1
|
Zhang Z, Wang H, Ren X, Li X, Peng X, Qiu X. Herb-Drug Interaction of Total Glucosides of Paeony and Tripterygium Glycoside with Celecoxib in Beagle Dogs by UPLC-MS/MS. Eur J Drug Metab Pharmacokinet 2025; 50:151-159. [PMID: 39843845 DOI: 10.1007/s13318-025-00933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND OBJECTIVE Total glucosides of paeony (TGP) capsules, tripterygium glycoside tablets (TGT), and celecoxib are commonly used drugs in clinical practice for the treatment of Rheumatoid arthritis (RA). An UPLC-MS/MS method for the analysis of celecoxib in beagle dogs was developed, the herb-drug interactions (HDIs) between TGP and TGT with celecoxib were studied based on pharmacokinetics. METHODS The method of acetonitrile precipitation was applied to process plasma samples. Celecoxib and furosemide (internal standard, IS) was separated by gradient elution, and detected using multiple reaction monitoring mode under the positive ion. The ion reactions used for quantitative analysis were m/z 379.82 → 315.82 for celecoxib, and m/z 328.74 → 204.88 for IS. HDIs experiments adopt a three-stage experimental design. In the first period, six beagle dogs was orally administered 6.67 mg/kg celecoxib. In the second period, TGP 20 mg/kg was given orally twice a day for 7 consecutive days, then celecoxib was orally administered. And, in the third period, TGT 1.5 mg/kg was orally given, twice a day for 7 consecutive days, then celecoxib was orally administered. The concentration of celecoxib in the three periods was detected, and HDIs were evaluated based on pharmacokinetics. RESULTS Celecoxib exhibited good linearity in the range of 10-2000 ng/mL. The accuracy, precision, recoveries, matrix effects, and stability all met the standards. When celecoxib was used in combination with TGPC or TGT, the main pharmacokinetic parameters of celecoxib changed, Cmax, AUC(0-t) and AUC(0-∞) increased, t½ was prolonged, and CL and Vd decreased. CONCLUSION A novel UPLC-MS/MS approach was successfully performed and applied to measure celecoxib in beagle dog plasma. TGP and TGT could inhibit the metabolism of celecoxib in beagle dogs, thereby affecting the pharmacokinetic parameters of celecoxib and increasing plasma exposure to celecoxib.
Collapse
Affiliation(s)
- Zhifei Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Huijun Wang
- School of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Xinli Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaotong Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xinyu Peng
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangjun Qiu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
2
|
Zhan J, Wu J. Immunomodulatory insights of monoterpene glycosides in endometriosis: immune infiltration and target pathways analysis. Hereditas 2025; 162:1. [PMID: 39754173 PMCID: PMC11697917 DOI: 10.1186/s41065-024-00354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups. Key targets were identified through differential expression analysis of the GSE51981 dataset. Potential immunomodulatory targets of Paeonia lactiflora compounds were identified through Venn diagram analysis, followed by enrichment and machine learning analyses. A nomogram was developed for predicting endometriosis, while molecular docking explored compound-target interactions. Significant differences in immune cell infiltration were observed, with increased CD8 T cells, cytotoxic cells, and others in endometriosis. Differential expression analysis identified 43 potential targets. Enrichment analysis highlighted pathways involved in immune and inflammatory responses. Machine learning identified SSTR5, CASP3, FABP2, and SYK as critical targets, contributing to a nomogram that demonstrated good predictive performance for endometriosis risk. Molecular docking revealed strong interactions between Paeoniflorigenone and CASP3. Our findings suggest that monoterpene glycosides have therapeutic effects on endometriosis by modulating key immune-related targets and pathways, providing a basis for further investigation into Paeonia lactiflora's potential as a treatment for this condition.
Collapse
Affiliation(s)
- Jin Zhan
- Department of Gynaecology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, No.819, Liyuan North Road, Haishu District, Ningbo, Zhejiang Province, 315010, China.
| | - Jiajie Wu
- Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China
| |
Collapse
|
3
|
Yang D, Lv G, Wu Y, Guo W, Wang Y, Hu J, Li N, Zheng F, Dai Y, Pi Z, Yue H. Licorice-regulated gut-joint axis for alleviating collagen-induced rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156203. [PMID: 39510013 DOI: 10.1016/j.phymed.2024.156203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is partially affected by the integrity of the intestinal barrier. Licorice (GC), a medicinal and food-related herb, exhibits potent anti-inflammatory activity; however, studies on its mechanisms of action in RA are limited. METHOD Using a bovine type-II collagen-induced arthritis rat model, this study examined how GC influences the gut-joint axis to decrease RA. The Th17/Treg cell ratios in the blood, colon, and joints were also measured. Metabolomics and 16S rRNA sequencing were applied to explore the effects of variations in gut flora and metabolites. RESULTS The arthropathological slices, inflammation markers, and joint inflammation index scores in the GC treatment group significantly differed from those in the CIA group. Studies on the effect of GC on the gut-joint axis showed changes in the levels of lipopolysaccharide and diamine oxidase, both directly associated with intestinal permeability. ZO-1, occludin, and claudin-1, three intestinal tight-junction proteins, may express themselves more when exposed to GC. By maintaining an appropriate Th17/Treg cell ratio in the blood, colon, and joints, GC may reduce impaired to the intestinal barrier. An imbalance in the intestinal microenvironment, caused by modifications in gut flora and endogenous substances, can damage the intestinal barrier. GC may modify the relative abundances of Papillibacter, Clostridium, Eubacterium, Helicobacter, Provotella, and Barnesiella during RA treatment by repairing the intestinal barrier. The metabolic differences were mainly related to primary bile acid biosynthesis, pyrimidine metabolism, steroid biosynthesis, biotin metabolism, and sphingolipid metabolism. A fecal microbiota transplantation experiment confirmed the involvement of the gut microbiota and its metabolites in GC-mediated RA therapy. CONCLUSION The results demonstrated that GC repairs the intestinal barrier and adjusts the gut-joint axis to manage immunological imbalance in RA.
Collapse
Affiliation(s)
- Di Yang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Guangfu Lv
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Wentao Guo
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yuchen Wang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Jiannan Hu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Nian Li
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| | - Hao Yue
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| |
Collapse
|
4
|
Peng M, Yao Z, Zhang J, Lin Y, Xu L, Zhang Q, Liao J, Cai X. Discovery and validation of anti-arthritic ingredients and mechanisms of Qingfu Juanbi Tang, a Chinese herbal formulation, on rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118140. [PMID: 38565409 DOI: 10.1016/j.jep.2024.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfu Juanbi Tang (QFJBT), a novel and improved Chinese herbal formulation, has surged in recent years for its potential in the therapy of rheumatoid arthritis (RA). Anti-arthritic effects and underlying molecular mechanisms of QFJBT have increasingly become a focal point in research. AIM OF THE STUDY This study utilized network pharmacology, molecular docking, and experimental validation to elucidate effective ingredients and anti-arthritic mechanisms of QFJBT. MATERIALS AND METHODS Targets associated with QFJBT and RA were identified from relevant databases and standardized using the Uniprot for gene nomenclature. A "QFJBT-ingredient-target network" and a "Venn diagram of QFJBT and RA targets" were created from the data. The overlap in the Venn diagram highlighted potential targets of QFJBT in the treatment of RA. These targets were subjected to PPI network, GO, and KEGG pathway analysis. The findings were subsequently confirmed through molecular docking and pharmacological experiments to propose the mechanism of action of QFJBT. RESULTS The study identified 236 active ingredients in QFJBT, with 120 predicted to be effective against RA. Molecular docking showed high binding affinity of key targets (JUN, PTGS2, and TNF-α) with bioactive compounds (rhein, sinomenine, calycosin, and paeoniflorin) of QFJBT. Pharmacodynamic evaluation demonstrated the effects of QFJBT at the dose of 4.56 g/kg in ameliorating symptoms of AIA rats and in reducing levels of JUN, PTGS2, and TNF-α in synovial tissues. In vitro studies further exhibited that rhein, paeoniflorin, sinomenine, calycosin, and QFJBT-containing serum significantly inhibited abnormal proliferation of RA fibroblast-like synoviocytes. Interestingly, rhein and paeoniflorin specifically decreased p-JUN/JUN expression and TNF-α release, respectively, while sinomenine and calycosin selectively increased PTGS2 expression. Consistently, QFJBT-containing serum demonstrated similar effects as those active ingredients identified in QFJBT did. CONCLUSIONS QFJBT, QFJBT-containing serum, and its active ingredients (rhein, paeoniflorin, sinomenine, and calycosin) suppress inflammatory responses in RA. Anti-arthritic effects of QFJBT and its active ingredients are likely linked to their modulatory impact on identified hub targets.
Collapse
Affiliation(s)
- Muzi Peng
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li Xu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Jing Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiong Cai
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
5
|
Yang J, Wei Z, Li H, Lv S, Fu Y, Xiao L. Paeoniflorin inhibits the inflammation of rheumatoid arthritis fibroblast-like synoviocytes by downregulating hsa_circ_009012. Heliyon 2024; 10:e30555. [PMID: 38726183 PMCID: PMC11079323 DOI: 10.1016/j.heliyon.2024.e30555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint damage. Circular RNA (circRNA) can regulate the inflammatory response of fibroblast-like synoviocytes (FLSs) in RA, influencing the disease progression. Paeoniflorin (PF) is the main active ingredient extracted from Paeonia lactiflora and is known for its anti-inflammatory effect. This study aims to explore the potential mechanisms by which hsa_circ_009012 and PF regulate the inflammatory response in RA. Methods RNA expression of hsa_circ_009012, has-microRNA-1286 (miR-1286), toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting (WB). Cell inflammation markers (TNF-α, IL-1β, IL-6) were assessed by RT-qPCR and immunofluorescence (IF). Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay were utilized to test cell viability, cell cycle distribution, and migration. Results Hsa_circ_009012 was highly expressed in RA-FLS. Hsa_circ_009012 over-expression facilitated the inflammation in RA-FLS and was closely associated with the miR-1286/TLR4 axis. Paeoniflorin inhibited inflammation and the expression of hsa_circ_009012 and TLR4, while upregulating the expression of miR-1286 in RA-FLS. Moreover, the upregulation of hsa_circ_009012 reversed the repressive effect of paeoniflorin on RA-FLS progression. Conclusion Paeoniflorin inhibits the inflammation of RA-FLS via mediating the hsa_circ_009012/miR-1286/TLR4/NLRP3 axis.
Collapse
Affiliation(s)
- Junping Yang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zehong Wei
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huaiyu Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Senhao Lv
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yong Fu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liang Xiao
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
6
|
Li Y, Tian Y, Zhou X, Guo X, Ya H, Li S, Yu X, Yuan C, Gao K. Widely targeted metabolomics reveals differences in metabolites of Paeonia lactiflora cultivars. PLoS One 2024; 19:e0298194. [PMID: 38625916 PMCID: PMC11020836 DOI: 10.1371/journal.pone.0298194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/21/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yingying Tian
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shanxi, China
| | - Xiaojun Zhou
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Huiyuan Ya
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Shipeng Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xiangli Yu
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Congying Yuan
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Kai Gao
- Luoyang Academy of Agricultural and Forestry Sciences, Luoyang, Henan, China
| |
Collapse
|
7
|
Yang Y, Yuan L, Wang K, Lu D, Meng F, Xu D, Li W, Nan Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules 2024; 29:1424. [PMID: 38611704 PMCID: PMC11012976 DOI: 10.3390/molecules29071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Kaili Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital, Ningxia Medical University, Wuzhong 751100, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
8
|
Xu R, Peng J, Ma Z, Xie K, Li M, Wang Q, Guo X, Nan N, Wang S, Li J, Xu J, Gong M. Prolonged administration of total glucosides of paeony improves intestinal immune imbalance and epithelial barrier damage in collagen-induced arthritis rats based on metabolomics-network pharmacology integrated analysis. Front Pharmacol 2023; 14:1187797. [PMID: 38026929 PMCID: PMC10679728 DOI: 10.3389/fphar.2023.1187797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and joint damage with complex pathological mechanisms. In recent years, many studies have shown that the dysregulation of intestinal mucosal immunity and the damage of the epithelial barrier are closely related to the occurrence of RA. Total glucosides of paeony (TGP) have been used clinically for the treatment of RA in China for decades, while the pharmacological mechanism is still uncertain. The purpose of this study was to investigate the regulatory effect and mechanism of TGP on intestinal immunity and epithelial barrier in RA model rats. The results showed that TGP alleviated immune hyperfunction by regulating the ratio of CD3+, CD4+ and CD8+ in different lymphocyte synthesis sites of the small intestine, including Peyer's patches (PPs), intraepithelial lymphocytes (IELs), and lamina propria lymphocytes (LPLs). Specially, TGP first exhibited immunomodulatory effects on sites close to the intestinal lumen (IELs and LPLs), and then on PPs far away from the intestinal lumen as the administration time prolonged. Meanwhile, TGP restores the intestinal epithelial barrier by upregulating the ratio of villi height (V)/crypt depth (C) and expression of tight junction proteins (ZO-1, occludin). Finally, the integrated analysis of metabolomics-network pharmacology was also used to explore the possible regulation mechanism of TGP on the intestinal tract. Metabolomics analysis revealed that TGP reversed the intestinal metabolic profile disturbance in CIA rats, and identified 32 biomarkers and 163 corresponding targets; network pharmacology analysis identified 111 potential targets for TGP to treat RA. By intersecting the results of the two, three key targets such as ADA, PNP and TYR were determined. Pharmacological verification experiments showed that the levels of ADA and PNP in the small intestine of CIA rats were significantly increased, while TGP significantly decreased their ADA and PNP levels. In conclusion, purine metabolism may play an important role in the process of TGP improving RA-induced intestinal immune imbalance and impaired epithelial barrier.
Collapse
Affiliation(s)
- Rui Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jine Peng
- Department of Pharmacy, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhe Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Kaili Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Meijing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Qi Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Nan Nan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Sihui Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jingjing Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
9
|
Wang Y, Xu Y, Tan J, Ye J, Cui W, Hou J, Liu P, Li J, Wang S, Zhao Q. Anti-inflammation is an important way that Qingre-Huazhuo-Jiangsuan recipe treats acute gouty arthritis. Front Pharmacol 2023; 14:1268641. [PMID: 37881185 PMCID: PMC10597652 DOI: 10.3389/fphar.2023.1268641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Acute gouty arthritis (AGA) significantly impairs patients' quality of life. Currently, existing therapeutic agents exhibit definite efficacy but also lead to serious adverse reactions. Therefore, it is essential to develop highly efficient therapeutic agents with minimal adverse reactions, especially within traditional Chinese medicine (TCM). Additionally, food polyphenols have shown potential in treating various inflammatory diseases. The Qingre-Huazhuo-Jiangsuan-Recipe (QHJR), a modification of Si-Miao-San (SMS), has emerged as a TCM remedy for AGA with no reported side effects. Recent research has also highlighted a strong genetic link to gout. Methods: The TCM System Pharmacology (TCMSP) database was used to collect the main chemical components of QHJR and AGA-related targets for predicting the metabolites in QHJR. HPLC-Q-Orbitrap-MS was employed to identify the ingredients of QHJR. The collected metabolites were then used to construct a Drugs-Targets Network in Cytoscape software, ranked based on their "Degree" of significance. Differentially expressed genes (DEGs) were screened in the Gene Expression Omnibus (GEO) database using GEO2R online analysis. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The DEGs were utilized to construct a Protein-Protein Interaction (PPI) Network via the STRING database. In vivo experimental validation was conducted using colchicine, QHJR, rapamycin (RAPA), and 3-methyladenine (3-MA) as controls to observe QHJR's efficacy in AGA. Synovial tissues from rats were collected, and qRT-PCR and Western blot assays were employed to investigate Ampk-related factors (Ampk, mTOR, ULK1), autophagy-related factors (Atg5, Atg7, LC3, p62), and inflammatory-related factors (NLRP3). ELISA assays were performed to measure inflammatory-related factor levels (IL-6, IL-1β, TNF-α), and H&E staining was used to examine tissue histology. Results: Network analysis screened out a total of 94 metabolites in QHJR for AGA. HPLC-Q-Orbitrap-MS analysis identified 27 of these metabolites. Notably, five metabolites (Neochlorogenic acid, Caffeic acid, Berberine, Isoliquiritigenin, Formononetin) were not associated with any individual herbal component of QHJR in TCMSP database, while six metabolites (quercetin, luteolin, formononetin, naringenin, taxifolin, diosgenin) overlapped with the predicted results from the previous network analysis. Further network analysis highlighted key components, such as Caffeic acid, cis-resveratrol, Apigenin, and Isoliquiritigenin. Other studies have found that their treatment of AGA is achieved through reducing inflammation, consistent with this study, laying the foundation for the mechanism study of QHJR against AGA. PPI analysis identified TNF, IL-6, and IL-1β as hub genes. GO and KEGG analyses indicated that anti-inflammation was a key mechanism in AGA treatment. All methods demonstrated that inflammatory expression increased in the Model group but was reversed by QHJR. Additionally, autophagy-related expression increased following QHJR treatment. The study suggested that AMPKα and p-AMPKα1 proteins were insensitive to 3 MA and RAPA, implying that AMPK may not activate autophagy directly but through ULK1 and mTOR. Conclusion: In conclusion, this study confirms the effectiveness of QHJR, a modified formulation of SMS (a classic traditional Chinese medicine prescription for treating gout), against AGA. QHJR, as a TCM formula, offers advantages such as minimal safety concerns and potential long-term use. The study suggests that the mechanism by which QHJR treats AGA may involve the activation of the AMPK/mTOR/ULK1 pathway, thereby regulating autophagy levels, reducing inflammation, and alleviating AGA. These findings provide new therapeutic approaches and ideas for the clinical treatment of AGA.
Collapse
Affiliation(s)
- Yazhuo Wang
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Xu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingrui Tan
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxue Ye
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weizhen Cui
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Hou
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peiyu Liu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianwei Li
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiyuan Wang
- Institute of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyang Zhao
- Institute of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Yang K, Zeng L, Long Z, He Q, Xiang W, Ge A, Zhen H, Xiao W, Ge J. Efficacy and safety of total glucosides of paeony in the treatment of 5 types of inflammatory arthritis: A systematic review and meta-analysis. Pharmacol Res 2023; 195:106842. [PMID: 37402434 DOI: 10.1016/j.phrs.2023.106842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE To evaluate efficacy and safety of total glucosides of paeony in the treatment of 5 types of inflammatory arthritis METHODS: Databases such as Pubmed, Cochran Library, Embase were searched to collect RCTs about TGP in the treatment of inflammatory arthritis. Then, the RCTs were assessed for risk of bias and RCT data were extracted. Finally, RevMan 5.4 was used for the meta-analysis. RESULTS A total of 63 RCTs were finally included, involving 5293 participants and 5 types of types of inflammatory arthritis: rheumatoid arthritis (RA), ankylosing spondylitis (AS), osteoarthritis (OA), juvenile idiopathic arthritis (JIA), psoriatic arthritis. For AS, TGP may improve AS disease activity score (ASDAS), decrease erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tumor necrosis factor (TNF)- α and interleukin (IL)- 6; for RA, TGP may improve disease activity of 28 joints (DAS28), decrease ESR, CRP, rheumatoid factor (RF), TNF-α and IL-6; for psoriatic arthritis, TGP may improve psoriasis area and severity index (PASI) and decrease ESR; for OA, TGP may improve visual analogue scale (VAS) and decrease nitric oxide (NO); for JIA, TGP may increase total efficiency rate, decrease ESR, CRP and TNF-α. For safety, RCTs showed that the addition of TGP did not increase adverse events, and may even reduce adverse events. CONCLUSION TGP may improve symptoms and inflammation levels in patients with inflammatory arthritis. However, due to the low quality and small number of RCTs, large-sample, multi-center clinical trials are still needed for revision or validation.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huang Zhen
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wei Xiao
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China..
| |
Collapse
|
11
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
12
|
Luo L, Guan Z, Jin X, Guan Z, Jiang Y. Identification of kukoamine a as an anti-osteoporosis drug target using network pharmacology and experiment verification. Mol Med 2023; 29:36. [PMID: 36941586 PMCID: PMC10029210 DOI: 10.1186/s10020-023-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a major and growing public health problem characterized by decreased bone mineral density and destroyed bone microarchitecture. Previous studies found that Lycium Chinense Mill (LC) has a potent role in inhibiting bone loss. Kukoamine A (KuA), a bioactive compound extract from LC was responsible for the anti-osteoporosis effect. This study aimed to investigate the anti-osteoporosis effect of KuA isolated from LC in treating OP and its potential molecular mechanism. METHOD In this study, network pharmacology and molecular docking were investigated firstly to find the active ingredients of LC such as KuA, and the target genes of OP by the TCMSP platform. The LC-OP-potential Target gene network was constructed by the STRING database and network maps were built by Cytoscape software. And then, the anti-osteoporotic effect of KuA in OVX-induced osteoporosis mice and MC3T3-E1 cell lines were investigated and the potential molecular mechanism including inflammation level, cell apoptosis, and oxidative stress was analyzed by dual-energy X-ray absorptiometry (DXA), micro-CT, ELISA, RT-PCR, and Western Blotting. RESULT A total of 22 active compounds were screened, and we found KuA was identified as the highest active ingredient. Glycogen Phosphorylase (PYGM) was the target gene associated with a maximum number of active ingredients of LC and regulated KuA. In vivo, KuA treatment significantly increased the bone mineral density and improve bone microarchitecture for example increased BV/TV, Tb.N and Tb.Th but reduced Tb.Sp in tibia and lumber 4. Furthermore, KuA increased mRNA expression of osteoblastic differentiation-related genes in OVX mice and protects against OVX-induced cell apoptosis, oxidative stress level and inflammation level. In vitro, KuA significantly improves osteogenic differentiation and mineralization in cells experiment. In addition, KuA also attenuated inflammation levels, cell apoptosis, and oxidative stress level. CONCLUSION The results suggest that KuA could protect against the development of OP in osteoblast cells and ovariectomized OP model mice and these found to provide a better understanding of the pharmacological activities of KuA again bone loss.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Quantification of Paeoniflorin by Fully Validated LC-MS/MS Method: Its Application to Pharmacokinetic Interaction between Paeoniflorin and Verapamil. Molecules 2022; 27:molecules27238337. [PMID: 36500431 PMCID: PMC9737983 DOI: 10.3390/molecules27238337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
A rapid, sensitive, and specific LC-MS/MS method was developed and fully validated for the detection of paeoniflorin only in rat plasma, and applied to pharmacokinetic studies, including intravenous, multi-dose oral and combined administrations with verapamil. In this study, tolbutamide was used as the internal standard, and the protein precipitation extraction method, using acetonitrile as the extraction agent, was used for the sample preparation. Subsequently, the supernatant samples were analyzed on a Phenomenex Gemini® NX-C18 column with a flow rate of 1.0 mL/min in a gradient elution procedure. In the extracted rat plasma, the method exhibited high sensitivity (LLOQ of 1.0 ng/mL) upon selecting ammonium adduct ions ([M+NH4]+) as the precursor ions and good linearity over the concentration range of 1.0−2000 ng/mL, with correlation coefficients >0.99. The intra- and inter-batch accuracy RE% values were within ±8.2%, and the precision RSD% values were ≤8.1% and ≤10.0%, respectively. The results show that the method can be successfully applied to quantitate paeoniflorin in biological samples. Additionally, paeoniflorin is subsequently confirmed to be the substrate of the P-gp transporter in vivo and in vitro for the first time, which would be necessary and beneficial to investigate the clinical safety and efficacy of PF with other drugs in the treatment of rheumatoid arthritis.
Collapse
|
14
|
Zhang Z, Jia Y, Tao L, Liu X, Han Y, Wang X. Clinical Evaluation of Dexamethasone Plus Gentamycin Mouthwash Use in Combination with Total Glucosides of Paeony for Treatment of Oral Lichen Planus without Fungal Infection: A Comparative Study with Long-Term Follow-Up. J Clin Med 2022; 11:jcm11237004. [PMID: 36498580 PMCID: PMC9739003 DOI: 10.3390/jcm11237004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Oral lichen planus (OLP) is a common chronic inflammatory disease of the oral mucosa and considered a potential malignant disease, for which a method for complete cure is lacking. The dexamethasone and gentamicin mouthwash, combined with total glucosides of paeony (TGP), was tested in the treatment of OLP patients without fungal infection, with a view to provide evidence that may assist in resolving the dilemma. Methods: A randomized and single-blind clinical trial of 48 non-erosive and erosive OLP patients was conducted, with the patients divided into two groups. Group A was treated with dexamethasone plus gentamycin mouthwash and Group B received an additional TGP capsule together with the aforementioned mouthwash. All the patients were followed up with four times, at 2 weeks, 1 month, 3 months, and 6 months. The clinical manifestations, sign score, and VAS scale were recorded. The total effective rate (%) was defined as (cases of complete resolution + cases of partial resolution)/total cases observed × 100%. Results: A total of 43 patients completed all follow-up appointments. Among the 21 patients in Group A, the total effective rate was 61.9%. Of the 22 patients in Group B, the total effective rate was 89.66%. The clinical manifestation, sign score, and VAS of the two groups all indicated improvements, and there were significant differences between the two groups (p < 0.05). Conclusions: Dexamethasone plus gentamycin mouthwash combined with TGP treatment for OLP patients is a safe and effective treatment of OLP.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Yan Jia
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Liyuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiaodan Liu
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Correspondence: (Y.H.); (X.W.)
| | - Xiao Wang
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Y.H.); (X.W.)
| |
Collapse
|
15
|
Liu L, Zhang L, Li M. Application of herbal traditional Chinese medicine in the treatment of lupus nephritis. Front Pharmacol 2022; 13:981063. [PMID: 36506523 PMCID: PMC9729561 DOI: 10.3389/fphar.2022.981063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Lupus nephritis (LN) is a secondary renal disease caused by systemic lupus erythematosus affecting the kidneys. It is one of the main causes of end-stage renal disease and a serious risk factor for early mortality and disability of systemic lupus erythematosus patients. Existing LN treatment is mainly based on hormones, cytotoxic drugs, and biological agents. Nevertheless, the prognosis of LN patients remains poor because of frequent recurrence and exacerbation of adverse drug reactions. Hence, LN is still the most important cause of end-stage renal disease. In recent years, traditional Chinese medicine (TCM) has attracted increasing attention because of encouraging evidence that it alleviates LN and the well-described mechanisms underlying renal injury. TCM has therapeutic benefits for treating LN patients. This review article elucidates TCM preparations, TCM monomers, and herbal or natural extraction for LN treatment to provide effective supplementary evidence for promoting the development of TCM treatment for LN and reference for future research and clinical practice.
Collapse
|
16
|
Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep 2022; 12:18678. [PMID: 36333421 PMCID: PMC9636377 DOI: 10.1038/s41598-022-23158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Lichen planus (LP) is a chronic inflammatory disease. Oral lichen planus (OLP) mainly appears as oral mucosal reticular or ulcerative lesions with an unknown etiology. We aimed to explore the immunomodulatory effect of paeoniflorin (PF) in mesenchymal stem cells (MSCs) and the potential involvement of Th1/Th2 cytokines in OLP. The effects of paeoniflorin on the proliferation and migration of MSCs were detected by Cell Counting Kit-8 (CCK8) and Transwell assays. MSCs were subjected to osteogenic, adipogenic and neurogenic induction followed by Alizarin red, oil red O, real-time PCR and immunofluorescence assays. We found that paeoniflorin promoted the proliferation, migration and multilineage differentiation of MSCs from OLP lesions (OLP-MSCs) in vitro. Paeoniflorin pretreatment increased the inhibitory effect of OLP-MSCs on peripheral blood mononuclear cells. Furthermore, paeoniflorin-pretreated OLP-MSCs simultaneously decreased Th1 cytokine levels and increased Th2 cytokine levels in T lymphocyte cocultures. Finally, paeoniflorin-pretreated OLP-MSCs also promoted the Th1/Th2 balance both in vitro and in the serum of mice that received skin allografts. In conclusion, paeoniflorin enhanced MSC immunomodulation and changed the inflammatory microenvironment via T lymphocytes, suggesting that the improvement of OLP-MSCs is a promising therapeutic approach for OLP.
Collapse
|
17
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
18
|
Han R, Ren HC, Zhou S, Gu S, Gu YY, Sze DMY, Chen MH. Conventional disease-modifying anti-rheumatic drugs combined with Chinese Herbal Medicines for rheumatoid arthritis: A systematic review and meta-analysis. J Tradit Complement Med 2022; 12:437-446. [PMID: 36081815 PMCID: PMC9446108 DOI: 10.1016/j.jtcme.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid Arthritis (RA) remains a major global public health challenge. Disease-modifying anti-rheumatic drugs (DMARDs) are standard therapeutic drugs for RA. Conventional DMARDs (c-DMARDs) are a subgroup of approved synthetic DMARDs. The c-DMARDs experienced lesser response with longer disease duration or drug exposure, and unwanted adverse events (AEs). The combination treatments (CTs) of c-DMARDs and Chinese Herbal Medicines (CHMs) were often used in RA clinical trials for increasing the therapeutic effectiveness and reducing the AEs. This systematic review aimed to evaluate the efficacy and safety of the CTs for RA. Databases were searched from inception to October 2020 for identification of randomized controlled trials (RCTs) that investigated the CTs in the management of RA. Twenty-three RCTs with 2,441 participants were included. The assessments and analyses found CTs improved American College of Rheumatology (ACR) 20 (RR: 1.33, 95% CI [1.21, 1.45], 10 studies, n=1,075) and alleviated AEs (RR: -0.40, 95% CI [-0.30, -0.53], 19 studies, n=2,011) in comparison with c-DMARDs. The CTs also significantly improved RA symptoms and patient-reported outcomes; reduced disease activity score (DAS) 28, serum acute-phase reactants and RA biomarkers. The five most commonly used herbs in included studies were Angelicae Sinensis Radix, Paeoniae Radix Alba, Cinnamomi Ramulus, Glycyrrhizae Radix et Rhizoma, and Clematidis Radix et Rhizoma. Pharmacological studies indicated these CHMs could contribute to the outcomes. The integrated CHMs potentially increased the overall effectiveness of c-DMARDs and alleviated AEs in management of RA. Large sample and rigorously designed RCTs are required for future studies.
Collapse
Affiliation(s)
- Rong Han
- Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong
| | - Hong Cheng Ren
- Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong
| | - Sitong Zhou
- Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong
| | - Sherman Gu
- Knox Chinese Healing & Myotherapy, Melbourne, VIC, Australia
| | - Yue-Yu Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510080, China
| | - Daniel Man-yuen Sze
- School of Health and Biomedical Science, RMIT University, Melbourne, Australia
| | - Meng-Hua Chen
- School of Health and Biomedical Science, RMIT University, Melbourne, Australia
- Aussway Chinese Medicine Centre, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Zhuang S, Pu J, Liang Y, Wu Z, Gao R, Pan S, Song J, Tang J, Wang X. Potential Mechanisms of White Peony against Primary Sjögren's Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5507472. [PMID: 35990826 PMCID: PMC9391099 DOI: 10.1155/2022/5507472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Multiple system and organ damage occurs with the continuous progression of primary Sjögren's syndrome (pSS), and the lack of specific drugs against this disease is a huge challenge. White peony (WP), a widely used traditional Chinese herb, has been confirmed to have a therapeutic value in pSS. However, the specific mechanisms of WP in the treatment of pSS are unknown. METHODS The active ingredients and their targets in WP were searched on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and disease-related targets were collected from GeneCards, Online Mendelian Inheritance in Man (OMIM), and the Therapeutic Target Database (TTD). The overlapping targets were acquired by taking the intersection. A protein-protein interaction (PPI) network was structured using the STRING database. A disease-drug-ingredient-target (D-D-I-T) network was built using Cytoscape software. By filtering twice, core targets were acquired. Gene Ontology (GO) and Kyoto Encyclopedia Gene and Genome (KEGG) pathway enrichment analysis were accompanied by R packages. Finally, molecular docking was used to verify the abovementioned results. RESULTS In total, we screened 88 WP-related targets, 1480 pSS-related targets, and 32 overlapping targets. D-D-I-T Network analysis displayed six main active ingredients of WP, which played a significant therapeutic role in pSS. Further topological analysis selected seven core target genes, including IL-6, TNF, PPARγ, AKT1, CASP3, NOS3, and JUN. GO and KEGG analysis were used to elucidate pharmacological mechanisms, mainly acting in the AGE-RAGE signaling pathway. Molecular docking proved that paeoniflorin bound well with core targets. CONCLUSION Our study revealed that IL-6, TNF, AKT1, CASP3, NOS3, and JUN may be pathogenic target genes, and PPARγ may be a protective target gene. The main active ingredients of WP mainly played a therapeutic role via the AGE-RAGE signaling pathway. These findings provide a fundamental and theoretical basis for the clinical application of WP.
Collapse
Affiliation(s)
- Shuqi Zhuang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| |
Collapse
|
20
|
Yao L, Cheng S, Yang J, Xiang F, Zhou Z, Zhang Q, Pang Y, Zhou W, Abliz Z. Metabolomics reveals the intervention effect of Zhuang medicine Longzuantongbi granules on a collagen-induced arthritis rat model by using UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115325. [PMID: 35508204 DOI: 10.1016/j.jep.2022.115325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is known as "Fawang" in Zhuang medical theory. Longzuantongbi granules (LZTBG) is an in-hospital preparation used at the First Affiliated Hospital of the Guangxi University of Chinese Medicine. This medicine is based on traditional Zhuang medicine theory for the treatment of "Fawang", and has an effectiveness of over 86.67%. It comprises eight medicinal materials, including the main drug Toddalia asiatica (L.) Lam. and Kadsura coccinea (Lem.) A.C. Smith, the assisting drugs Alangium chinense (Lour.) Harms, Zanthoxylum nitidum (Roxb.) DC., Sinomenium acutum (Thunb.) Rehd.et Wils., Bauhinia championii (Benth.) Benth., Spatholobus suberectus Dunn, and Ficus hirta Vahl. All of these herbs are commonly used in Zhuang medicine. AIM OF THE STUDY This study aims to reveal the effect of LZTBG on collagen-induced arthritis (CIA) rats, to discover the potential efficacy-related biomarkers and explore the intervention mechanism of LZTBG from a molecular level, based on metabolomics. MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly assigned into a normal group, a CIA model group, a positive control (MTX) group and two different LZTBG treatment groups (5.4 g/kg/d and 2.7 g/kg/d). Body weight, arthritis index (AI), paw swelling, and hematoxylin and eosin (HE) staining experiments were used to evaluate the efficacy of the established model. A metabolomics method based on an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was established to analyze plasma taken from the rats, and to explore the interventional mechanism of LZTBG. RESULTS LZTBG showed a positive effect on the CIA model rats. Thirty-one differential metabolites were screened out, and combined with pathway analysis, 11 potential efficacy-related biomarkers were then mapped in the pathway. These included linoleic acid (LA), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), arachidonic acid (AA), 12-HETE, alpha-linolenic acid (ALA), 13(S)-HOT, 2-oxobutanoate, 3-hydroxybutyric acid, L-Valine, and acetylcholine. Furthermore, it was found that these metabolites may exhibit an intervention effect by means of modulating pathways related to both lipid metabolism and amino acid metabolism to associated with inflammation. CONCLUSION LZTBG can effectively alleviate symptoms of RA, an effect that can primarily be attributed to the regulation of multiple pathways and multiple targets These results demonstrate that LC-MS/MS-based metabolomics is an advantageous technique for the investigation of the intervention effect and molecular mechanism of traditional compound medicine.
Collapse
Affiliation(s)
- Lan Yao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Shuohan Cheng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jing Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Fangfang Xiang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China
| | - Qinghuai Zhang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yuzhou Pang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Wenbin Zhou
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China.
| | - Zeper Abliz
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
21
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|
22
|
Wang YJ, Li YX, Li S, He W, Wang ZR, Zhan TP, Lv CY, Liu YP, Yang Y, Zeng XX. Progress in traditional Chinese medicine and natural extracts for the treatment of lupus nephritis. Biomed Pharmacother 2022; 149:112799. [PMID: 35279011 DOI: 10.1016/j.biopha.2022.112799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Lupus nephritis (LN) is an autoimmune disease with multiple system involvement and is also one of the most serious forms of organ damage in systemic lupus erythematosus (SLE), which is mainly caused by the formation and deposition of immune complexes in glomeruli. More than 50% of SLE patients have clinical manifestations of renal damage. At present, the treatment of lupus nephritis is mainly based on glucocorticoids and immunosuppressants. However, due to adverse drug reactions and frequent recurrence or aggravation after drug reduction or withdrawal, the prognosis remains poor; thus, it is still one of the most important causes of end-stage renal failure. Therefore, new treatment strategies are urgently needed. This article aims to review the application of traditional Chinese medicine and natural extracts in the treatment of lupus nephritis to provide the basic mechanisms of treatment and a new treatment strategy with clear effects and high safety performance.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37GuoXue Alley, Chengdu 610041, Sichuan, China
| | - Ya-Xin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shuo Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei He
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zi-Rui Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Tian-Peng Zhan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Chao-Yue Lv
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ying-Ping Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yang Yang
- Cancer Center, West China Hospital, Sichuan University, 37GuoXue Alley, Chengdu 610041, Sichuan, China
| | - Xiao-Xi Zeng
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37GuoXue Alley, Chengdu 610041, Sichuan, China.
| |
Collapse
|
23
|
Wang J, Li G, Zhong W, Zhang H, Yang Q, Chen L, Wang J, Yang X. Effect of Dietary Paeoniae Radix Alba Extract on the Growth Performance, Nutrient Digestibility and Metabolism, Serum Biochemistry, and Small Intestine Histomorphology of Raccoon Dog During the Growing Period. Front Vet Sci 2022; 9:839450. [PMID: 35445094 PMCID: PMC9014091 DOI: 10.3389/fvets.2022.839450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Paeoniae radix alba extract (PRA extract) has the functions of regulating immunity, resisting inflammation, and has antioxidant properties. However, current recommendations of dietary PRA extract levels for raccoon dogs were inadequate. The purpose of this experimental study was to gain information allowing for better estimating the effects of PRA extract on raccoon dogs, and their PRA requirements. Fifty healthy male raccoon dogs of (120 ± 5) days old were randomly divided into 5 groups (group PRA0, PRA1, PRA2, PRA4, PRA8) with 10 animals in each group and 1 in each replicate. Five kinds of experimental diets were prepared with five levels of Paeoniae radix alba extract (0, 1, 2, 4, 8 g/kg) in the basic diet. The prefeeding period was 7 days and the experimental period was 40 days. The results showed that the average daily feed intake in group PRA1 and PRA2 was significantly higher than that in other groups (P < 0.01). The dry matter excretion in group PRA8 was significantly higher than that in other groups (P < 0.01), while the dry matter digestibility and protein digestibility in group PRA8 were significantly lower than those in other groups (P < 0.01). Nitrogen retention in group PRA1 and PRA2 was significantly higher than that in group PRA8 (P < 0.05). With the increase of the content of Paeoniae radix alba extract in diet, the activity of alkaline phosphatase in group PRA2 was significantly higher than that in group PRA0 (P < 0.05); The activity of serum SOD in group PRA4 was significantly higher than that in other groups (P < 0.01). The content of serum IgA in group PRA2 was significantly higher than that in other groups (P < 0.05). The content of TNF-α in intestinal mucosa in group PRA1 and group PRA2 was significantly lower than that in group PRA0 (P < 0.05). In conclusion, we found that dietary Paeoniae radix alba extract intake significantly improved the feed intake and nitrogen deposition of Ussuri raccoon dog, increased the content of serum IgA and reduced the content of TNF-α in the small intestinal mucosa. We suggest that an estimated dietary Paeoniae radix alba extract level of 1 to 2 g/kg could be used as a guide to achieve the optimal performance of raccoon dogs.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| | - Wei Zhong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qianlong Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihong Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuewen Yang
- China Animal Husbandry Group, Beijing, China
| |
Collapse
|
24
|
Research advances in the role and pharmaceuticals of ATP-binding cassette transporters in autoimmune diseases. Mol Cell Biochem 2022; 477:1075-1091. [PMID: 35034257 DOI: 10.1007/s11010-022-04354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Autoimmune diseases are caused by the immune response of the body to its antigens, resulting in tissue damage. The pathogenesis of these diseases has not yet been elucidated. Most autoimmune diseases cannot be cured by effective drugs. The treatment strategy is to relieve the symptoms of the disease and balance the body's autoimmune function. The abnormal expression of ATP-binding cassette (ABC) transporters is directly related to the pathogenesis of autoimmune diseases and drug therapy resistance, which poses a great challenge for the drug therapy of autoimmune diseases. Therefore, this paper reviews the interplay between ABC transporters and the pathogenesis of autoimmune diseases to provide research progress and new ideas for the development of drugs in autoimmune diseases.
Collapse
|
25
|
Jin Y, Zhang A. Total glucosides of paeony ameliorates oxidative stress, apoptosis and inflammatory response by regulating the Smad7‑TGF‑β pathway in allergic rhinitis. Mol Med Rep 2022; 25:83. [PMID: 35029288 PMCID: PMC8778736 DOI: 10.3892/mmr.2022.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Total glucosides of paeony (TGP), an active ingredient extracted from the root of Paeonia alba, has been reported to display an anti-inflammatory effect. However, the effect of TGP on allergic rhinitis (AR) is still unknown. The present study aimed to assess the role of TGP in an AR mouse model. An AR mouse model was established using the ovalbumin method. The expression levels of Smad7/TGF-β pathway-related prtoeins in nasal mucosa tissues were determined by immunofluorescence, immunohistochemistry and western blotting. The severity of nasal allergic symptoms was detected by recording the frequency of sneezing and nose rubbing motions in all mice for 20 min. The levels of IgE and inflammatory cytokines, including IL-4, IL-5, IL-17 and IFN-γ, in the serum were measured by conducting ELISAs. H&E staining, periodic acid-Schiff staining and Masson staining were used to detected histopathological changes in mice. The concentrations of malondialdehyde and glutathione, and the activities of superoxide dismutase and catalase in tissue supernatant and serum were quantified using commercial assay kits. Apoptosis of nasal tissue cells was detected by performing TUNEL assays and western blotting. The expression of Smad7 was upregulated and that of TGF-β was downregulated in the nasal tissue of AR mice. Additionally, TGP regulated the Smad7/TGF-β pathway in the nasal tissue of AR mice. TGP alleviated serum IgE, nasal symptoms and histopathological changes in AR mice. Moreover, TGP ameliorated oxidative stress, cell apoptosis and inflammatory response. Smad7 small interfering RNA intervention aggravated the symptoms of AR mice via activation of the TGF-β pathway and reversed the protective effect of TGP in AR mice. TGP ameliorated oxidative stress, apoptosis and inflammatory response via the Smad7/TGF-β pathway in AR.
Collapse
Affiliation(s)
- Yangzi Jin
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Aichun Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
26
|
Lin Y, Liu Q, Chen Z, Zheng F, Huang H, Yu C, Yang J. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol 2022; 914:174690. [PMID: 34890543 DOI: 10.1016/j.ejphar.2021.174690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.
Collapse
Affiliation(s)
- Yarong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qian Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zehong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Fengting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Huihui Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
27
|
Ma J, Meng Q, Zhan J, Wang H, Fan W, Wang Y, Zhang S, Bian H, Zheng F. Paeoniflorin Suppresses Rheumatoid Arthritis Development via Modulating the Circ-FAM120A/miR-671-5p/MDM4 Axis. Inflammation 2021; 44:2309-2322. [PMID: 34423389 DOI: 10.1007/s10753-021-01504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Paeoniflorin is an active ingredient derived from Paeonia, which has an anti-inflammatory effect. However, the potential role and basis of paeoniflorin in rheumatoid arthritis (RA) are indistinct. Cell viability, cycle distribution, migration, and invasion were evaluated via Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assays. The contents of inflammatory cytokines were examined using enzyme-linked immunosorbent assay (ELISA). RNA expression levels were determined via qRT-PCR and western blot. The targeting relationship between miR-671-5p and circ-FAM120A (hsa_circ_0003972) or murine double minute 4 (MDM4) was validated via dual-luciferase reporter assay. Paeoniflorin restrained proliferation, migration, invasion, and inflammation and accelerated cell cycle arrest in RA fibroblast-like synoviocytes (RA-FLSs). Circ-FAM120A was boosted in RA synovial tissues and RA-FLSs. Circ-FAM120A upregulation, miR-671-5p knockdown, or MDM4 augmentation reversed the repressive effect of paeoniflorin on RA-FLS progression. Moreover, paeoniflorin attenuated RA-FLS progression by regulating the circ-FAM120A/miR-671-5p/MDM4 axis. Paeoniflorin inhibited RA-FLS proliferation, mobility, and inflammation and triggered cell cycle arrest via mediating the circ-FAM120A/miR-671-5p/MDM4 pathway.
Collapse
Affiliation(s)
- Junfu Ma
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Qingliang Meng
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Junping Zhan
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Huilian Wang
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Wei Fan
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Yanqi Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Sudan Zhang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan Province, Nanyang City, China
| | - Fuzeng Zheng
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Henan Province, Zhengzhou City, China. .,Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou City, Henan Province, China.
| |
Collapse
|
28
|
Liang CL, Jiang H, Feng W, Liu H, Han L, Chen Y, Zhang Q, Zheng F, Lu CJ, Dai Z. Total Glucosides of Paeony Ameliorate Pristane-Induced Lupus Nephritis by Inducing PD-1 ligands + Macrophages via Activating IL-4/STAT6/PD-L2 Signaling. Front Immunol 2021; 12:683249. [PMID: 34290705 PMCID: PMC8288191 DOI: 10.3389/fimmu.2021.683249] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Macrophages, a major subset of innate immune cells, are main infiltrating cells in the kidney in lupus nephritis. Macrophages with different phenotypes exert diverse or even opposite effects on the development of lupus nephritis. Substantial evidence has shown that macrophage M2 polarization is beneficial to individuals with chronic kidney disease. Further, it has been reported that PD-1 ligands (PD-Ls) contribute to M2 polarization of macrophages and their immunosuppressive effects. Total glucosides of paeony (TGP), originally extracted from Radix Paeoniae Alba, has been approved in China to treat some autoimmune diseases. Here, we investigated the potentially therapeutic effects of TGP on lupus nephritis in a pristane-induced murine model and explored the molecular mechanisms regulating macrophage phenotypes. We found that TGP treatment significantly improved renal function by decreasing the urinary protein and serum creatinine, reducing serum anti-ds-DNA level and ameliorating renal immunopathology. TGP increased the frequency of splenic and peritoneal F4/80+CD11b+CD206+ M2-like macrophages with no any significant effect on F4/80+CD11b+CD86+ M1-like macrophages. Immunofluorescence double-stainings of the renal tissue showed that TGP treatment increased the frequency of F4/80+Arg1+ subset while decreasing the percentage of F4/80+iNOS+ subset. Importantly, TGP treatment increased the percentage of both F4/80+CD11b+PD-L1+ and F4/80+CD11b+PD-L2+ subsets in spleen and peritoneal lavage fluid as well as the kidney. Furthermore, TGP augmented the expressions of CD206, PD-L2 and phosphorylated STAT6 in IL-4-treated Raw264.7 macrophages in vitro while its effects on PD-L2 were abolished by pretreatment of the cells with an inhibitor of STAT6, AS1517499. However, TGP treatment did not affect the expressions of STAT1 and PD-L1 in Raw264.7 macrophages treated with LPS/IFN-γ in vitro, indicating a possibly indirect effect of TGP on PD-L1 expression on macrophages in vivo. Thus, for the first time, we demonstrated that TGP may be a potent drug to treat lupus nephritis by inducing F4/80+CD11b+CD206+ and F4/80+CD11b+PD-L2+ macrophages through IL-4/STAT6/PD-L2 signaling pathway.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongliang Jiang
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Maoming, China
| | - Wenxuan Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Zheng
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
29
|
Tang X, Liu Z, Yang Z, Xu S, Wang M, Chen X, Wen Z, Huang R. The Effect of Chinese Medicine Compound in the Treatment of Rheumatoid Arthritis on the Level of Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide Antibodies: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:686360. [PMID: 34276376 PMCID: PMC8278104 DOI: 10.3389/fphar.2021.686360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 01/19/2023] Open
Abstract
Objectives: To evaluate the current evidence whether Chinese medicine compound (CMC) can reduce the serum levels of rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP). Methods: We comprehensively searched PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), the Database for Chinese Technical Periodicals (VIP), and Wanfang data. We then performed a systematic review and meta-analysis of all randomized controlled trials (RCTs) assessing the CMC therapy methods. This study is registered with PROSPERO, number CRD42020216284. Results: In total, 65 studies were eligible for inclusion, including 6099 patients. The result of the meta-analysis showed that compared with common Western medicine therapy, CMC monotherapy or combined with Western medicine was able to reduce serum RF (SMD= -0.85, 95%CI -1.04 to -0.67) and anti-CCP (SMD= -0.56, 95%CI -0.79 to -0.32) levels to some extent. In the efficacy meta-analysis, a greater number of CMC-treated patients achieved the efficacy criteria after a period of treatment, where the relative risk (RR) was 1.20 [1.08, 1.33] for achieving ACR20, 1.57 [1.38, 1.78] for ACR50, and 2.21 [1.72, 2.84] for ACR70. At the same time, there was a statistically significant difference in the effective rate of the patient's TCM symptoms (RR = 1.22, 95%CI 1.19-1.26). Conclusions: Through this meta-analysis and systematic review, we found that CMC for the treatment of RA is effective in reducing RF and anti-CCP levels and might have better clinical efficacy than Western medicine monotherapy. Some active components are responsible for this efficacy and worth further exploring.
Collapse
Affiliation(s)
- Xuan Tang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zehao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shengmei Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Maojie Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Xiumin Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehuai Wen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Bai LL, Chen H, Zhou P, Yu J. Identification of Tumor Necrosis Factor-Alpha (TNF-α) Inhibitor in Rheumatoid Arthritis Using Network Pharmacology and Molecular Docking. Front Pharmacol 2021; 12:690118. [PMID: 34093213 PMCID: PMC8175775 DOI: 10.3389/fphar.2021.690118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background: This study aimed to investigate the molecular mechanism of Radix Paeoniae Alba (white peony, WP) in treating immune inflammatory diseases of rheumatoid arthritis (RA) and tumor necrosis factor-alpha (TNF-α) inhibitors (TNFis) by using network pharmacology and molecular docking. Methods: In this study, the ingredient of WP and the potential inflammatory targets of RA were obtained from the Traditional Chinese Medicine Systematic Pharmacology Database, GeneCard, and OMIM databases, respectively. The establishment of the RA-WP-potential inflammatory target gene interaction network was accomplished using the STRING database. Network maps of the WP-RA-potential inflammatory target gene network were constructed using Cytoscape software. Gene ontology (GO) and the biological pathway (KEGG) enrichment analyses were used to further explore the RA mechanism and therapeutic effects of WP. Molecular docking technology was used to analyze the optimal effective components from WP for docking with TNF-α. Results: Thirteen active ingredients and 71 target genes were screened from WP, and 49 of the target genes intersected with RA target inflammatory genes and were considered potential therapeutic targets. Network pharmacological analysis showed that the WP active ingredients such as mairin, DPHCD, (+)-catechin, beta-sitosterol, paeoniflorin, sitosterol, and kaempferol showed better correlation with RA inflammatory target genes such as PGR, PTGS1, PTGS2, NR3C2, TNFSF15, and CHRM2, respectively. The immune-inflammatory signaling pathways of the active ingredients for the treatment of RA are the TNF-α signaling pathway, Toll-like receptor signaling pathway, cell apoptosis, interleukin-17 signaling pathway, C-type lectin receptor signaling pathway, mitogen-associated protein kinase, etc. Molecular docking results suggested that mairin was the most appropriate natural TNFis. Conclusion: Our findings provide an essential role and basis for further immune-inflammatory studies into the molecular mechanisms of WP and TNFis development in RA.
Collapse
Affiliation(s)
- Liang Liang Bai
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Hao Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Shen C, Shen B, Zhu J, Wang J, Yuan H, Li X. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug Dev Ind Pharm 2020; 47:207-214. [PMID: 33305640 DOI: 10.1080/03639045.2020.1862178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Paeoniflorin (Pae), a water-soluble monoterpene glucoside, has high potential clinical value in autoimmune and inflammatory diseases. However, the extremely low oral bioavailability of Pae (approximately 3%-4%) limits its formulation development and clinical application. This study aimed to develop micelles using the glycyrrhizic acid (GL) as the carrier to improve the oral absorption of Pae. METHODS Pae-loaded GL micelles were prepared by the ultrasonic dispersion method and its formulation was optimized by single-factor tests. Characterizations of Pae-loaded GL micelles including particle size, zeta potential, entrapment efficiency (EE), drug loading (DL), morphology, and drug release in vitro were carried out. The single-pass intestinal perfusion and pharmacokinetic studies of Pae-loaded GL micelles were also evaluated in rats and compared with Pae solution and the mixed solution of Pae and GL. RESULTS The optimized Pae-loaded GL micelles had EE of (42.21 ± 0.89)%, particle size of (58.89 ± 4.24) nm with PDI of (0.194 ± 0.010), zeta potential of (-24.40 ± 1.90) mV. Pae-loaded GL micelles showed a nearly spherical shape under TEM. Drug release of micelles demonstrated a delayed drug release compared to Pae solution. The single-pass intestinal perfusion study showed a significantly higher permeability of Pae in duodenum (p < 0.05), jejunum (p < 0.05), ileum (p < 0.01) and colon (p < 0.01) intestine after perfusion of Pae-loaded GL micelles as compared to Pae solution. The in vivo pharmacokinetics demonstrated that the Cmax and AUC0-t values of Pae-loaded GL micelles were approximately 2.18- and 3.64-fold superior than the Pae solution. CONCLUSION These results suggested GL could be a potential carrier for the oral delivery of Pae.
Collapse
Affiliation(s)
- Chengying Shen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Air Force Medical Center, PLA, Beijing, China
| | - Baode Shen
- Air Force Medical Center, PLA, Beijing, China
| | - Junjun Zhu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Air Force Medical Center, PLA, Beijing, China
| | - Jing Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Air Force Medical Center, PLA, Beijing, China
| | | | - Xiaofang Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Wang KX, Gao Y, Gong WX, Ye XF, Fan LY, Wang C, Gao XF, Gao L, Du GH, Qin XM, Lu AP, Guan DG. A Novel Strategy for Decoding and Validating the Combination Principles of Huanglian Jiedu Decoction From Multi-Scale Perspective. Front Pharmacol 2020; 11:567088. [PMID: 33424585 PMCID: PMC7789881 DOI: 10.3389/fphar.2020.567088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) formulas treat complex diseases through combined botanical drugs which follow specific compatibility rules to reduce toxicity and increase efficiency. "Jun, Chen, Zuo and Shi" is one of most used compatibility rules in the combination of botanical drugs. However, due to the deficiency of traditional research methods, the quantified theoretical basis of herbal compatibility including principles of "Jun, Chen, Zuo and Shi" are still unclear. Network pharmacology is a new strategy based on system biology and multi-disciplines, which can systematically and comprehensively observe the intervention of drugs on disease networks, and is especially suitable for the research of TCM in the treatment of complex diseases. In this study, we systematically decoded the "Jun, Chen, Zuo and Shi" rules of Huanglian Jiedu Decoction (HJD) in the treatment of diseases for the first time. This interpretation method considered three levels of data. The data in the first level mainly depicts the characteristics of each component in single botanical drug of HJD, include the physical and chemical properties of component, ADME properties and functional enrichment analysis of component targets. The second level data is the characterization of component-target-protein (C-T-P) network in the whole protein-protein interaction (PPI) network, mainly include the characterization of degree and key communities in C-T-P network. The third level data is the characterization of intervention propagation properties of HJD in the treatment of different complex diseases, mainly include target coverage of pathogenic genes and propagation coefficient of intervention effect between target proteins and pathogenic genes. Finally, our method was validated by metabolic data, which could be used to detect the components absorbed into blood. This research shows the scientific basis of "Jun-Chen-Zuo-Shi" from a multi-dimensional perspective, and provides a good methodological reference for the subsequent interpretation of key components and speculation mechanism of the formula.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
| | - Wen-Xia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiao-Feng Ye
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
| | - Liu-Yi Fan
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Wang S, Xu J, Wang C, Li J, Wang Q, Kuang H, Yang B, Chen R, Luo Z. Paeoniae radix alba polysaccharides obtained via optimized extraction treat experimental autoimmune hepatitis effectively. Int J Biol Macromol 2020; 164:1554-1564. [PMID: 32735927 DOI: 10.1016/j.ijbiomac.2020.07.214] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
The extraction process of Paeoniae radix alba polysaccharides (PRAP) was optimized as the liquid-solid ratio of 10.65 mL/g, the extraction time of 2.10 h, and the 2 extraction repetitions through a response surface methodology. The chemical profiles of the obtained PRAP were characterized by measuring the contents of total carbohydrates, total phenolics, uronic acid and protein, and by analyzing the FT-IR spectrum and monosaccharide composition. To determine the therapeutic effects of PRAP on experimental autoimmune hepatitis (EAH), we established an EAH mice model. After treated with PRAP, liver and spleen injuries were reduced, and hepatocyte regeneration and liver function were improved. Further study of the mechanism by which PRAP treats EAH showed that PRAP significantly inhibited oxidative stress in the livers of EAH model mice. More importantly, PRAP inhibited immune inflammatory reactions in EAH model mice, including the hepatic infiltration of inflammatory CD4+ and CD8+ T cells, as well as overexpression of inflammatory cytokines IL-2, IL-6 and IL-10, via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Siyu Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Jiazhi Xu
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Changfu Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China.
| | - Jianchun Li
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Qiuhong Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24 Heping Road, XiangFang District, Harbin 150040, Heilongjiang Province, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24 Heping Road, XiangFang District, Harbin 150040, Heilongjiang Province, China
| | - Rongying Chen
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Zhongwen Luo
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| |
Collapse
|
34
|
Sun Y, Huang Y, Chen T, Li X, Chen J, Wang Z, Lin K, Gao Y, He L. Effect of downregulation of serum MMP-3 levels by traditional Chinese medicine ingredients combined with methotrexate on the progression of bone injury in patients with rheumatoid arthritis: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22841. [PMID: 33120813 PMCID: PMC7581142 DOI: 10.1097/md.0000000000022841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A large number of clinical studies have confirmed that after treatment with traditional Chinese medicine components such as sinomenine (SIN), the matrix -metalloproteinase3 (MMP-3) level of patients with rheumatoid arthritis (RA) shows a significant decrease, whereas MMP-3 can be involved in degrading bone matrix in humans, so in the progression of bone and joint injury in patients with RA, serum MMP-3 can be used as an important biochemical marker. The traditional Chinese medicine components commonly used in clinical practice include total glucosides of paeony (TGP), SIN, and tripterygium glycosides, which have the characteristics of disease-modifyinganti-rheumatic drugs and non-steroidal anti-inflammatory drugs, while they can reduce the toxic side effects of methotrexate (MTX), and their combination with other drugs such as MTX and leflunomide (HWA486) has become an important regimen for the treatment of RA in clinical practice. Therefore, we designed this study protocol to evaluate the adjuvant effect of commonly used traditional Chinese medicine components combined with MTX in the treatment of osteoarticular injury in RA. METHODS The search time was set from January 2000 to September 2020 in this study. EMBASE database, Cochrane Library, PubMed, Web of Science, Science Direct, Chinese National Knowledge Infrastructure, China Biology Medicine disc (CBM), Chinese Scientifific Journals Database (VIP), and Wanfang Database were used as search sources to select the traditional Chinese medicine components that reduce MMP-3 and use MTX in the treatment of RA. Clinical randomized controlled trials were used, and inclusion criteria and exclusion criteria were set for screening. In this study, MMP-3, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), cyclic peptide containing citrulline (CCP) and rheumatoid factor (RF) were used as the main outcomes, and the improvement of Disease Activity Score 28 (DAS28), joint bone mineral density, Clinical Disease Activity Index (CDAI), and other clinically relevant symptoms was selected as the secondary outcomes. Revman software version 5.3 was used for statistical analysis of data and risk assessment of deviation in this meta-analysis. In this study, one researcher performed study direction selection, literature inquiry, and literature download, and 2 independent reviewers performed literature data extraction and literature quality assessment. Dichotomized data are expressed as relative risk, continuous data are expressed as mean difference or standard mean difference, and finally fixed-effect model or random-effect model is used for synthesis according to the heterogeneity of data. RESULTS To evaluate the effect of downregulation of MMP-3 level by traditional Chinese medicine components combined with MTX on the progression of bone injury in patients with RA by serum MMP-3, ESR, CRP, CCP, and RF. CONCLUSION This study protocol can be used to evaluate the efficacy and safety of traditional Chinese medicine components combined with MTX in the treatment of bone injury in patients with RA. ETHICS AND DISSEMINATION This study is a secondary study based on the published clinical research; therefore, approval from an ethics committee is not required for this study. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocol (PRISMA-P), the results of this study will be published in peer-reviewed scientific journals and conference papers. REGISTRATION NUMBER:: is INPLASY202090064.
Collapse
Affiliation(s)
| | | | - Tiantian Chen
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine
| | | | - Jiayi Chen
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Zhuozhi Wang
- College of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | | - Yongxiang Gao
- College of Basic Medicine
- College of Clinical Medicine
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine
- College of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Lisha He
- College of Basic Medicine
- College of Clinical Medicine
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine
- College of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|