1
|
Mudrilov M, Ladeynova M, Vetrova Y, Vodeneev V. Analysis of the Mechanisms Underlying the Specificity of the Variation Potential Induced by Different Stimuli. PLANTS (BASEL, SWITZERLAND) 2024; 13:2896. [PMID: 39458843 PMCID: PMC11511009 DOI: 10.3390/plants13202896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Plants are able to perceive diverse environmental factors and form an appropriate systemic functional response. Systemic responses are induced by stimulus-specific long-distance signals that carry information about the stimulus. Variation potential is proposed as a candidate for the role of such a signal. Here, we focus on the mechanisms that determine the specificity of the variation potential under the action of different local stimuli. Local stimuli such as heating, burning and wounding cause variation potential, the parameters of which differ depending on the type of stimulus. It was found that the stimulus-specific features of the hydraulic signal monitored by changes in leaf thickness and variation potential, such as a greater amplitude upon heating and burning and a significant amplitude decrement upon burning and wounding, were similar. The main features of these signals are the greater amplitude upon heating and burning, and a significant amplitude decrement upon burning and wounding. Together with the temporal correspondence of signal propagation, this evidence indicates a role for the hydraulic signal in the induction of stimulus-specific variation potential. Experiments using mechanosensitive channel inhibitors have demonstrated that the hydraulic signal contributes more to the induction of the variation potential in the case of rapidly growing stimuli, such as burning and wounding, than in the case of gradual heating. For thermal stimuli (gradual heating and burning), a greater contribution, compared to wounding, of the chemical signal related to reactive oxygen species to the induction of the variation potential was demonstrated. Thus, the specificity of the parameters of the variation potential is determined by the different contributions of hydraulic and chemical signals.
Collapse
Affiliation(s)
| | | | | | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Mudrilov MA, Ladeynova MM, Kuznetsova DV, Vodeneev VA. Ion Channels in Electrical Signaling in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1467-1487. [PMID: 38105018 DOI: 10.1134/s000629792310005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023]
Abstract
Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux - GORK, for anions - MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.
Collapse
Affiliation(s)
- Maxim A Mudrilov
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Maria M Ladeynova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Darya V Kuznetsova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir A Vodeneev
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
3
|
Grinberg M, Nemtsova Y, Ageyeva M, Brilkina A, Vodeneev V. Effect of low-dose ionizing radiation on spatiotemporal parameters of functional responses induced by electrical signals in tobacco plants. PHOTOSYNTHESIS RESEARCH 2023; 157:119-132. [PMID: 37210467 DOI: 10.1007/s11120-023-01027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Plants growing under an increased radiation background may be exposed to additional stressors. Plant acclimatization is formed with the participation of stress signals that cause systemic responses-a change in the activity of physiological processes. In this work, we studied the mechanisms of the effect of ionizing radiation (IR) on the systemic functional responses induced by electrical signals. Chronic β-irradiation (31.3 μGy/h) have a positive effect on the morphometric parameters and photosynthetic activity of tobacco plants (Nicotiana tabacum L.) at rest. An additional stressor causes an electrical signal, which, when propagated, causes a temporary change in chlorophyll fluorescence parameters, reflecting a decrease in photosynthesis activity. Irradiation did not significantly affect the electrical signals. At the same time, more pronounced photosynthesis responses are observed in irradiated plants: both the amplitude and the leaf area covered by the reaction increase. The formation of such responses is associated with changes in pH and stomatal conductance, the role of which was analyzed under IR. Using tobacco plants expressing the fluorescent pH-sensitive protein Pt-GFP, it was shown that IR enhances signal-induced cytoplasmic acidification. It was noted that irradiation also disrupts the correlation between the amplitudes of the electrical signal, pH shifts, changes in chlorophyll fluorescence parameters. Also stronger inhibition of stomatal conductance by the signal was shown in irradiated plants. It was concluded that the effect of IR on the systemic response induced by the electrical signal is mainly due to its effect on the stage of signal transformation into the response.
Collapse
Affiliation(s)
- Marina Grinberg
- Lobachevsky State University of Nizhny Novgorod, Gagarin St. 23, Nizhny Novgorod, 603950, Russia
| | - Yuliya Nemtsova
- Lobachevsky State University of Nizhny Novgorod, Gagarin St. 23, Nizhny Novgorod, 603950, Russia
| | - Maria Ageyeva
- Lobachevsky State University of Nizhny Novgorod, Gagarin St. 23, Nizhny Novgorod, 603950, Russia
| | - Anna Brilkina
- Lobachevsky State University of Nizhny Novgorod, Gagarin St. 23, Nizhny Novgorod, 603950, Russia
| | - Vladimir Vodeneev
- Lobachevsky State University of Nizhny Novgorod, Gagarin St. 23, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
4
|
Quan L, Chen K, Chen T, Li H, Li W, Cheng T, Xia F, Lou Z, Geng T, Sun D, Jiang W. Monitoring weed mechanical and chemical damage stress based on chlorophyll fluorescence imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1188981. [PMID: 37255557 PMCID: PMC10225704 DOI: 10.3389/fpls.2023.1188981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Currently, mechanical and chemical damage is the main way to carry out weed control. The use of chlorophyll fluorescence (CF) technology to nondestructively monitor the stress physiological state of weeds is significant to reveal the damage mechanism of mechanical and chemical stresses as well as complex stresses. Under simulated real field environmental conditions, different species and leaf age weeds (Digitaria sanguinalis 2-5 leaf age, and Erigeron canadensis 5-10 leaf age) were subjected to experimental treatments for 1-7 days, and fluorescence parameters were measured every 24 h using a chlorophyll fluorometer. The aim of this study was to investigate the changes in CF parameters of different species of weeds (Digitaria sanguinalis, Erigeron canadensis) at their different stress sites under chemical, mechanical and their combined stresses. The results showed that when weeds (Digitaria sanguinalis and Erigeron canadensis) were chemically stressed in different parts, their leaf back parts were the most severely stressed after 7 days, with photosynthetic inhibition reaching R=75%. In contrast, mechanical stress differs from its changes, and after a period of its stress, each parameter recovers somewhat after 1 to 2 days of stress, with heavy mechanical stress R=11%. Complex stress had the most significant effect on CF parameters, mainly in the timing and efficiency of changes in Fv/Fm, Fq'/Fm', ETR, Rfd, NPQ and Y(NO), with R reaching 71%-73% after only 3-4 days of complex stress, and its changes in complex stress were basically consistent with the pattern of changes in its chemical stress. The results of the study will help to understand the effects of mechanical and chemical stresses and combined stresses on CF parameters of weeds and serve as a guide for efficient weed control operations and conducting weed control in the future.
Collapse
Affiliation(s)
- Longzhe Quan
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Keyong Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianbao Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Hailong Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenchang Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianyu Cheng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Fulin Xia
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhaoxia Lou
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Tianyu Geng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Deng Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Wei Jiang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int J Mol Sci 2021; 22:ijms221910715. [PMID: 34639056 PMCID: PMC8509212 DOI: 10.3390/ijms221910715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.
Collapse
|
6
|
Bar-On L, Garlando U, Sophocleous M, Jog A, Motto Ros P, Sade N, Avni A, Shacham-Diamand Y, Demarchi D. Electrical Modelling of In-Vivo Impedance Spectroscopy of Nicotiana tabacum Plants. FRONTIERS IN ELECTRONICS 2021. [DOI: 10.3389/felec.2021.753145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrical impedance spectroscopy has been suggested as a sensing method for plants. Here, a theoretical approach for electrical conduction via the plant stem is presented and validated, linking its living electrical characteristics to its internal structure. An electrical model for the alternating current conduction and the associated impedance in a live plant stem is presented. The model accounts for biological and geometrical attributes. It uses the electrically prevalent coupled transmission line model approach for a simplified description of the complicated vessel structure. It considers the electrode coupling to the plant stem (either Galvanic or Faradic), and accounts for the different interactions of the setup. Then the model is simplified using the lumped element approach. The model is then validated using a four-point probe impedance spectroscopy method, where the probes are galvanically coupled to the stem of Nicotiana tabacum plants. The electrical impedance data was collected continuously and the results exhibit an excellent fitting to the theoretical model, with a fitting error of less than 1.5% for data collected on various days and plants. A parametric evaluation of the fitting corresponds to the proposed physically based model, therefore providing a baseline for future plant sensor design.
Collapse
|
7
|
Electrical Signals, Plant Tolerance to Actions of Stressors, and Programmed Cell Death: Is Interaction Possible? PLANTS 2021; 10:plants10081704. [PMID: 34451749 PMCID: PMC8401951 DOI: 10.3390/plants10081704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
In environmental conditions, plants are affected by abiotic and biotic stressors which can be heterogenous. This means that the systemic plant adaptive responses on their actions require long-distance stress signals including electrical signals (ESs). ESs are based on transient changes in the activities of ion channels and H+-ATP-ase in the plasma membrane. They influence numerous physiological processes, including gene expression, phytohormone synthesis, photosynthesis, respiration, phloem mass flow, ATP content, and many others. It is considered that these changes increase plant tolerance to the action of stressors; the effect can be related to stimulation of damages of specific molecular structures. In this review, we hypothesize that programmed cell death (PCD) in plant cells can be interconnected with ESs. There are the following points supporting this hypothesis. (i) Propagation of ESs can be related to ROS waves; these waves are a probable mechanism of PCD initiation. (ii) ESs induce the inactivation of photosynthetic dark reactions and activation of respiration. Both responses can also produce ROS and, probably, induce PCD. (iii) ESs stimulate the synthesis of stress phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene) which are known to contribute to the induction of PCD. (iv) Generation of ESs accompanies K+ efflux from the cytoplasm that is also a mechanism of induction of PCD. Our review argues for the possibility of PCD induction by electrical signals and shows some directions of future investigations in the field.
Collapse
|
8
|
Influence of Local Burning on Difference Reflectance Indices Based on 400-700 nm Wavelengths in Leaves of Pea Seedlings. PLANTS 2021; 10:plants10050878. [PMID: 33925343 PMCID: PMC8146762 DOI: 10.3390/plants10050878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/05/2023]
Abstract
Local damage (e.g., burning) induces a variation potential (VP), which is an important electrical signal in higher plants. A VP propagates into undamaged parts of the plant and influences numerous physiological processes, including photosynthesis. Rapidly increasing plant tolerance to stressors is likely to be a result of the physiological changes. Thus, developing methods of revealing VP-induced physiological changes can be used for the remote sensing of plant systemic responses to local damage. Previously, we showed that burning-induced VP influenced a photochemical reflectance index in pea leaves, but the influence of the electrical signals on other reflectance indices was not investigated. In this study, we performed a complex analysis of the influence of VP induction by local burning on difference reflectance indices based on 400–700 nm wavelengths in leaves of pea seedlings. Heat maps of the significance of local burning-induced changes in the reflectance indices and their correlations with photosynthetic parameters were constructed. Large spectral regions with significant changes in these indices after VP induction were revealed. Most changes were strongly correlated to photosynthetic parameters. Some indices, which can be potentially effective for revealing local burning-induced photosynthetic changes, are separately shown. Our results show that difference reflectance indices based on 400–700 nm wavelengths can potentially be used for the remote sensing of plant systemic responses induced by local damages and subsequent propagation of VPs.
Collapse
|
9
|
Pachú JKS, Macedo FCO, Malaquias JB, Ramalho FS, Oliveira RF, Franco FP, Godoy WAC. Electrical signalling on Bt and non-Bt cotton plants under stress by Aphis gossypii. PLoS One 2021; 16:e0249699. [PMID: 33831084 PMCID: PMC8031172 DOI: 10.1371/journal.pone.0249699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Plants have developed various mechanisms to respond specifically to each biotrophic attack. It has been shown that the electrical signals emitted by plants are associated with herbivory stress responses and can lead to the activation of multiple defences. Bt cotton is a genetically modified pest-resistant plant that produces an insecticide from Bacillus thuringiensis (Bt) to control Lepidopteran species. Surprisingly, there is no study-yet, that characterizes the signalling mechanisms in transgenic cotton plants attacked by non-target insects, such as aphids. In this study, we characterized the production of electrical signals on Bt and non-Bt cotton plants infested with Aphis gossypii and, in addition, we characterized the dispersal behaviour of aphids to correlate this behaviour to plant signalling responses. Electrical signalling of the plants was recorded with an extracellular measurement technique. Impressively, our results showed that both Bt and non-Bt cotton varieties, when attacked by A. gossypii, emitted potential variation-type electrical signals and clearly showed the presence of distinct responses regarding their perception and the behaviour of aphids, with evidence of delay, in terms of signal amount, and almost twice the amount of Cry1F protein was observed on Bt cotton plants at the highest density of insects/plant. We present in our article some hypotheses that are based on plant physiology and insect behaviour to explain the responses found on Bt cotton plants under aphid stress.
Collapse
Affiliation(s)
- Jéssica K. S. Pachú
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Francynes C. O. Macedo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - José B. Malaquias
- Department of Biostatistics, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Ricardo F. Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Flávia Pereira Franco
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Wesley A. C. Godoy
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
10
|
Khlopkov A, Sherstneva O, Ladeynova M, Grinberg M, Yudina L, Sukhov V, Vodeneev V. Participation of calcium ions in induction of respiratory response caused by variation potential in pea seedlings. PLANT SIGNALING & BEHAVIOR 2021; 16:1869415. [PMID: 33404323 PMCID: PMC7971294 DOI: 10.1080/15592324.2020.1869415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Electrical signals in plants caused by external stimuli are capable of inducing various physiological responses. The mechanisms of transformation of a long-distance electrical signal (ES) into a functional response remain largely unexplored and require additional research. In this work, we investigated the role of calcium ions in the development of ES-induced respiratory response. Gradual heating of the leaf causes the propagation of variation potential (VP) in the pea seedling. The propagation of VP leads to a transient activation of respiration in an unaffected leaf. During the VP generation, a transient increase in the intracellular calcium concentration takes place. A calcium channel blocker inhibits the respiratory response, and a calcium ionophore induces the activation of respiration. Inhibitory analysis has showed that the VP-induced increase in respiration activity is probably associated with calcium-mediated activation of rotenone-insensitive alternative NADPH dehydrogenases in mitochondria.
Collapse
Affiliation(s)
- Andrey Khlopkov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Oksana Sherstneva
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria Ladeynova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Lyubov Yudina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Mudrilov M, Ladeynova M, Berezina E, Grinberg M, Brilkina A, Sukhov V, Vodeneev V. Mechanisms of specific systemic response in wheat plants under different locally acting heat stimuli. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153377. [PMID: 33621780 DOI: 10.1016/j.jplph.2021.153377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Mechanisms of the specific systemic response of plant to different adverse factors are poorly understood. We studied the mechanisms acting in wheat (Triticum aestivum L.) under the action of local burn and gradual heating. Both stimuli induce a variation potential (VP) propagation and a biphasic (fast and long-term phases) photosynthetic response in non-stimulated zones of plant with stimulus-specific parameters of the latter: the fast phase or long-term phase predominance in responses induced by burn or heating, respectively. The burn-induced VP and photosynthetic response attenuate with distance, while the heating-induced VP and photosynthetic response were of more stable amplitude in distant part of the stimulated plant. VP propagation in both cases induced apoplast alkalization with dynamics well corresponding to such of VP and of the fast phase of photosynthetic response. Gradual heating induced a significant rise in jasmonate production along with a decrease in stomatal conductance with characteristic times well corresponding to the long-term phase of the photosynthetic response. We suppose that the VP-induced pH shift is responsible for in the induction of the fast phase, while jasmonate production for the long-term phase of the photosynthetic response. The revealed differences in the systemic response to stressors studied, apparently, reflect two distinct plant adaptation strategies to fast and slow-growing stimuli. The immediate response in the tissue nearest to the damage zone is the most important under a fast-growing stimulus. The fundamentally different situation is under a slowly-growing stimulus which provokes long-term changes in the plant that ensure the preparation of the whole organism for impending environmental changes.
Collapse
Affiliation(s)
- Maxim Mudrilov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Maria Ladeynova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Ekaterina Berezina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Marina Grinberg
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Anna Brilkina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Vladimir Sukhov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
12
|
Sukhova E, Akinchits E, Gudkov SV, Pishchalnikov RY, Vodeneev V, Sukhov V. A Theoretical Analysis of Relations between Pressure Changes along Xylem Vessels and Propagation of Variation Potential in Higher Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:372. [PMID: 33671945 PMCID: PMC7919029 DOI: 10.3390/plants10020372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/27/2023]
Abstract
Variation potential (VP) is an important long-distance electrical signal in higher plants that is induced by local damages, influences numerous physiological processes, and participates in plant adaptation to stressors. The transmission of increased hydraulic pressure through xylem vessels is the probable mechanism of VP propagation in plants; however, the rates of the pressure transmission and VP propagation can strongly vary. We analyzed this problem on the basis of a simple mathematical model of the pressure distribution along a xylem vessel, which was approximated by a tube with a pressure gradient. It is assumed that the VP is initiated if the integral over pressure is more than a threshold one, taking into account that the pressure is transiently increased in the initial point of the tube and is kept constant in the terminal point. It was shown that this simple model can well describe the parameters of VP propagation in higher plants, including the increase in time before VP initiation and the decrease in the rate of VP propagation with an increase in the distance from the zone of damage. Considering three types of the pressure dynamics, our model predicts that the velocity of VP propagation can be stimulated by an increase in the length of a plant shoot and also depends on pressure dynamics in the damaged zone. Our results theoretically support the hypothesis about the impact of pressure variations in xylem vessels on VP propagation.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| | - Elena Akinchits
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| | - Sergey V. Gudkov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| |
Collapse
|
13
|
Yudina L, Sherstneva O, Sukhova E, Grinberg M, Mysyagin S, Vodeneev V, Sukhov V. Inactivation of H +-ATPase Participates in the Influence of Variation Potential on Photosynthesis and Respiration in Peas. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1585. [PMID: 33207655 PMCID: PMC7697462 DOI: 10.3390/plants9111585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
Local damage (e.g., burning, heating, or crushing) causes the generation and propagation of a variation potential (VP), which is a unique electrical signal in higher plants. A VP influences numerous physiological processes, with photosynthesis and respiration being important targets. VP generation is based on transient inactivation of H+-ATPase in plasma membrane. In this work, we investigated the participation of this inactivation in the development of VP-induced photosynthetic and respiratory responses. Two- to three-week-old pea seedlings (Pisum sativum L.) and their protoplasts were investigated. Photosynthesis and respiration in intact seedlings were measured using a GFS-3000 gas analyzer, Dual-PAM-100 Pulse-Amplitude-Modulation (PAM)-fluorometer, and a Dual-PAM gas-exchange Cuvette 3010-Dual. Electrical activity was measured using extracellular electrodes. The parameters of photosynthetic light reactions in protoplasts were measured using the Dual-PAM-100; photosynthesis- and respiration-related changes in O2 exchange rate were measured using an Oxygraph Plus System. We found that preliminary changes in the activity of H+-ATPase in the plasma membrane (its inactivation by sodium orthovanadate or activation by fusicoccin) influenced the amplitudes and magnitudes of VP-induced photosynthetic and respiratory responses in intact seedlings. Decreases in H+-ATPase activity (sodium orthovanadate treatment) induced fast decreases in photosynthetic activity and increases in respiration in protoplasts. Thus, our results support the effect of H+-ATPase inactivation on VP-induced photosynthetic and respiratory responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (O.S.); (E.S.); (M.G.); (S.M.); (V.V.)
| |
Collapse
|
14
|
Gudkov SV, Simakin AV, Bunkin NF, Shafeev GA, Astashev ME, Glinushkin AP, Grinberg MA, Vodeneev VA. Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112056. [PMID: 33142218 DOI: 10.1016/j.jphotobiol.2020.112056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 11/28/2022]
Abstract
To convert and store energy in the process of photosynthesis, plants primarily use quanta of the red and blue parts of the spectrum. At high latitudes, the average daily intensity of red and blue parts of the spectrum is not very high; for many crops cultivated under greenhouse conditions, it reaches the sufficient level only on clear summer days. The problem of insufficient illumination in greenhouses is usually solved with artificial light sources. This article describes a technology for the manufacture of photoconversion fluoropolymer films for greenhouses. The fluoropolymer films described in the paper make use of original gold nanoparticles and nanoparticles with fluorescence in the blue or red region of the spectrum. In the polymer film, nanoparticles aggregate in the form of "beads", which enhances the field of the optical wave. The film photoconverts UV and violet light into blue and red light. Gold nanoparticles also partially convert energy in the green region of the spectrum (not used by plants) into heat, which is also important for agriculture at high latitudes. In addition, impregnation of gold nanoparticles into fluoropolymer significantly increases the lifetime of the film. The films described in the paper can significantly increase the productivity of greenhouses located at high latitudes. Plants cultivated under the films have more chlorophyll and a higher intensity of photosynthesis - although their system of distance stress signals is, to a certain degree, suppressed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia.
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia; Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005, Russia
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia; Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow 119991, Russia
| | - Alexey P Glinushkin
- All-Russian Research Institute of Phytopatology, ul. Institut 5, Bolshie Vyazemy, Moscow 143050, Russia
| | - Marina A Grinberg
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, Nizhny Novgorod 603950, Russia
| | - Vladimir A Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, Nizhny Novgorod 603950, Russia
| |
Collapse
|
15
|
Spatial and Temporal Dynamics of Electrical and Photosynthetic Activity and the Content of Phytohormones Induced by Local Stimulation of Pea Plants. PLANTS 2020; 9:plants9101364. [PMID: 33076246 PMCID: PMC7602463 DOI: 10.3390/plants9101364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.
Collapse
|
16
|
Yin J, Yang J, Ma H, Liang T, Li Y, Xiao J, Tian H, Xu Z, Zhan Y. Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110433. [PMID: 32234222 DOI: 10.1016/j.plantsci.2020.110433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Triterpenoids produced by the secondary metabolism of Betula platyphylla Suk. exhibit important pharmacological activities, such as tumor inhibition, anti-HIV, and defense against pathogens, but the yield of natural synthesis is low, which is insufficient to meet people's needs. In this study, we identified two OSC genes of birch, named as BpCAS and Bpβ-AS, respectively. The expression of BpCAS and Bpβ-AS were higher levels in roots and in stems, respectively, and they induced expression in response to methyl jasmonate (MeJA), gibberellin (GA3), abscisic acid (ABA), ethylene and mechanical damage. The function of the two genes in the triterpene synthesis of birch was identified by reverse genetics. The inhibition of Bpβ-AS gene positively regulates synthesis of betulinic acid. BpCAS interference can significantly promote the upregulation of lupeol synthase gene (BPW) and β-amyrin synthase gene(BPY), and conversion of 2,3-oxidosqualene to the downstream products betulinic acid and oleanolic acid. This study provided a basis for the genetic improvement of triterpenoid synthesis in birch through genetic engineering. The obtained transgenic birch and suspension cells served as material resources for birch triterpenoid applications in further.
Collapse
Affiliation(s)
- Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Jie Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongsi Ma
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tian Liang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ying Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jialei Xiao
- College of Life Science, Northeast Agricultural University, Harbin, 150010, China
| | - Hongmei Tian
- Forest Botanical Garden of Heilongjiang Province, Harbin, China
| | - Zhiqiang Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
17
|
Blyth MG, Morris RJ. Shear-Enhanced Dispersion of a Wound Substance as a Candidate Mechanism for Variation Potential Transmission. FRONTIERS IN PLANT SCIENCE 2019; 10:1393. [PMID: 31803200 PMCID: PMC6872641 DOI: 10.3389/fpls.2019.01393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
A variation potential (VP) is an electrical signal unique to plants that occurs in response to wounding or flaming. The propagation mechanism itself, however, is known not to be electrical. Here we examine the hypothesis that VP transmission occurs via the transport of a chemical agent in the xylem. We assume the electrical signal is generated locally by the activation of an ion channel at the plasma membrane of cells adjacent to the xylem. We work on the assumption that the ion channels are triggered when the chemical concentration exceeds a threshold value. We use numerical computations to demonstrate the combined effect of advection and diffusion on chemical transport in a tube flow, and propose shear-enhanced Taylor-Aris dispersion as a candidate mechanism to explain VP rates observed in experiments.
Collapse
Affiliation(s)
- Mark G. Blyth
- School of Mathematics, University of East Anglia, Norwich, United Kingdom
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
18
|
Li J, Yue Y, Wang Z, Zhou Q, Fan L, Chai Z, Song C, Dong H, Yan S, Gao X, Xu Q, Yao J, Wang Z, Wang X, Hou P, Huang L. Illumination/Darkness-Induced Changes in Leaf Surface Potential Linked With Kinetics of Ion Fluxes. FRONTIERS IN PLANT SCIENCE 2019; 10:1407. [PMID: 31787996 PMCID: PMC6854870 DOI: 10.3389/fpls.2019.01407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
A highly reproducible plant electrical signal-light-induced bioelectrogenesis (LIB) was obtained by means of periodic illumination/darkness stimulation of broad bean (Vicia faba L.) leaves. By stimulating the same position of the same leaf with different concentrations of NaCl, we observed that the amplitude and waveform of the LIB was correlated with the intensity of stimulation. This method allowed us to link dynamic ion fluxes induced by periodic illumination/darkness to salt stress. The self-referencing ion electrode technique was used to explore the ionic mechanisms of the LIB. Fluxes of H+, Ca2+, K+, and Cl- showed periodic changes under periodic illumination/darkness before and after 50 mM NaCl stimulation. Gray relational analysis was used to analyze correlations between each of these ions and LIB. The results showed that different ions are involved in surface potential changes at different stages under periodic illumination/darkness. The gray relational grade reflected the contribution of each ion to the change in surface potential at a certain time period. The ion fluxes data obtained under periodic illumination/darkness stimulation will contribute to the future development of a dynamic model for interpretation of electrophysiological events in plant cells.
Collapse
Affiliation(s)
- Jinhai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Yang Yue
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Ziyang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Lifeng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Zhiqiang Chai
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Chao Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Hongtu Dong
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shixian Yan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xinyu Gao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Qiang Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Jiepeng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Zhongyi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
19
|
Awan H, Zeid K, Adve RS, Wallbridge N, Plummer C, Eckford AW. Communication in Plants: Comparison of Multiple Action Potential and Mechanosensitive Signals With Experiments. IEEE Trans Nanobioscience 2019; 19:213-223. [PMID: 31689198 DOI: 10.1109/tnb.2019.2951289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both action potentials and mechanosensitive signalling are an important communication mechanisms in plants. Considering an information-theoretic framework, this paper explores the effective range of multiple action potentials for a long chain of cells (i.e., up to 100) in different configurations, and introduces the study of multiple mechanosensitive activation signals (generated due to a mechanical stimulus) in plants. For both these signals, we find that the mutual information per cell and information propagation speed tends to increase up to a certain number of receiver cells. However, as the number of cells increase beyond 10 to 12, the mutual information per cell starts to decrease. To validate our model and results, we include an experimental verification of the theoretical model, using a PhytlSigns biosignal amplifier, allowing us to measure the magnitude of the voltage associated with the multiple AP's and mechanosensitive activation signals induced by different stimulus in plants. Experimental data is used to calculate the mutual information and information propagation speed, which is compared with corresponding numerical results. Since these signals are used for a variety of important tasks within the plant, understanding them may lead to new bioengineering methods for plants.
Collapse
|
20
|
Sukhov V, Sukhova E, Gromova E, Surova L, Nerush V, Vodeneev V. The electrical signal-induced systemic photosynthetic response is accompanied by changes in the photochemical reflectance index in pea. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:328-338. [PMID: 32172742 DOI: 10.1071/fp18224] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/23/2018] [Indexed: 06/10/2023]
Abstract
Plants can be affected by numerous environmental stressors with spatially heterogeneous actions on their bodies. A fast systemic photosynthetic response, which is connected with long-distance electrical signalling, plays an important role in the adaptation of higher plants to the action of stressors. Potentially, measurement of the response by using a photochemical reflectance index (PRI) could be the basis of monitoring photosynthesis under spatially heterogeneous stressors; however, the method has not been previously used for investigating the systemic photosynthetic response. We investigated changes in PRI and photosynthetic parameters (quantum yields of PSI and PSII and nonphotochemical quenching) in intact leaves of pea (Pisum sativum L.) after local heating of another leaf and the propagation of electrical signals through the plant body. We showed that electrical signals decreased the quantum yields of PSI and PSII and increased the nonphotochemical quenching of intact leaves in times ranging from minutes to tens of minutes; the changes were strongly connected with changes in PRI. Additional analysis showed that changes in PRI were caused by an increase of the energy-dependent quenching induced by electrical signals. Thus PRI can be potentially used for monitoring the systemic photosynthetic response connected with long-distance electrical signalling.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Lyubov Surova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir Nerush
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
21
|
Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:63-84. [PMID: 30508537 DOI: 10.1016/j.pbiomolbio.2018.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
Abstract
Our review is devoted to the analysis of the role of long-distance electrical signals in the development of the fast systemic physiological responses in higher plants. The characteristics and mechanisms of basic electrical signals (variation potential, action potential and system potential) are analyzed, and a potential schema of the generation and propagation of the system potential is proposed. The review summarizes the physiological changes induced by the variation potential, action potential and system potential in higher plants, including changes in gene expressions, the production of phytohormones, photosynthesis, phloem mass-flow, respiration, ATP content, transpiration and plant growth. Potential mechanisms of the changes are analyzed. Finally, a hypothetical schema, which describes a hierarchy of the variation potential, action potential and system potential, in the development of the fast systemic non-specific adaptation of plants to stressors, is proposed.
Collapse
|
22
|
Awan H, Adve RS, Wallbridge N, Plummer C, Eckford AW. Communication and Information Theory of Single Action Potential Signals in Plants. IEEE Trans Nanobioscience 2018; 18:61-73. [PMID: 30442613 DOI: 10.1109/tnb.2018.2880924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many plants, such as Mimosa pudica (the "sensitive plant"), employ electrochemical signals known as action potentials (APs) for rapid intercellular communication. In this paper, we consider a reaction-diffusion model of individual AP signals to analyze APs from a communication- and information-theoretic perspective. We use concepts from molecular communication to explain the underlying process of information transfer in a plant for a single AP pulse that is shared with one or more receiver cells. We also use the chemical Langevin equation to accommodate the deterministic as well as stochastic component of the system. Finally, we present an information-theoretic analysis of single action potentials, obtaining achievable information rates for these signals. We show that, in general, the presence of an AP signal can increase the mutual information and information propagation speed among neighboring cells with receivers in different settings.
Collapse
|
23
|
Sukhov V, Gaspirovich V, Mysyagin S, Vodeneev V. High-Temperature Tolerance of Photosynthesis Can Be Linked to Local Electrical Responses in Leaves of Pea. Front Physiol 2017; 8:763. [PMID: 29033854 PMCID: PMC5627542 DOI: 10.3389/fphys.2017.00763] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
It is known that numerous stimuli induce electrical signals which can increase a plant's tolerance to stressors, including high temperature. However, the physiological role of local electrical responses (LERs), i.e., responses in the zone of stimulus action, in the plant's tolerance has not been sufficiently investigated. The aim of a current work is to analyze the connection between parameters of LERs with the thermal tolerance of photosynthetic processes in pea. Electrical activity and photosynthetic parameters in pea leaves were registered during transitions of air temperature in a measurement head (from 23 to 30°C, from 30 to 40°C, from 40 to 45°C, and from 45 to 23°C). This stepped heating decreased a photosynthetic assimilation of CO2 and induced generation of LERs in the heated leaf. Amplitudes of LERs, quantity of responses during the heating and the number of temperature transition, which induced the first generation of LERs, varied among different pea plants. Parameters of LERs were weakly connected with the photosynthetic assimilation of CO2 during the heating; however, a residual photosynthetic activity after a treatment by high temperatures increased with the growth of amplitudes and quantity of LERs and with lowering of the number of the heating transition, inducing the first electrical response. The effect was not connected with a photosynthetic activity before heating; similar dependences were also observed for effective and maximal quantum yields of photosystem II after heating. We believe that the observed effect can reflect a positive influence of LERs on the thermal tolerance of photosynthesis. It is possible that the process can participate in a plant's adaptation to stressors.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | | | | |
Collapse
|
24
|
Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Front Physiol 2017; 8:684. [PMID: 28959209 PMCID: PMC5603676 DOI: 10.3389/fphys.2017.00684] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA) and the systemic acquired resistance (SAR). The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKrakow, Poland
| | - Maria Lewandowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| |
Collapse
|
25
|
Mathematical Models of Electrical Activity in Plants. J Membr Biol 2017; 250:407-423. [PMID: 28711950 DOI: 10.1007/s00232-017-9969-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Electrical activity plays an important role in plant life; in particular, electrical responses can participate in the reception of the action of stressors (local electrical responses and oscillations) and signal transduction into unstimulated parts of the plant (action potential, variation potential and system potential). Understanding the mechanisms of electrical responses and subsequent changes in physiological processes and the prediction of plant responses to stressors requires the elaboration of mathematical models of electrical activity in plant organisms. Our review describes approaches to the simulation of plant electrogenesis and summarizes current models of electrical activity in these organisms. It is shown that there are numerous models of the generation of electrical responses, which are based on various descriptions (from modifications of the classical Hodgkin-Huxley model to detailed models, which consider ion transporters, regulatory processes, buffers, etc.). A moderate number of works simulate the propagation of electrical signals using equivalent electrical circuits, systems of excitable elements with local electrical coupling and descriptions of chemical signal propagation. The transmission of signals from a plasma membrane to intracellular compartments (endoplasmic reticulum, vacuole) during the generation of electrical responses is much less modelled. Finally, only a few works simulate plant physiological changes that are connected with electrical responses or investigate the inverse problem: reconstruction of the type and parameters of stimuli through the analysis of electrical responses. In the conclusion of the review, we discuss future perspectives on the simulation of electrical activity in plants.
Collapse
|