1
|
Fallah S, Aliniaeifard S, Zare Mehrjerdi M, Mirzaei S, Gruda NS. Night Interruption with Red and Far-Red Light Optimizes the Phytochemical Composition, Enhances Photosynthetic Efficiency, and Increases Biomass Partitioning in Italian Basil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3145. [PMID: 39599354 PMCID: PMC11597572 DOI: 10.3390/plants13223145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Controlled environment agriculture is a promising solution to address climate change and resource limitations. Light, the primary energy source driving photosynthesis and regulating plant growth, is critical in optimizing produce quality. However, the impact of specific light spectra during night interruption on improving phytochemical content and produce quality remains underexplored. This study investigated the effects of red (peak wavelength at 660 nm) and far-red night interruption (peak wavelength at 730 nm) on photosynthetic efficiency, biomass distribution, and phytochemical production in Italian basil (Ocimum basilicum L.). Treatments included red light, far-red light, a combination of both, and a control without night interruption. Red light significantly increased chlorophyll a by 16.8%, chlorophyll b by 20.6%, and carotenoids by 11%, improving photosynthetic efficiency and nutritional quality. Red light also elevated anthocyanin levels by 15.5%, while far-red light promoted flavonoid production by 43.56%. Although red light enhanced biomass, the primary benefit was improved leaf quality, with more biomass directed to leaves over roots. Far-red light reduced transpiration, enhancing post-harvest water retention and shelf life. These findings demonstrate that red and far-red night interruption can optimize phytochemical content, produce quality, and post-harvest durability, offering valuable insights for controlled environment agriculture. Future research should focus on refining night interruption light strategies across a broader range of crops to enhance produce quality and shelf life in controlled environment agriculture.
Collapse
Affiliation(s)
- Soheil Fallah
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran 14395-547, Iran; (S.F.); (M.Z.M.); (S.M.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran 14395-547, Iran; (S.F.); (M.Z.M.); (S.M.)
- Controlled Environment Agriculture Center (CEAC), Faculty of Agricultural Technology (Aburaihan), College of Agriculture and Natural Resources, University of Tehran, Tehran 14395-547, Iran
| | - Mahboobeh Zare Mehrjerdi
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran 14395-547, Iran; (S.F.); (M.Z.M.); (S.M.)
| | - Shima Mirzaei
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran 14395-547, Iran; (S.F.); (M.Z.M.); (S.M.)
| | - Nazim S. Gruda
- Department of Horticultural Science, INRES-Institute of Crop Science and Resource Conservation, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
2
|
Shomali A, De Diego N, Zhou R, Abdelhakim L, Vrobel O, Tarkowski P, Aliniaeifard S, Kamrani YY, Ji Y, Ottosen CO. The crosstalk of far-red energy and signaling defines the regulation of photosynthesis, growth, and flowering in tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108458. [PMID: 38408395 DOI: 10.1016/j.plaphy.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 μmol m-2 s-1) and high (HL: 1135 μmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 μmol m-2 s-1 including 115 μmol m-2 s-1; HLFR: 1254 μmol m-2 s-1 + 140 μmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, 3391653755, Iran.
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Rong Zhou
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Lamis Abdelhakim
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, 3391653755, Iran
| | - Yousef Yari Kamrani
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Yongran Ji
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, PO Box 16, Wageningen, 6700AA, the Netherlands
| | - Carl-Otto Ottosen
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| |
Collapse
|
3
|
Davarzani M, Aliniaeifard S, Mehrjerdi MZ, Roozban MR, Saeedi SA, Gruda NS. Optimizing supplemental light spectrum improves growth and yield of cut roses. Sci Rep 2023; 13:21381. [PMID: 38049454 PMCID: PMC10696034 DOI: 10.1038/s41598-023-48266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
During the seasons with limited light intensity, reductions in growth, yield, and quality are challenging for commercial cut rose production in greenhouses. Using artificial supplemental light is recommended for maintaining commercial production in regions with limited light intensity. Nowadays, replacing traditional lighting sources with LEDs attracted lots of attention. Since red (R) and blue (B) light spectra present the important wavelengths for photosynthesis and growth, in the present study, different ratios of supplemental R and B lights, including 90% R: B 10% (R90B10), 80% R: 20% B (R80B20), 70% R: 30% B (R70B30) with an intensity of 150 µmol m-2 s-1 together with natural light and without supplemental light (control) were applied on two commercial rose cultivars. According to the obtained results, supplemental light improved growth, carbohydrate levels, photosynthesis capacity, and yield compared to the control. R90B10 in both cultivars reduced the time required for flowering compared to the control treatment. R90B10 and R80B20 obtained the highest number of harvested flower stems in both cultivars. Chlorophyll and carotenoid levels were the highest under control. They had a higher ratio of B light, while carbohydrate and anthocyanin contents increased by having a high ratio of R light in the supplemental light. Analysis of chlorophyll fluorescence was indicative of better photosynthetic performance under a high ratio of R light in the supplemental light. In conclusion, the R90B10 light regime is recommended as a suitable supplemental light recipe to improve growth and photosynthesis, accelerate flowering, and improve the yield and quality of cut roses.
Collapse
Affiliation(s)
- Maryam Davarzani
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran.
- Controlled Environment Agriculture Center, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Mahboobeh Zare Mehrjerdi
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Mahmood Reza Roozban
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Seyyed Arash Saeedi
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Nazim S Gruda
- Department of Horticultural Science, INRES-Institute of Crop Science and Resource Conservation, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
4
|
Saeedi SA, Vahdati K, Sarikhani S, Daylami SD, Davarzani M, Gruda NS, Aliniaeifard S. Growth, photosynthetic function, and stomatal characteristics of Persian walnut explants in vitro under different light spectra. FRONTIERS IN PLANT SCIENCE 2023; 14:1292045. [PMID: 38046599 PMCID: PMC10690960 DOI: 10.3389/fpls.2023.1292045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Light plays a crucial role in photosynthesis, which is an essential process for plantlets produced during in vitro tissue culture practices and ex vitro acclimatization. LED lights are an appropriate technology for in vitro lighting but their effect on propagation and photosynthesis under in vitro condition is not well understood. This study aimed to investigate the impact of different light spectra on growth, photosynthetic functionality, and stomatal characteristics of micropropagated shoots of Persian walnut (cv. Chandler). Tissue-cultured walnut nodal shoots were grown under different light qualities including white, blue, red, far-red, green, combination of red and blue (70:30), combination of red and far-red (70:30), and fluorescent light as the control. Results showed that the best growth and vegetative characteristics of in vitro explants of Persian walnut were achieved under combination of red and blue light. The biggest size of stomata was detected under white and blue lights. Red light stimulated stomatal closure, while stomatal opening was induced under blue and white lights. Although the red and far-red light spectra resulted in the formation of elongated explants with more lateral shoots and anthocyanin content, they significantly reduced the photosynthetic functionality. Highest soluble carbohydrate content and maximum quantum yield of photosystem II were detected in explants grown under blue and white light spectra. In conclusion, growing walnut explants under combination of red and blue lights leads to better growth, photosynthesis functionality, and the emergence of functional stomata in in vitro explants of Persian walnuts.
Collapse
Affiliation(s)
- Seyyed Arash Saeedi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Saadat Sarikhani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Maryam Davarzani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nazim S. Gruda
- Department of Horticultural Science, INRES–Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Verdonk JC, van Ieperen W, Carvalho DRA, van Geest G, Schouten RE. Effect of preharvest conditions on cut-flower quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1281456. [PMID: 38023857 PMCID: PMC10667726 DOI: 10.3389/fpls.2023.1281456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The cut flower industry has a global reach as flowers are often produced in countries around the equator and transported by plane or ship (reefer) mostly to the global north. Vase-life issues are often regarded as linked to only postharvest conditions while cultivation factors are just as important. Here, we review the main causes for quality reduction in cut flowers with the emphasis on the importance of preharvest conditions. Cut flower quality is characterised by a wide range of features, such as flower number, size, shape, colour (patterns), fragrance, uniformity of blooming, leaf and stem colour, plant shape and developmental stage, and absence of pests and diseases. Postharvest performance involves improving and preserving most of these characteristics for as long as possible. The main causes for cut flower quality loss are reduced water balance or carbohydrate availability, senescence and pest and diseases. Although there is a clear role for genotype, cultivation conditions are just as important to improve vase life. The role of growth conditions has been shown to be essential; irrigation, air humidity, and light quantity and quality can be used to increase quality. For example, xylem architecture is affected by the irrigation scheme, and the relative humidity in the greenhouse affects stomatal function. Both features determine the water balance of the flowering stem. Light quality and period drives photosynthesis, which is directly responsible for accumulation of carbohydrates. The carbohydrate status is important for respiration, and many senescence related processes. High carbohydrates can lead to sugar loss into the vase water, leading to bacterial growth and potential xylem blockage. Finally, inferior hygiene during cultivation and temperature and humidity control during postharvest can lead to pathogen contamination. At the end of the review, we will discuss the future outlook focussing on new phenotyping tools necessary to quantify the complex interactions between cultivation factors and postharvest performance of cut flowers.
Collapse
Affiliation(s)
- Julian C. Verdonk
- Department of Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Wim van Ieperen
- Department of Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Geert van Geest
- Interfaculty Bioinformatics, Institut für Biologie, Fakultät für Naturwissenschaften und Naturwissenschaften, Universität Bern, Bern, Switzerland
| | - Rob E. Schouten
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Yang C, Liu W, You Q, Zhao X, Liu S, Xue L, Sun J, Jiang X. Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111715. [PMID: 37299618 DOI: 10.3390/nano13111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The advent of greenhouses greatly promoted the development of modern agriculture, which freed plants from regional and seasonal constraints. In plant growth, light plays a key role in plant photosynthesis. The photosynthesis of plants can selectively absorb light, and different light wavelengths result in different plant growth reactions. Currently, light-conversion films and plant-growth LEDs have become two effective ways to improve the efficiency of plant photosynthesis, among which phosphors are the most critical materials. This review begins with a brief introduction of the effects of light on plant growth and the various techniques for promoting plant growth. Next, we review the up-to-date development of phosphors for plant growth and discussed the luminescence centers commonly used in blue, red and far-red phosphors, as well as their photophysical properties. Then, we summarize the advantages of red and blue composite phosphors and their designing strategies. Finally, we describe several strategies for regulating the spectral position of phosphors, broadening the emission spectrum, and improving quantum efficiency and thermal stability. This review may offer a good reference for researchers improving phosphors to become more suitable for plant growth.
Collapse
Affiliation(s)
- Chengxiang Yang
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Wei Liu
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Qi You
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Xiuxian Zhao
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Shanshan Liu
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Liang Xue
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Junhua Sun
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, China
| |
Collapse
|
7
|
Vatankhah A, Aliniaeifard S, Moosavi-Nezhad M, Abdi S, Mokhtarpour Z, Reezi S, Tsaniklidis G, Fanourakis D. Plants exposed to titanium dioxide nanoparticles acquired contrasting photosynthetic and morphological strategies depending on the growing light intensity: a case study in radish. Sci Rep 2023; 13:5873. [PMID: 37041194 PMCID: PMC10090060 DOI: 10.1038/s41598-023-32466-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Due to the photocatalytic property of titanium dioxide (TiO2), its application may be dependent on the growing light environment. In this study, radish plants were cultivated under four light intensities (75, 150, 300, and 600 μmol m-2 s-1 photosynthetic photon flux density, PPFD), and were weekly sprayed (three times in total) with TiO2 nanoparticles at different concentrations (0, 50, and 100 μmol L-1). Based on the obtained results, plants used two contrasting strategies depending on the growing PPFD. In the first strategy, as a result of exposure to high PPFD, plants limited their leaf area and send the biomass towards the underground parts to limit light-absorbing surface area, which was confirmed by thicker leaves (lower specific leaf area). TiO2 further improved the allocation of biomass to the underground parts when plants were exposed to higher PPFDs. In the second strategy, plants dissipated the absorbed light energy into the heat (NPQ) to protect the photosynthetic apparatus from high energy input due to carbohydrate and carotenoid accumulation as a result of exposure to higher PPFDs or TiO2 concentrations. TiO2 nanoparticle application up-regulated photosynthetic functionality under low, while down-regulated it under high PPFD. The best light use efficiency was noted at 300 m-2 s-1 PPFD, while TiO2 nanoparticle spray stimulated light use efficiency at 75 m-2 s-1 PPFD. In conclusion, TiO2 nanoparticle spray promotes plant growth and productivity, and this response is magnified as cultivation light intensity becomes limited.
Collapse
Affiliation(s)
- Akram Vatankhah
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
- Department of Horticulture, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran.
| | - Moein Moosavi-Nezhad
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sahar Abdi
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
| | - Zakieh Mokhtarpour
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
| | - Saeed Reezi
- Department of Horticulture, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Georgios Tsaniklidis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization 'ELGO DIMITRA', 73100, Chania, Greece
| | - Dimitrios Fanourakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004, Heraklion, Greece
| |
Collapse
|
8
|
Moosavi-Nezhad M, Alibeigi B, Estaji A, Gruda NS, Aliniaeifard S. Growth, Biomass Partitioning, and Photosynthetic Performance of Chrysanthemum Cuttings in Response to Different Light Spectra. PLANTS (BASEL, SWITZERLAND) 2022; 11:3337. [PMID: 36501376 PMCID: PMC9735900 DOI: 10.3390/plants11233337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is among the most popular ornamental plants, propagated mainly through stem cuttings. There is a lack of information regarding the impact of the lighting environment on the successful production of cuttings and underlying mechanisms. The light spectrum affects plant morphology, growth, and photosynthesis. In the present study, chrysanthemum, cv. 'Katinka' cuttings, were exposed to five lighting spectra, including monochromatic red (R), blue (B) lights, and multichromatic lights, including a combination of R and B (R:B), a combination of R, B, and far red (R:B:FR) and white (W), for 30 days. B light enhanced areal growth, as indicated by a higher shoot mass ratio, while R light directed the biomass towards the underground parts of the cuttings. Monochromatic R and B lights promoted the emergence of new leaves. In contrast, individual leaf area was largest under multichromatic lights. Exposing the cuttings to R light led to the accumulation of carbohydrates in the leaves. Cuttings exposed to multichromatic lights showed higher chlorophyll content than monochromatic R- and B-exposed cuttings. Conversely, carotenoid and anthocyanin contents were the highest in monochromatic R- and B-exposed plants. B-exposed cuttings showed higher photosynthetic performance, exhibited by the highest performance index on the basis of light absorption, and maximal quantum yield of PSII efficiency. Although R light increased biomass toward roots, B light improved above-ground growth, photosynthetic functionality, and the visual performance of Chrysanthemum cuttings.
Collapse
Affiliation(s)
- Moein Moosavi-Nezhad
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht P.O. Box 33916-53755, Iran
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Boshra Alibeigi
- Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran
| | - Ahmad Estaji
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Rafsanjan P.O. Box 77188-97111, Iran
| | - Nazim S. Gruda
- Department of Horticultural Science, INRES–Institute of Crop Science and Resource Conservation, University of Bonn, 53121 Bonn, Germany
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht P.O. Box 33916-53755, Iran
| |
Collapse
|
9
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
10
|
Red Light Resets the Expression Pattern, Phase, and Period of the Circadian Clock in Plants: A Computational Approach. BIOLOGY 2022; 11:biology11101479. [PMID: 36290383 PMCID: PMC9598827 DOI: 10.3390/biology11101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Progress in computational biology has provided a comprehensive understanding of the dynamics of the plant circadian clock. Previously proposed models of the plant circadian clock have intended to model its entrainment using white-light/dark cycles. However, these models have failed to take into account the effect of light quality on circadian rhythms, which has been experimentally observed. In this work, we developed a computational approach to characterizing the effects of light quality on plant circadian rhythms. The results demonstrated that red light can reset the expression patterns, phases, and periods of clock component genes. The circadian period, amplitude, and phase can be co-optimized for high-quality and efficient breeding. Abstract Recent research in the fields of biochemistry and molecular biology has shown that different light qualities have extremely different effects on plant development, and optimizing light quality conditions can speed up plant growth. Clock-regulated red-light signaling, can enhance hypocotyl elongation, and increase seedling height and flower and fruit productivity. In order to investigate the effect of red light on circadian clocks in plants, a novel computational model was established. The expression profiles of the circadian element CCA1 from previous related studies were used to fit the model. The simulation results were validated by the expression patterns of CCA1 in Arabidopsis, including wild types and mutants, and by the phase shifts of CCA1 after red-light pulse. The model was used to further explore the complex responses to various photoperiods, such as the natural white-light/dark cycles, red/white/dark cycles, and extreme 24 h photoperiods. These results demonstrated that red light can reset the expression pattern, period, and phase of the circadian clock. Finally, we identified the dependence of phase shifts on the length of red-light pulse and the minimum red-light pulse length required for producing an observable phase shift. This work provides a promising computational approach to investigating the response of the circadian clock to other light qualities.
Collapse
|
11
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran 33916-53755, Iran
| | | | | | - Dilara Maslennikova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| |
Collapse
|
12
|
Lu F, Hu P, Lin M, Ye X, Chen L, Huang Z. Photosynthetic Characteristics and Chloroplast Ultrastructure Responses of Citrus Leaves to Copper Toxicity Induced by Bordeaux Mixture in Greenhouse. Int J Mol Sci 2022; 23:ijms23179835. [PMID: 36077233 PMCID: PMC9456123 DOI: 10.3390/ijms23179835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022] Open
Abstract
Bordeaux mixture (Bm) is a copper (Cu)-based pesticide that has been widely used for controlling citrus scab and citrus canker. However, frequent spraying of Bm is toxic to citrus. To our knowledge, few studies are available that discuss how the photosynthetic characteristics and chloroplast ultrastructure of citrus leaves are affected by Cu toxicity induced by excessive Bm. In the study, two-year-old seedlings of Citrus grandis (C. grandis) and Citrus sinensis (C. sinensis), which were precultured in pots, were foliar-sprayed with deionized water (as control) or Bm diluted 500-fold at intervals of 7 days for 6 times (4 times as recommended by the manufacturer) to investigate the leaf Cu absorption, photosynthesis, chloroplast ultrastructure and antioxidant enzymatic activities. Bm foliar-sprayed 6 times on citrus seedlings increased the leaf Cu content, decreased the photosynthetic pigments content and destroyed the chloroplast ultrastructure, which induced leaf chlorosis and photosynthetic inhibition. A lower Cu absorption, a higher light photon-electron transfer efficiency, a relative integrity of chloroplast ultrastructure and a promoted antioxidant protection contributed to a higher photosynthetic activity of C. grandis than C. sinensis under excessive spraying of Bm. The present study provides crucial references for screening and selecting citrus species with a higher tolerance to Cu toxicity induced by excessive Bm.
Collapse
|
13
|
Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency. Sci Rep 2022; 12:10002. [PMID: 35705667 PMCID: PMC9200816 DOI: 10.1038/s41598-022-14163-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Identifying environmental factors that improve plant growth and development under nitrogen (N) constraint is essential for sustainable greenhouse production. In the present study, the role of light intensity and N concentrations on the biomass partitioning and physiology of chrysanthemum was investigated. Four light intensities [75, 150, 300, and 600 µmol m-2 s-1 photosynthetic photon flux density (PPFD)] and three N concentrations (5, 10, and 15 mM N L-1) were used. Vegetative and generative growth traits were improved by increase in PPFD and N concentration. High N supply reduced stomatal size and gs in plants under lowest PPFD. Under low PPFD, the share of biomass allocated to leaves and stem was higher than that of flower and roots while in plants grown under high PPFD, the share of biomass allocated to flower and root outweighed that of allocated to leaves and stem. As well, positive effects of high PPFD on chlorophyll content, photosynthesis, water use efficiency (WUE), Nitrogen use efficiency (NUE) were observed in N-deficient plants. Furthermore, photosynthetic functionality improved by raise in PPFD. In conclusion, high PPFD reduced the adverse effects of N deficiency by improving photosynthesis and stomatal functionality, NUE, WUE, and directing biomass partitioning toward the floral organs.
Collapse
|
14
|
Yu Z, Tian C, Guan Y, He J, Wang Z, Wang L, Lin S, Guan Z, Fang W, Chen S, Zhang F, Jiang J, Chen F, Wang H. Expression Analysis of TCP Transcription Factor Family in Autopolyploids of Chrysanthemum nankingense. FRONTIERS IN PLANT SCIENCE 2022; 13:860956. [PMID: 35720599 PMCID: PMC9201386 DOI: 10.3389/fpls.2022.860956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Autopolyploids often exhibit plant characteristics different from their diploid ancestors and are frequently associated with altered genes expression controlling growth and development. TCP is a unique transcription factor family in plants that is closely related to plant growth and development. Based on transcriptome sequencing of Chrysanthemum nankingense, 23 full-length TCP genes were cloned. The expression of CnTCP9 was most variable in tetraploids, at least threefold greater than diploids. Due to the lack of a C. nankingense transgenic system, we overexpressed CnTCP9 in Arabidopsis thaliana (Col-0) and Chrysanthemum morifolium. Overexpression of CnTCP9 caused enlargement of leaves in A. thaliana and petals in C. morifolium, and the expression of genes downstream of the GA pathway in C. morifolium were increased. Our results suggest that autopolyploidization of C. nankingense led to differential expression of TCP family genes, thereby affecting plant characteristics by the GA pathway. This study improves the understanding of enlarged plant size after autopolyploidization.
Collapse
|
15
|
The regulatory role of γ-aminobutyric acid in chickpea plants depends on drought tolerance and water scarcity level. Sci Rep 2022; 12:7034. [PMID: 35487936 PMCID: PMC9054827 DOI: 10.1038/s41598-022-10571-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is a non-protein amino acid with multifunctional roles in dynamic plant responses. To determine the effects of exogenous GABA application (0, 25 and 50 µM) on drought response, two chickpea cultivars with contrasting tolerance to water deficit were examined. Plants were exposed to four irrigation levels (irrigation to 100, 60, 40 and 20% field capacity). Water deficit decreased growth, chlorophyll content, and photosynthetic efficiency. It increased electrolyte leakage and lipid peroxidation owing to both higher ROS accumulation and lower antioxidant enzyme activity. These negative effects of water deficit and the alleviating role of GABA application were more prominent in the sensitive, as compared to the tolerant cultivar. Water deficit also increased proline and GABA contents more in the tolerant cultivar, whereas their content was more enhanced by GABA application in the sensitive one. This may confer an additional level of regulation that results in better alleviation of drought damage in tolerant chickpea cultivars. In conclusion, the stimulatory effect of GABA on growth and physiological modulation depends on both the water stress severity and the cultivar sensitivity to it, implying a probable unknown GABA-related mechanism established by tolerant chickpea cultivars; a lost or not gained mechanism in susceptible ones.
Collapse
|
16
|
Esmaelpour S, Iranbakhsh A, Dilmaghani K, Marandi SJ, Oraghi Ardebili Z. The potential contribution of the WRKY53 transcription factor, gamma-aminobutyric acid (GABA) transaminase, and histone deacetylase in regulating growth, organogenesis, photosynthesis, and transcriptional responses of tomato to different light-emitting diodes (LEDs). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112413. [PMID: 35220016 DOI: 10.1016/j.jphotobiol.2022.112413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Impressive progress in developing light-emitting diodes (LEDs) offers a new dimension for meeting agricultural and biological expectations. The present study addresses how tomato (Solanum lycopersicum) seedlings respond to the different spectral qualities of LEDs (white, red, blue, and blue + red). The light treatments in a wavelength-dependent manner contributed to the variations in biomass accumulation, morphology, and organogenesis pattern. Light quality epigenetically contributed to the transcriptional regulation of the histone deacetylase (HDA3) gene. The expression of WRKY53 transcription factor and gamma-aminobutyric acid transaminase (GABA-TP1) genes displayed a similar upward trend in response to the blue wavelength. On the contrary, the sole red light downregulated the WRKY53 and GABA-TP1 genes. The blue irradiation was associated with the upregulation in the glycolate oxidase (GLO2) and ribulose-1,5-bisphosphate carboxylase‑oxygenase large subunit (rbcL) genes, while the red wavelength down-regulated the GLO2 and rbcL genes. Moreover, rbcL statistically correlated with GLO2, referring to the balanced regulation of photorespiration and the Calvin cycle. The blue wavelengths were more capable of improving the concentrations of photosynthetic pigments and proline. The seedlings grown under the white LEDs displayed the maximum activity of the catalase enzyme. The cultivation of tomato seedlings under the blue lights enhanced the activities of the superoxide dismutase and ascorbate peroxidase enzymes. The light treatments were associated with the variation in the nutritional status of K+ and Ca2+ in both leaves and roots. The presented findings and inferences support the potential contribution of WRKY53, HDA3, and GABA signaling in modulating plant responses to light quality.
Collapse
Affiliation(s)
- Soghra Esmaelpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sayeh Jafari Marandi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
17
|
Kang JH, Yoon HI, Lee JM, Kim JP, Son JE. Electron transport and photosynthetic performance in Fragaria × ananassa Duch. acclimated to the solar spectrum modified by a spectrum conversion film. PHOTOSYNTHESIS RESEARCH 2022; 151:31-46. [PMID: 34499317 DOI: 10.1007/s11120-021-00875-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Functional films have been used in greenhouses to improve the light environment for plant growth. Among them, a spectrum conversion film converting the green light of incident sunlight into red light has been reported to increase the crop productivity. However, the results are not always consistent, and the reasons for the improvement are not fully understood. The objectives of this study were to reveal the cumulative effects of a green-to-red spectrum conversion film (SCF) on the electron transport and photosynthetic performance of Fragaria × ananassa Duch. The photosynthetic efficiency, leaf optical properties, chlorophyll content, chlorophyll fluorescence, growth, and fruit qualities when the plant was grown under a transparent polyethylene film (PE) and SCF were evaluated. The sunlight modified by SCF did not change the leaf optical properties and chlorophyll content but significantly increased the chlorophyll fluorescence parameters related to reduction end electron acceptors at PSI acceptor side and the efficiency of electron transport. Without an increase in nonphotochemical quenching, the effective quantum yields of PSII and PSI of leaves grown under SCF were significantly higher than those parameters when grown under PE. Forty eight days after transplanting, the photosynthetic efficiency and photosynthetic rates of leaves and whole plants increased significantly under SCF compared to PE. The vegetative growth was not affected by SCF, but the fruit weight, sweetness, acidity, and firmness under SCF were significantly improved. These results indicated that sunlight modified by SCF stimulates electron flow and improves photosynthetic capacity and fruit quality of Fragaria × ananassa Duch.
Collapse
Affiliation(s)
- Jun Hyeun Kang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Moon Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Pil Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Jishi T, Matsuda R, Fujiwara K. Manipulation of Intraday Durations of Blue- and Red-Light Irradiation to Improve Cos Lettuce Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:778205. [PMID: 34899805 PMCID: PMC8660965 DOI: 10.3389/fpls.2021.778205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/05/2021] [Indexed: 06/01/2023]
Abstract
The morphology of plants growing under combined blue- and red-light irradiation is affected by the presence or absence of time slots of blue- and red-light mono-irradiation. The purposes of this study were to investigate the morphology and growth of cos lettuce grown under light irradiation combining several durations of blue and red light simultaneously and independent mono-irradiations of blue and red light during the day, and to clarify the effects of the durations of blue-light mono-irradiation and blue-light irradiation. Young cos lettuce seedlings were grown under 24-h blue-light irradiation with a photosynthetic photon flux density (PPFD) of 110μmol m-2 s-1 (B+0R) or under 24-h blue-light irradiation with a PPFD of 100μmol m-2 s-1 supplemented with 8 (B+8R), 16 (B+16R), and 24-h (B+24R) red-light irradiation with PPFDs of 30, 15, and 10μmol m-2 s-1, respectively (Experiment 1). The daily light integral was 9.50mol m-2 in all treatments. In Experiment 1, leaf elongation was promoted as the duration of red-light irradiation decreased and the duration of blue-light mono-irradiation increased. The maximum shoot dry weight was observed under the B+8R treatment. Growth was likely promoted by the expansion of the light-receptive area caused by moderate leaf elongation without tilting. In Experiment 2, young cos lettuce seedlings were grown as for Experiment 1, but blue- and red-light irradiation intensities were reversed (R+0B, R+8B, R+16B, and R+24B). Leaf elongation was promoted by the absence of blue-light irradiation (R+0B). The leaf surface was increasingly flattened, and the shoot dry weight was enhanced, as the duration of blue-light irradiation increased. Thus, cos lettuce leaf morphology may be manipulated by adjusting each duration of blue-light mono-irradiation, red-light mono-irradiation, and blue- and red-light simultaneous irradiation, which can, in turn, promote cos lettuce growth.
Collapse
Affiliation(s)
- Tomohiro Jishi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Grid Innovation Research Laboratory, ENIC Division, Central Research Institute of Electric Power Industry, Abiko, Japan
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Supplementary Light with Increased Blue Fraction Accelerates Emergence and Improves Development of the Inflorescence in Aechmea, Guzmania and Vriesea. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In protected cultivation, increasing the light level via supplementary lighting (SL) is critical to improve external quality, especially in periods with low light availability. Despite wide applications, the effect of light quality remains understated. In this study, the effect of SL quality and nutrient solution electrical conductivity (EC) on growth and flowering of three bromeliad species was investigated. Treatments included solar light, and this supplemented with R90B10 [90% red (R) and 10% blue (B)], R80B20 (80% R and 20% B), and R70B30 (70% R and 30% B). These were combined with an EC of 1 and 2 dS m-l. Irrespective of the light treatment, the higher EC promoted growth, inflorescence emergence, and development in Aechmea fasciata (Lindl.) Baker, whereas adverse effects were noted in Guzmania and Vriesea. The higher EC-induced negative effect in Guzmania and Vriesea was slightly alleviated by SL. With few notable exceptions, SL exerted limited effects on photosynthetic functionality. Depending on the species, SL improved external quality traits. In all species, SL increased root and inflorescence weight and stimulated biomass allocation to generative organs. It also accelerated inflorescence emergence and promoted inflorescence development. In this way, the time to commercial development stage was considerably shortened. These effects were more prominent at R80B20 and R70B30. Under those conditions, for instance, inflorescence emergence occurred 3–5 weeks earlier than in the control, depending on the species. In conclusion, SL with increased B proportion leads to shorter production period owing to faster emergence and improved development of the inflorescence and is recommended for commercial use.
Collapse
|
20
|
Moradi S, Kafi M, Aliniaeifard S, Salami SA, Shokrpour M, Pedersen C, Moosavi-Nezhad M, Wróbel J, Kalaji HM. Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron ( Crocus sativus L.). Cells 2021; 10:cells10081994. [PMID: 34440766 PMCID: PMC8392054 DOI: 10.3390/cells10081994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Saffron is a valuable plant and one of the most expensive spices worldwide. Nowadays, there is a tendency to produce this crop in indoor plant production systems. However, the production of saffron is restricted by the need for the reproduction of high-quality corms. In this study, we investigated the effect of different ratios of red (R) and blue (B) light spectra (including 100% B (monochromatic B), 75%, 50%, 40%, 25% B, and 0% B (monochromatic R) on the photosynthetic performance and biomass partitioning as well as morphological and biochemical characteristics of saffron. The growth of flower, root, and corm was improved by increasing the proportion of B to R light. B-grown plants were characterized by the highest photosynthetic functionality with efficient electron transport and lower energy dissipation when compared to R-grown plants. B light directed biomass toward the corms and floral organs, while R light directed it toward the leaves. In saffron, the weight of a daughter corm is of great importance since it determines the yield of the next year. As the ratio of B to R light increased, the daughter corms also became heavier, at the cost of reducing their number, though increasing the proportion of B-enhanced antioxidant capacity as well as the activity of ascorbate peroxidase and catalase while superoxide dismutase activity was enhanced in R-grown plants. In conclusion, B light increased the production of high-quality daughter corms and altered biomass partitioning towards harvestable organs (corms and flowers) in saffron plants.
Collapse
Affiliation(s)
- Shirin Moradi
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Mohsen Kafi
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
- Correspondence: (M.K.); (S.A.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
- Correspondence: (M.K.); (S.A.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Majid Shokrpour
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Carsten Pedersen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark;
| | - Moein Moosavi-Nezhad
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434 Szczecin, Poland;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, University of Life Sciences SGGW, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| |
Collapse
|
21
|
Moosavi-Nezhad M, Salehi R, Aliniaeifard S, Tsaniklidis G, Woltering EJ, Fanourakis D, Żuk-Gołaszewska K, Kalaji HM. Blue Light Improves Photosynthetic Performance during Healing and Acclimatization of Grafted Watermelon Seedlings. Int J Mol Sci 2021; 22:ijms22158043. [PMID: 34360809 PMCID: PMC8347074 DOI: 10.3390/ijms22158043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the importance of light on healing and acclimatization, in the present study, grafted watermelon seedlings were exposed to darkness (D) or light, provided by blue (B), red (R), a mixture of R (68%) and B (RB), or white (W; 35% B, 49% intermediate spectra, 16% R) LEDs for 12 days. Survival ratio, root and shoot growth, soluble carbohydrate content, photosynthetic pigments content, and photosynthetic performance were evaluated. Seedling survival was not only strongly limited in D but the survived seedlings had an inferior shoot and root development, reduced chlorophyll content, and attenuated photosynthetic efficiency. RB-exposed seedlings had a less-developed root system. R-exposed seedlings showed leaf epinasty, and had the smallest leaf area, reduced chlorophyll content, and suppressed photosynthetic apparatus performance. The R-exposed seedlings contained the highest amount of soluble carbohydrate and together with D-exposed seedlings the lowest amount of chlorophyll in their scions. B-exposed seedlings showed the highest chlorophyll content and improved overall PSII photosynthetic functioning. W-exposed seedling had the largest leaf area, and closely resembled the photosynthetic properties of RB-exposed seedlings. We assume that, during healing of grafted seedlings monochromatic R light should be avoided. Instead, W and monochromatic B light may be willingly adopted due to their promoting effect on shoot, pigments content, and photosynthetic efficiency.
Collapse
Affiliation(s)
- Moein Moosavi-Nezhad
- Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran;
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
| | - Reza Salehi
- Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran;
- Correspondence: (R.S.); (S.A.); Tel.: +98-263-224-8721 (R.S.); +98-212-252-0188 (S.A.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
- Correspondence: (R.S.); (S.A.); Tel.: +98-263-224-8721 (R.S.); +98-212-252-0188 (S.A.)
| | - Georgios Tsaniklidis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization ‘ELGO DIMITRA’, 73100 Chania, Greece;
| | - Ernst J. Woltering
- Wageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
- Horticulture & Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Dimitrios Fanourakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Greece;
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 8, 10-718 Olsztyn, Poland;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, University of Life Sciences SGGW, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| |
Collapse
|