1
|
de Oliveira UA, do Amaral Junior AT, Kamphorst SH, de Lima VJ, Olivares FL, Khan S, de Souza Santos M, da Silva Figueiredo J, da Silva SP, Viana FN, Santos TDO, Gonçalves GR, Campostrini E, Viana AP, Mora-Poblete F. Bacillus cereus: An Ally Against Drought in Popcorn Cultivation. Microorganisms 2024; 12:2351. [PMID: 39597741 PMCID: PMC11596106 DOI: 10.3390/microorganisms12112351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the development of adapted popcorn cultivars such as UENF WS01, strategies such as bacterial inoculation are being explored to enhance plant resilience to abiotic stress. This study investigates the impact of drought stress on popcorn cultivation. Specifically, the aim was to identify the benefits of Bacillus cereus interaction with the drought-tolerant hybrid UENF WS01 for its morphophysiology and growth by comparing inoculated and non-inoculated plants under water-stressed (WS) and well-watered (WW) conditions. This evaluation was conducted using a randomized complete block design in a factorial arrangement. For WS with inoculation samples, there were significant increases in relative chlorophyll content, maximum fluorescence intensity, and agronomic water use efficiency. Chlorophyll content increased by an average of 50.39% for WS samples, compared to a modest increase of 2.40% for WW samples. Both leaf and stem biomass also significantly increased for WS relative to WW conditions. Overall, B. cereus inoculation mitigated the impact of water stress, significantly enhancing the expression of physiological and morphological traits, even when paired with a drought-tolerant hybrid.
Collapse
Affiliation(s)
- Uéliton Alves de Oliveira
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Antônio Teixeira do Amaral Junior
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Samuel Henrique Kamphorst
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Valter Jário de Lima
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Fábio Lopes Olivares
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Shahid Khan
- Faculty of Agriculture Sciences, Universidade Federal da Grande Dourados (UFGD), Dourados 79800-000, MS, Brazil;
| | - Monique de Souza Santos
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Jardel da Silva Figueiredo
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Samuel Pereira da Silva
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Flávia Nicácio Viana
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Talles de Oliveira Santos
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Gabriella Rodrigues Gonçalves
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Eliemar Campostrini
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Alexandre Pio Viana
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, Talca 34655-48, Chile;
| |
Collapse
|
2
|
Estrada F, Flexas J, Araus JL, Mora-Poblete F, Gonzalez-Talice J, Castillo D, Matus IA, Méndez-Espinoza AM, Garriga M, Araya-Riquelme C, Douthe C, Castillo B, del Pozo A, Lobos GA. Exploring plant responses to abiotic stress by contrasting spectral signature changes. FRONTIERS IN PLANT SCIENCE 2023; 13:1026323. [PMID: 36777544 PMCID: PMC9910286 DOI: 10.3389/fpls.2022.1026323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
In this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes (Triticum aestivum L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain. Three treatments were applied: i) control (C), ii) water stress (WS), and iii) combined water and heat shock (WS+T). Spectral reflectance, gas exchange and chlorophyll fluorescence measurements were performed on flag leaves for three consecutive days at anthesis. High canopy temperature ( H CT ) genotypes showed less variability in their mean spectral reflectance signature and chlorophyll fluorescence, which was related to weaker responses to environmental fluctuations. While low canopy temperature ( L CT ) genotypes showed greater variability. The genotypes spectral signature changes, in accordance with environmental fluctuation, were associated with variations in their stomatal conductance under both stress conditions (WS and WS+T); L CT genotypes showed an anisohydric response compared that of H CT , which was isohydric. This approach could be used in breeding programs for screening a large number of genotypes through proximal or remote sensing tools and be a novel but simple way to identify groups of genotypes with contrasting performances.
Collapse
Affiliation(s)
- Félix Estrada
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
- Instituto de Investigaciones Agropecuarias INIA-Quilamapu, Chillán, Chile
| | - Jaume Flexas
- Instituto de Investigaciones Agropecuarias INIA-Remehue, Osorno, Chile
| | - Jose Luis Araus
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Freddy Mora-Poblete
- Department of Evolutive Biology Ecology, and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | | | - Dalma Castillo
- Departamento de Producción Forestal y Tecnología de la Madera, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Ivan A. Matus
- Instituto de Investigaciones Agropecuarias INIA-Quilamapu, Chillán, Chile
| | | | - Miguel Garriga
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Carlos Araya-Riquelme
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Benjamin Castillo
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Alejandro del Pozo
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Gustavo A. Lobos
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| |
Collapse
|
3
|
Brunel-Saldias N, Ferrio JP, Elazab A, Orellana M, del Pozo A. Root Architecture and Functional Traits of Spring Wheat Under Contrasting Water Regimes. FRONTIERS IN PLANT SCIENCE 2020; 11:581140. [PMID: 33262777 PMCID: PMC7686047 DOI: 10.3389/fpls.2020.581140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 05/29/2023]
Abstract
Wheat roots are known to play an important role in the yield performance under water-limited (WL) conditions. Three consecutive year trials (2015, 2016, and 2017) were conducted in a glasshouse in 160 cm length tubes on a set of spring wheat (Triticum aestivum L.) genotypes under contrasting water regimes (1) to assess genotypic variability in root weight density (RWD) distribution in the soil profile, biomass partitioning, and total water used; and (2) to determine the oxygen and hydrogen isotopic signatures of plant and soil water in order to evaluate the contribution of shallow and deep soil water to plant water uptake and the evaporative enrichment of these isotopes in the leaf as a surrogate for plant transpiration. In the 2015 trial under well-watered (WW) conditions, the aerial biomass (AB) was not significantly different among 15 wheat genotypes, while the total root biomass and the RWD distribution in the soil profile were significantly different. In the 2016 and 2017 trials, a subset of five genotypes from the 2015 trial was grown under WW and WL regimes. The water deficit significantly reduced AB only in 2016. The water regimes did not significantly affect the root biomass and root biomass distribution in the soil depths for both the 2016 and 2017 trials. The study results highlighted that under a WL regime, the production of thinner roots with low biomass is more beneficial for increasing the water uptake than the production of large thick roots. The models applied to estimate the relative contribution of the plant's primary water sources (shallow or deep soil water) showed large interindividual variability in soil, and plant water isotopic composition resulted in large uncertainties in the model estimates. On the other side, the combined information of root architecture and the leaf stable isotope signatures could explain plant water status.
Collapse
Affiliation(s)
- Nidia Brunel-Saldias
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Juan Pedro Ferrio
- Fundacion Agencia Aragonesa para la Investigacion y el Desarrollo (ARAID), Zaragoza, Spain
- Department of Forest Resources, Agrifood Research and Technology Center of Aragón (CITA), Zaragoza, Spain
- Department of Botany, Faculty of Natural Sciences and Oceanography, University of Concepción, Concepción, Chile
| | - Abdelhalim Elazab
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Massiel Orellana
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Alejandro del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|
4
|
Kamphorst SH, do Amaral Júnior AT, de Lima VJ, Santos PHAD, Rodrigues WP, Vivas JMS, Gonçalves GMB, Schmitt KFM, Leite JT, Vivas M, Mora-Poblete F, Vergara-Díaz O, Araus Ortega JL, Ramalho JC, Campostrini E. Comparison of Selection Traits for Effective Popcorn ( Zea mays L. var. Everta) Breeding Under Water Limiting Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:1289. [PMID: 32973848 PMCID: PMC7481401 DOI: 10.3389/fpls.2020.01289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/07/2020] [Indexed: 05/23/2023]
Abstract
Climate change is expected to intensify water restriction to crops, impacting on the yield potential of crops such as popcorn. This work aimed to evaluate the performance of 10 field cultivated popcorn inbred lines during two growing seasons, under well-watered (WW) and water stressed (WS) (ψsoil≥ -1.5 MPa) conditions. Water stress was applied by withholding irrigation in the phenological phase of male pre-anthesis. Additionally, two contrasting inbred lines, P7 (superior line) and L75 (low performer) were compared for grain yield (GY) and expanded popcorn volume (EPV), selected from previous studies, were tested under greenhouse conditions. In the field, no genotype x water condition x crop season (G×WC×CS) interaction was observed, whereas GY (-51%), EPV (-55%) and leaf greenness (SPAD index) measured 17 days after anthesis (DAA) (> -10%) were highly affected by water limitation. In general, root traits (angles, number, and density) presented G×WC×CS interaction, which did not support their use as selection parameters. In relation to leaf senescence, for both WS and WW conditions, the superior inbred lines maintained a stay-green condition (higher SPAD index) until physiological maturity, but maximum SPAD index values were observed later in WW (48.7 by 14 DAA) than in WS (43.9 by 7 DAA). Under both water conditions, negative associations were observed between SPAD index values 15 and 8 days before anthesis DBA), and GY and EPV (r ≥ -0.69), as well as between SPAD index 7, 17, and 22 DAA, and angles of brace root (AB), number of crown roots (NC) and crown root density (CD), in WS (r ≥ -0.69), and AB and CD, in WW (r ≥ -0.70). Lower NC and CD values may allow further root deepening in WS conditions. Under WS P7 maintained higher net photosynthesis values, stomatal conductance, and transpiration, than L75. Additionally, L75 exhibited a lower (i.e., more negative) carbon isotope composition value than P7 under WS, confirming a lower stomatal aperture in L75. In summary, besides leaf greenness, traits related to leaf photosynthetic status, and stomatal conductance were shown to be good indicators of the agronomic performance of popcorn under water constraint.
Collapse
Affiliation(s)
- Samuel Henrique Kamphorst
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Valter Jário de Lima
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Pedro Henrique Araújo Diniz Santos
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Estreito, Brazil
| | - Janieli Maganha Silva Vivas
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Gabriel Moreno Bernardo Gonçalves
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Katia Fabiane Medeiros Schmitt
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Jhean Torres Leite
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Marcelo Vivas
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | | | - Omar Vergara-Díaz
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- AGROTECNIO (Center of Research in Agrotechnology), Lleida, Spain
| | - Jose Luis Araus Ortega
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- AGROTECNIO (Center of Research in Agrotechnology), Lleida, Spain
| | - José Cochicho Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Portugal
| | - Eliemar Campostrini
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Ellsworth PZ, Feldman MJ, Baxter I, Cousins AB. A genetic link between leaf carbon isotope composition and whole-plant water use efficiency in the C 4 grass Setaria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1234-1248. [PMID: 31968138 DOI: 10.1111/tpj.14696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 05/13/2023]
Abstract
Genetic selection for whole-plant water use efficiency (yield per transpiration; WUEplant ) in any crop-breeding programme requires high-throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi ; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13 Cleaf ) has been suggested as a potential time-integrated proxy for WUEi that may provide a tool to screen for WUEplant . However, a genetic link between δ13 Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13 Cleaf and WUEplant under well watered and water-limited growth conditions, a high-throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13 Cleaf were found and co-localized with transpiration, biomass accumulation, and WUEplant . Additionally, WUEplant for each of the δ13 Cleaf QTL allele classes was negatively correlated with δ13 Cleaf , as would be predicted when WUEi influences WUEplant . These results demonstrate that δ13 Cleaf is genetically linked to WUEplant , likely to be through their relationship with WUEi , and can be used as a high-throughput proxy to screen for WUEplant in these C4 species.
Collapse
Affiliation(s)
- Patrick Z Ellsworth
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Max J Feldman
- Donald Danforth Plant Sciences Center, St. Louis, MO, USA
| | - Ivan Baxter
- Donald Danforth Plant Sciences Center, St. Louis, MO, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Cousins OH, Garnett TP, Rasmussen A, Mooney SJ, Smernik RJ, Brien CJ, Cavagnaro TR. Variable water cycles have a greater impact on wheat growth and soil nitrogen response than constant watering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110146. [PMID: 31779906 DOI: 10.1016/j.plantsci.2019.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Current climate change models project that water availability will become more erratic in the future. With soil nitrogen (N) supply coupled to water availability, it is important to understand the combined effects of variable water and N supply on food crop plants (above- and below-ground). Here we present a study that precisely controls soil moisture and compares stable soil moisture contents with a controlled wetting-drying cycle. Our aim was to identify how changes in soil moisture and N concentration affect shoot-root biomass, N acquisition in wheat, and soil N cycling. Using a novel gravimetric platform allowing fine-scale control of soil moisture dynamics, a 3 × 3 factorial experiment was conducted on wheat plants subjected to three rates of N application (0, 25 and 75 mg N/kg soil) and three soil moisture regimes (two uniform treatments: 23.5 and 13% gravimetric moisture content (herein referred to as Well-watered and Reduced water, respectively), and a Variable treatment which cycled between the two). Plant biomass, soil N and microbial biomass carbon were measured at three developmental stages: tillering (Harvest 1), flowering (Harvest 2), and early grain milk development (Harvest 3). Reduced water supply encouraged root growth when combined with medium and high N. Plant growth was more responsive to N than the water treatments imposed, with a 15-fold increase in biomass between the high and no added N treatment plants. Both uniform soil water treatments resulted in similar plant biomass, while the Variable water treatment resulted in less biomass overall, suggesting wheat prefers consistency whether at a Well-watered or Reduced water level. Plants did not respond well to variable soil moisture, highlighting the need to understand plant adaptation and biomass allocation with resource limitation. This is particularly relevant to developing irrigation practices, but also in the design of water availability experiments.
Collapse
Affiliation(s)
- Olivia H Cousins
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia; School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Trevor P Garnett
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia; The Plant Accelerator, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Amanda Rasmussen
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ronald J Smernik
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Chris J Brien
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia; The Plant Accelerator, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
7
|
Wang Z, Xu W, Chen Z, Jia Z, Huang J, Wen Z, Chen Y, Xu B. Soil Moisture Availability at Early Growth Stages Strongly Affected Root Growth of Bothriochloa ischaemum When Mixed With Lespedeza davurica. FRONTIERS IN PLANT SCIENCE 2018; 9:1050. [PMID: 30131814 PMCID: PMC6090093 DOI: 10.3389/fpls.2018.01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Rainfall is the main resource of soil moisture in the semiarid areas, and the altered rainfall pattern would greatly affect plant growth and development. Root morphological traits are critical for plant adaptation to changeable soil moisture. This study aimed to clarify how root morphological traits of Bothriochloa ischaemum (a C4 herbaceous species) and Lespedeza davurica (a C3 leguminous species) in response to variable soil moisture in their mixtures. The two species were co-cultivated in pots at seven mixture ratios under three soil water regimes [80% (HW), 60% (MW), and 40% (LW) of soil moisture field capacity (FC)]. At the jointing, flowering, and filling stages of B. ischaemum, the LW and MW treatments were rewatered to MW or HW, respectively. At the end of growth season, root morphological traits of two species were evaluated. Results showed that the root morphological response of B. ischaemum was more sensitive than that of L. davurica under rewatering. The total root length (TRL) and root surface area (RSA) of both species increased as their mixture ratio decreased, which suggested that mixed plantation of the two species would be beneficial for their own root growth. Among all treatments, the increase of root biomass (RB), TRL, and RSA reached the highest levels when soil water content increased from 40 to 80% FC at the jointing stage. Our results implied that species-specific response in root morphological traits to alternated rainfall pattern would greatly affect community structure, and large rainfall occurring at early growth stages would greatly increase their root growth in the semiarid environments.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Weizhou Xu
- College of Life Science, Yulin University, Yulin, China
| | - Zhifei Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Zhao Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Jin Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Zhongming Wen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| |
Collapse
|
8
|
Żabiński A, Sadowska U. Root system architecture in winter varieties of spelt ( TriticumspeltaL.). BIO WEB OF CONFERENCES 2018. [DOI: 10.1051/bioconf/20181001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The objective of the study was determination of the variability of morphometry and comparison of the morphological structure of the root system in winter cultivars of spelt. Four spelt cultivars were used in the study: Frankencorn, Oberkulmer Rotkorn, Schwabenkorn and Ostro. The material for the study originated from a field experiment. The roots were collected using the soil core method to the depth of 30 cm, from the rows and inter-rows, then the roots were separated using a semi-automatic hydropneumatic scrubber. The cleaned roots were manually separated and scanned, obtaining their digital images. Image analysis was performed using the Aphelion computer software. In order to characterize the root system of the spelt cultivars included in the study, values of the following indexes were determined: root dry mass (RDM), root length density (RLD), specific root length (SRL), mean root diameter (MD). Based on the obtained results it was determined that the RDM, MD and RLD indexes in all spelt cultivars attain the highest values in the row, at the depth 0–5 cm.The highest value of the RDM and MD indexes characterized the root system of the Ostro cultivar at the depth 0–5 cm. The Oberkulmerrotkorn spelt cultivar was distinguished among the tested objects by the highest value of the SRL index.
Collapse
|
9
|
Medina S, Vicente R, Amador A, Araus JL. Interactive Effects of Elevated [CO 2] and Water Stress on Physiological Traits and Gene Expression during Vegetative Growth in Four Durum Wheat Genotypes. FRONTIERS IN PLANT SCIENCE 2016; 7:1738. [PMID: 27920787 PMCID: PMC5118623 DOI: 10.3389/fpls.2016.01738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/04/2016] [Indexed: 05/08/2023]
Abstract
The interaction of elevated [CO2] and water stress will have an effect on the adaptation of durum wheat to future climate scenarios. For the Mediterranean basin these scenarios include the rising occurrence of water stress during the first part of the crop cycle. In this study, we evaluated the interactive effects of elevated [CO2] and moderate to severe water stress during the first part of the growth cycle on physiological traits and gene expression in four modern durum wheat genotypes. Physiological data showed that elevated [CO2] promoted plant growth but reduced N content. This was related to a down-regulation of Rubisco and N assimilation genes and up-regulation of genes that take part in C-N remobilization, which might suggest a higher N efficiency. Water restriction limited the stimulation of plant biomass under elevated [CO2], especially at severe water stress, while stomatal conductance and carbon isotope signature revealed a water saving strategy. Transcript profiles under water stress suggested an inhibition of primary C fixation and N assimilation. Nevertheless, the interactive effects of elevated [CO2] and water stress depended on the genotype and the severity of the water stress, especially for the expression of drought stress-responsive genes such as dehydrins, catalase, and superoxide dismutase. The network analysis of physiological traits and transcript levels showed coordinated shifts between both categories of parameters and between C and N metabolism at the transcript level, indicating potential genes and traits that could be used as markers for early vigor in durum wheat under future climate change scenarios. Overall the results showed that greater plant growth was linked to an increase in N content and expression of N metabolism-related genes and down-regulation of genes related to the antioxidant system. The combination of elevated [CO2] and severe water stress was highly dependent on the genotypic variability, suggesting specific genotypic adaptation strategies to environmental conditions.
Collapse
Affiliation(s)
- Susan Medina
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of BarcelonaBarcelona, Spain
- Crop Physiology Laboratory, International Crops Research Institute for Semi-Arid TropicsPatancheru, India
| | - Rubén Vicente
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Amaya Amador
- Unitat de Genòmica, Centres Científics i Tecnològics, Universitat de BarcelonaBarcelona, Spain
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of BarcelonaBarcelona, Spain
| |
Collapse
|
10
|
Wang X, Wang L, Shangguan Z. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply. PLoS One 2016; 11:e0165733. [PMID: 27802318 PMCID: PMC5089754 DOI: 10.1371/journal.pone.0165733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022] Open
Abstract
Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.
Collapse
Affiliation(s)
- Xiubo Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, P.R. China
| | - Lifang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
11
|
Elazab A, Serret MD, Araus JL. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes. PLANTA 2016; 244:125-44. [PMID: 26992389 DOI: 10.1007/s00425-016-2500-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/02/2016] [Indexed: 05/16/2023]
Abstract
The selection of the ideal root drought adaptive traits should take into account the production and maintenance of root tissues alongside the capacity to capture soil resources. Ten old and modern Spanish durum wheat (Triticum turgidum L. var durum) genotypes were grown in lysimeters under two contrasting water and nitrogen regimes to study the effect of such growth conditions on: (1) the aerial biomass, (2) the growth and structure of the roots and (3) the relationships of the root structure with aerial biomass, photosynthetic and transpirative characteristics and water use efficiency. Both high water and nitrogen regimes significantly increased aerial biomass. Root dry biomass and root length increased and decreased in response to improved water supply and nitrogen regimes, respectively. No significant correlations were detected between aerial biomass and any root trait under well-watered conditions. Under water stress aerial biomass was negatively correlated with root dry biomass, root length and root weight density and positively correlated with the specific root length, particularly for the subset of old genotypes. The high nitrogen regime significantly enriched the carbon isotope composition of the flag leaf (δ (13)CFL) and hindered the effect of the high water regime on decreasing δ (13)CFL enrichment. Thus, positive correlations of aerial biomass with δ (13)CFL were detected regardless of the water regime. The study revealed: (1) the importance of root traits for higher aerial biomass under the low water regime; (2) that the interaction between nitrogen and the water regime may affect the predictive nature of the δ (13)C in drought breeding programs; and (3) the selection of the ideal root system structure should take into account the metabolic costs of the production and maintenance of root tissues alongside the capacity of capturing resources.
Collapse
Affiliation(s)
- Abdelhalim Elazab
- Unit of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - María Dolors Serret
- Unit of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - José Luis Araus
- Unit of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
12
|
Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types. Ecol Res 2016. [DOI: 10.1007/s11284-015-1328-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. TRENDS IN PLANT SCIENCE 2014; 19:52-61. [PMID: 24139902 DOI: 10.1016/j.tplants.2013.09.008] [Citation(s) in RCA: 632] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
Constraints in field phenotyping capability limit our ability to dissect the genetics of quantitative traits, particularly those related to yield and stress tolerance (e.g., yield potential as well as increased drought, heat tolerance, and nutrient efficiency, etc.). The development of effective field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck for future breeding advances. However, progress in sensors, aeronautics, and high-performance computing are paving the way. Here, we review recent advances in field HTPPs, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection. Laboratory analyses of key plant parts may complement direct phenotyping under field conditions. Improvements in user-friendly data management together with a more powerful interpretation of results should increase the use of field HTPPs, therefore increasing the efficiency of crop genetic improvement to meet the needs of future generations.
Collapse
Affiliation(s)
- José Luis Araus
- Department of Plant Biology, Unit of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain.
| | - Jill E Cairns
- CIMMYT Southern Africa Regional Office, Harare, Zimbabwe
| |
Collapse
|
14
|
Araus JL, Cabrera-Bosquet L, Serret MAD, Bort J, Nieto-Taladriz MAT. Comparative performance of δ 13C, δ 18O and δ 15N for phenotyping durum wheat adaptation to a dryland environment. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:595-608. [PMID: 32481133 DOI: 10.1071/fp12254] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/25/2013] [Indexed: 05/16/2023]
Abstract
Grain yield and the natural abundance of the stable isotope compositions of carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) of mature kernels were measured during 3 consecutive years in 10 durum wheat genotypes (five landraces and five modern cultivars) subjected to different water and N availabilities in a Mediterranean location and encompassing a total of 12 trials. Water limitation was the main environmental factor affecting yield, δ13C and δ18O, whereas N fertilisation had a major effect on δ15N. The genotypic effect was significant for yield, yield components, δ13C, δ18O and δ15N. Landraces exhibited a higher δ13C and δ15N than cultivars. Phenotypic correlations of δ13C and δ18O with grain yield were negative, suggesting that genotypes able to sustain a higher water use and stomatal conductance were the most productive and best adapted; δ15N was also negatively correlated with grain yield regardless of the growing conditions. δ13C was the best isotopic trait in terms of genetic correlation with yield and heritability, whereas δ18O was the worst of the three isotopic abundances. The physiological basis for the different performance of the three isotopes explaining the genotypic variability in yield is discussed.
Collapse
Affiliation(s)
- Jos Luis Araus
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lloren Cabrera-Bosquet
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mar A Dolores Serret
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jordi Bort
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mar A Teresa Nieto-Taladriz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña Km. 7,5, 28040 Madrid, Spain
| |
Collapse
|