Anger
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Josephy
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Lucca Neupert
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Gunasekaran Velmurugan
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Michael Gast
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Santiago Andrés Brühlmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- Technische Universität Dresden, Medical Faculty Carl Gustav Carus, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Franchi S, Asti M, Di Marco V, Tosato M. The Curies' element: state of the art and perspectives on the use of radium in nuclear medicine. EJNMMI Radiopharm Chem 2023; 8:38. [PMID: 37947909 PMCID: PMC10638329 DOI: 10.1186/s41181-023-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The alpha-emitter radium-223 (223Ra) is presently used in nuclear medicine for the palliative treatment of bone metastases from castration-resistant prostate cancer. This application arises from its advantageous decay properties and its intrinsic ability to accumulate in regions of high bone turnover when injected as a simple chloride salt. The commercial availability of [223Ra]RaCl2 as a registered drug (Xofigo®) is a further additional asset. MAIN BODY The prospect of extending the utility of 223Ra to targeted α-therapy of non-osseous cancers has garnered significant interest. Different methods, such as the use of bifunctional chelators and nanoparticles, have been explored to incorporate 223Ra in proper carriers designed to precisely target tumor sites. Nevertheless, the search for a suitable scaffold remains an ongoing challenge, impeding the diffusion of 223Ra-based radiopharmaceuticals. CONCLUSION This review offers a comprehensive overview of the current role of radium radioisotopes in nuclear medicine, with a specific focus on 223Ra. It also critically examines the endeavors conducted so far to develop constructs capable of incorporating 223Ra into cancer-targeting drugs. Particular emphasis is given to the chemical aspects aimed at providing molecular scaffolds for the bifunctional chelator approach.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
12
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
13
|
Winuprasith T, Koirala P, McClements DJ, Khomein P. Emulsion Technology in Nuclear Medicine: Targeted Radionuclide Therapies, Radiosensitizers, and Imaging Agents. Int J Nanomedicine 2023; 18:4449-4470. [PMID: 37555189 PMCID: PMC10406121 DOI: 10.2147/ijn.s416737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Radiopharmaceuticals serve as a major part of nuclear medicine contributing to both diagnosis and treatment of several diseases, especially cancers. Currently, most radiopharmaceuticals are based on small molecules with targeting ability. However, some concerns over their stability or non-specific interactions leading to off-target localization are among the major challenges that need to be overcome. Emulsion technology has great potential for the fabrication of carrier systems for radiopharmaceuticals. It can be used to create particles with different compositions, structures, sizes, and surface characteristics from a wide range of generally recognized as safe (GRAS) materials, which allows their functionality to be tuned for specific applications. In particular, it is possible to carry out surface modifications to introduce targeting and stealth properties, as well as to control the particle dimensions to manipulate diffusion and penetration properties. Moreover, emulsion preparation methods are usually simple, economic, robust, and scalable, which makes them suitable for medical applications. In this review, we highlight the potential of emulsion technology in nuclear medicine for developing targeted radionuclide therapies, for use as radiosensitizers, and for application in radiotracer delivery in gamma imaging techniques.
Collapse
Affiliation(s)
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Rösner L, Konken CP, Depke DA, Rentmeister A, Schäfers M. Covalent labeling of immune cells. Curr Opin Chem Biol 2022; 68:102144. [DOI: 10.1016/j.cbpa.2022.102144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|