1
|
Korody ML, Hildebrandt TB. Progress Toward Genetic Rescue of the Northern White Rhinoceros ( Ceratotherium simum cottoni). Annu Rev Anim Biosci 2025; 13:483-505. [PMID: 39531386 DOI: 10.1146/annurev-animal-111523-102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The northern white rhinoceros (NWR) is functionally extinct, with only two nonreproductive females remaining. However, because of the foresight of scientists, cryopreserved cells and reproductive tissues may aid in the recovery of this species. An ambitious program of natural and artificial gametes and in vitro embryo generation was first outlined in 2015, and many of the proposed steps have been achieved. Multiple induced pluripotent stem cell lines have been established, primordial germ cell-like cells have been generated, oocytes have been collected from the remaining females, blastocysts have been cryopreserved, and the closely related southern white rhinoceros (SWR) is being established as a surrogate. Recently, the first successful embryo transfer in SWR demonstrated that embryos can be generated by in vitro fertilization and cryopreserved. We explore progress to date in using advanced cellular technologies to save the NWR and highlight the necessary next steps to ensure a viable population for reintroduction. We roll out a holistic rescue approach for a charismatic megavertebrate that includes the most advanced cellular technologies, which can provide a blueprint for other critically endangered mammals. We also provide a detailed discussion of the remaining questions in such an upgraded conservation program.
Collapse
Affiliation(s)
- Marisa L Korody
- San Diego Zoo Wildlife Alliance, Escondido, California, USA;
| | - Thomas B Hildebrandt
- Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany;
| |
Collapse
|
2
|
Cowl VB, Comizzoli P, Appeltant R, Bolton RL, Browne RK, Holt WV, Penfold LM, Swegen A, Walker SL, Williams SA. Cloning for the Twenty-First Century and Its Place in Endangered Species Conservation. Annu Rev Anim Biosci 2024; 12:91-112. [PMID: 37988633 DOI: 10.1146/annurev-animal-071423-093523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cloning as it relates to the animal kingdom generally refers to the production of genetically identical individuals. Because cloning is increasingly the subject of renewed attention as a tool for rescuing endangered or extinct species, it seems timely to dissect the role of the numerous reproductive techniques encompassed by this term in animal species conservation. Although cloning is typically associated with somatic cell nuclear transfer, the recent advent of additional techniques that allow genome replication without genetic recombination demands that the use of induced pluripotent stem cells to generate gametes or embryos, as well as older methods such as embryo splitting, all be included in this discussion. Additionally, the phenomenon of natural cloning (e.g., a subset of fish, birds, invertebrates, and reptilian species that reproduce via parthenogenesis) must also be pointed out. Beyond the biology of these techniques are practical considerations and the ethics of using cloning and associated procedures in endangered or extinct species. All of these must be examined in concert to determine whether cloning has a place in species conservation. Therefore, we synthesize progress in cloning and associated techniques and dissect the practical and ethical aspects of these methods as they pertain to endangered species conservation.
Collapse
Affiliation(s)
- Veronica B Cowl
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- European Association of Zoos and Aquaria, Amsterdam, The Netherlands
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA;
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium;
| | | | - Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize;
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom;
| | - Linda M Penfold
- South East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA;
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia;
| | - Susan L Walker
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
| | - Suzannah A Williams
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
3
|
González-Grajales LA, Mastromonaco GF. Bovid Interspecies Somatic Cell Nuclear Transfer with Ooplasm Transfer. Methods Mol Biol 2023; 2647:259-268. [PMID: 37041340 DOI: 10.1007/978-1-0716-3064-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) contributes to the preservation of endangered species, albeit nuclear-mitochondrial incompatibilities constrain its application. iSCNT, coupled with ooplasm transfer (iSCNT-OT), has the potential to overcome the challenges associated with species- and genus-specific differences in nuclear-mitochondrial communication. Our iSCNT-OT protocol combines the transfer of both bison (Bison bison bison) somatic cell and oocyte ooplasm by a two-step electrofusion into bovine (Bos taurus) enucleated oocytes. The procedures described herein could be used in further studies to determine the effects of crosstalk between nuclear and ooplasmic components in embryos carrying genomes from different species.
Collapse
|
4
|
Assisted Reproductive Technology in Neotropical Deer: A Model Approach to Preserving Genetic Diversity. Animals (Basel) 2021; 11:ani11071961. [PMID: 34209061 PMCID: PMC8300233 DOI: 10.3390/ani11071961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Deer species in the Neotropical region have undergone a decline of their populations. Although conservation of their natural habitat is considered the best way to assist the species, the speed of occupation of these areas and the anthropic actions are so fast that the efforts are, at times, insufficient. As free-living populations decrease, there is a descent in the genetic diversity and an increase in crossbreeding between related individuals (inbreeding). Genetic diversity is essential for survival, since it enables natural selection to occur, providing adaptation and maintenance of the species. To protect the genetic diversity, it is possible to use reproductive techniques and conserve different types of cells, which can be used in the future to reestablish any alleles that have been lost by the populations. Abstract One of the most significant challenges in deer is the ability to maintain genetic diversity, avoiding inbreeding and sustaining population health and reproduction. Although our general knowledge of reproductive physiology is improving, it appears that the application of assisted reproductive technology (ART) will more efficiently advance wildlife conservation efforts and preserve genetic diversity. The purpose of this review is to present the most important results obtained with the use of ART in Neotropical deer. Thus, the state-of-the-art for estrus synchronization, semen technology, artificial insemination, and in vivo embryo production will be presented. In vitro embryo production (IVP) is also a biotechnology that is taking initial steps in deer. In this aspect, the approach with the proteomics of ovarian follicular fluid is being used as a tool for a better understanding of oocyte maturation. Finally, cell banks and the use of interspecific somatic cell nuclear transfer (iSCNT) as well as the use of stem cells for gametes differentiation are promising techniques.
Collapse
|
5
|
|
6
|
Mrowiec P, Bugno-Poniewierska M, Młodawska W. The perspective of the incompatible of nucleus and mitochondria in interspecies somatic cell nuclear transfer for endangered species. Reprod Domest Anim 2020; 56:199-207. [PMID: 33190359 DOI: 10.1111/rda.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023]
Abstract
Taking into account the latest Red List of the International Union for Conservation of Nature in which 25% of all mammals are threatened with extinction, somatic cell nuclear transfer (SCNT) could be a beneficial tool and holds a lot of potential for aiding the conservation of endangered, exotic or even extinct animal species if somatic cells of such animals are available. In the case of shortage and sparse amount of wild animal oocytes, interspecies somatic cell nuclear transfer (iSCNT), where the recipient ooplasm and donor nucleus are derived from different species, is the alternative SCNT technique. The successful application of iSCNT, resulting in the production of live offspring, was confirmed in several combination of closely related species. When nucleus donor cells and recipient oocytes have been used in many other combinations, very often with a very distant taxonomical relation iSCNT resulted only in the very early stages of cloned embryo development. Problems encountered during iSCNT related to mitochondrial DNA (mtDNA)/genomic DNA incompatibility, mtDNA heteroplasmy, embryonic genome activation of the donor nucleus by the recipient oocyte and availability of suitable foster mothers for iSCNT embryos. Implementing assisted reproductive technologies, including iSCNT, to conservation programmes also raises concerns that the production of genetically identical populations might cause problems with inbreeding. The article aims at presenting achievements, limitations and perspectives of iSCNT in maintaining animal biodiversity.
Collapse
Affiliation(s)
- Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| | - Wiesława Młodawska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
7
|
Arantes LG, Tonelli GSSS, Martins CF, Báo SN. Cellular Characterization and Effects of Cryoprotectant Solutions on the Viability of Fibroblasts from Three Brazilian Wild Cats. Biopreserv Biobank 2020; 19:11-18. [PMID: 33035068 DOI: 10.1089/bio.2020.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Preserving genetic material in cryogenic conditions presents a viable alternative for the protection of species' gene variability. However, there is an enormous need to establish and test cryopreservation protocols that are suitable for each diverse cell type to guarantee technical success in the long run. Considering this, fibroblasts from jaguar (Panthera onca), oncilla (Leopardus tigrinus), and pampas cat (Leopardus colocolo) were subjected to cell characterization and then cryopreservation in different cryoprotectant solutions (2.5%, 10% dimethyl sulfoxide [DMSO] or CryoSOfree™). Further testing was conducted to determine each solution's performance in preserving cell viability. In culture, a growth curve to assess cellular growth potential showed that exponential proliferation lasts for about the first 50 hours of in vitro culturing, declining in pace afterward. L. colocolo and L. tigrinus presented no difference in cell viability while using 2.5% DMSO protocols. P. onca cells did not present difference on viability for both concentrations of DMSO. Protocols using CryoSOfree resulted in a decreased viability of P. onca fibroblasts. Morphological differences between fibroblasts among the species were noted under bright field microscopy and scanning electron microscopy. L. colocolo and P. onca cells are fusiform, and L. tigrinus are spherical. All cells presented cytoplasmic projections. Transmission electron microscopy revealed vacuoles and secretion granules, indicating intense cell activity after thawing. Differences found in the efficiency of cryopreservation protocols according to the type of cryoprotectant indicate that species react differently to freezing and thawing processes. This research evaluates key aspects of in vitro protocols for cryopreservation of wild animals, which need to be optimized to guarantee successful cell culturing. More suitable protocols lead to increased efficiency in establishing fibroblast cryobanks and also facilitating the use of wild cats' cells in cloning techniques, contributing directly to preserving wild fauna.
Collapse
Affiliation(s)
- Letícia Gobbi Arantes
- Laboratório de Microscopia Eletrônica, Departamento de Biologia Celular, Instituto de Ciências Biológicas Universidade de Brasília, Brasília-Distrito Federal, Brazil.,Embrapa Cerrados, Brasília-Distrito Federal, Brazil.,Fundação Jardim Zoológico de Brasília, Brazil
| | - Guilherme S S S Tonelli
- Laboratório de Microscopia Eletrônica, Departamento de Biologia Celular, Instituto de Ciências Biológicas Universidade de Brasília, Brasília-Distrito Federal, Brazil
| | | | - Sônia Nair Báo
- Laboratório de Microscopia Eletrônica, Departamento de Biologia Celular, Instituto de Ciências Biológicas Universidade de Brasília, Brasília-Distrito Federal, Brazil
| |
Collapse
|
8
|
Herrick JR. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol Reprod 2020; 100:1158-1170. [PMID: 30770538 DOI: 10.1093/biolre/ioz025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 01/17/2023] Open
Abstract
Assisted reproductive technologies (ARTs) have been proposed as a means of overcoming the significant challenges of managing small, isolated populations of endangered species in zoos. However, efficient protocols for ARTs do not exist for most endangered species. This review will focus on research efforts to characterize unique reproductive mechanisms and develop species-specific ARTs. Central to these studies are assays to measure steroid metabolites in urine or feces and/or training programs to allow unrestrained blood collections and ultrasound evaluations. The resulting information about estrous cycle dynamics, combined with studies of semen collection and processing, provides the foundation for the development of artificial insemination (AI). In vitro fertilization and embryo transfer are also discussed in relation to the advantages these techniques could provide relative to AI, as well as the significant challenges involved with technologies that require oocytes and embryos. Finally, an argument is made for additional research of nontraditional model species (e.g., domestic cats and dogs) and the development of novel models representing unique taxa. Whether these species are studied by zoo-based researchers with the expressed intent of developing ARTs for conservation or academic scientists interested in basic biology, the resulting information will provide a unique, evolutionary perspective on reproduction that could have wide-reaching benefits. The more information we have available, the better our chances will be of developing effective ARTs and making a difference in conservation efforts for endangered species.
Collapse
Affiliation(s)
- Jason R Herrick
- Department of Reproductive Sciences, Omaha's Henry Doorly Zoo and Aquarium, 3701 S. 10th St., Omaha, NE 68107, USA
| |
Collapse
|
9
|
Qu P, Wang Y, Zhang C, Liu E. Insights into the roles of sperm in animal cloning. Stem Cell Res Ther 2020; 11:65. [PMID: 32070430 PMCID: PMC7027237 DOI: 10.1186/s13287-020-01599-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has shown a wide application in the generation of transgenic animals, protection of endangered animals, and therapeutic cloning. However, the efficiency of SCNT remains very low due to some poorly characterized key factors. Compared with fertilized embryos, somatic donor cells lack some important components of sperm, such as sperm small noncoding RNA (sncRNA) and proteins. Loss of these factors is considered an important reason for the abnormal development of SCNT embryo. This study focused on recent advances of SCNT and the roles of sperm in development. Sperm-derived factors play an important role in nucleus reprogramming and cytoskeleton remodeling during SCNT embryo development. Hence, considering the role of sperm may provide a new strategy for improving cloning efficiency.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Srirattana K, St John JC. Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:75-103. [PMID: 30617719 DOI: 10.1007/102_2018_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins for the electron transport chain which produces the vast majority of cellular energy. MtDNA has its own replication and transcription machinery that relies on nuclear-encoded transcription and replication factors. MtDNA is inherited in a non-Mendelian fashion as maternal-only mtDNA is passed onto the next generation. Mutation to mtDNA can cause mitochondrial dysfunction, which affects energy production and tissue and organ function. In somatic cell nuclear transfer (SCNT), there is an issue with the mixing of two populations of mtDNA, namely from the donor cell and recipient oocyte. This review focuses on the transmission of mtDNA in SCNT embryos and offspring. The transmission of donor cell mtDNA can be prevented by depleting the donor cell of its mtDNA using mtDNA depletion agents prior to SCNT. As a result, SCNT embryos harbour oocyte-only mtDNA. Moreover, culturing SCNT embryos derived from mtDNA depleted cells in media supplemented with a nuclear reprograming agent can increase the levels of expression of genes related to embryo development when compared with non-depleted cell-derived embryos. Furthermore, we have reviewed how mitochondrial supplementation in oocytes can have beneficial effects for SCNT embryos by increasing mtDNA copy number and the levels of expression of genes involved in energy production and decreasing the levels of expression of genes involved in embryonic cell death. Notably, there are beneficial effects of mtDNA supplementation over the use of nuclear reprograming agents in terms of regulating gene expression in embryos. Taken together, manipulating mtDNA in donor cells and/or oocytes prior to SCNT could enhance embryo production efficiency.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Alsalim H, Jafarpour F, Tanhaei Vash N, Nasr-Esfahani MH, Niasari-Naslaji A. Effect of DNA and Histone Methyl Transferase Inhibitors on Outcomes of Buffalo–Bovine Interspecies Somatic Cell Nuclear Transfer. Cell Reprogram 2018; 20:256-267. [DOI: 10.1089/cell.2017.0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Husamaldeen Alsalim
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Basra, Basra, Iraq
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Niasari-Naslaji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Cordova A, King WA, Mastromonaco GF. Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:24. [PMID: 29152322 PMCID: PMC5680814 DOI: 10.1186/s40781-017-0149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Over the past decades, in vitro culture media have been developed to successfully support IVF embryo growth in a variety of species. Advanced reproductive technologies, such as somatic cell nuclear transfer (SCNT), challenge us with a new type of embryo, with special nutritional requirements and altered physiology under in vitro conditions. Numerous studies have successfully reconstructed cloned embryos of domestic animals for biomedical research and livestock production. However, studies evaluating suitable culture conditions for SCNT embryos in wildlife species are scarce (for both intra- and interspecies SCNT). Most of the existing studies derive from previous IVF work done in conventional domestic species. Extrapolation to non-domestic species presents significant challenges since we lack information on reproductive processes and embryo development in most wildlife species. Given the challenges in adapting culture media and conditions from IVF to SCNT embryos, developmental competence of SCNT embryos remains low. This review summarizes research efforts to tailor culture media to SCNT embryos and explore the different outcomes in diverse species. It will also consider how these culture media protocols have been extrapolated to wildlife species, most particularly using SCNT as a cutting-edge technical resource to assist in the preservation of endangered species.
Collapse
Affiliation(s)
- A Cordova
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - G F Mastromonaco
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| |
Collapse
|
13
|
Magalhães LC, Bhat MH, Freitas JLS, Melo LM, Teixeira DIA, Pinto LCA, Câmara LMC, Duarte JMB, Freitas VJF. The Effects of Cryopreservation on Different Passages of Fibroblast Cell Culture in Brown Brocket Deer (Mazama gouazoubira). Biopreserv Biobank 2017; 15:463-468. [PMID: 28922611 DOI: 10.1089/bio.2017.0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brown brocket deer Mazama gouazoubira is 1 of the 10 recognized brocket deer of the Neotropical region. Recently, this species has suffered a population decline due to current threats, mainly poaching and habitat loss. Several studies have shown that some endangered species can benefit from interspecies somatic cell nuclear transfer technology through the use of their somatic cells, such as the fibroblasts. Thus, the aim of this study was to verify the viability and the effect of cryopreservation on fibroblasts after several passages. For this purpose, fibroblast cells were cultured until passages 4, 7, and 10 (cultured control groups) and cryopreserved in cryotubes (frozen/warmed groups). The cellular viability, functionality, and percentage of cells undergoing necrosis and apoptosis were evaluated. The survival rates were always higher than 80% irrespective of the tested group, except for passage 10 in the frozen/warmed group. Population doubling time of cultured cells from passage 10 was significantly higher than that of passages 4 and 7, exhibiting low metabolic activity and a higher percentage of cells in initial apoptosis. In conclusion, the M. gouazoubira fibroblast-derived cell line provides an essential resource for further studies regarding reproductive biotechniques and is likely to be useful as an ex situ conservation strategy.
Collapse
Affiliation(s)
- Lívia C Magalhães
- 1 Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University , Fortaleza, Brazil
| | - Maajid H Bhat
- 1 Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University , Fortaleza, Brazil
| | - Jeferson L S Freitas
- 1 Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University , Fortaleza, Brazil
| | - Luciana M Melo
- 1 Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University , Fortaleza, Brazil
| | - Dárcio I A Teixeira
- 1 Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University , Fortaleza, Brazil
| | - Luiz C A Pinto
- 2 Laboratory of Medical Immunology, Biomedicine Center, Ceará Federal University , Fortaleza, Brazil
| | - Lília M C Câmara
- 2 Laboratory of Medical Immunology, Biomedicine Center, Ceará Federal University , Fortaleza, Brazil
| | - José M B Duarte
- 3 Department of Animal Science, Deer Research and Conservation Center, São Paulo State University , Jaboticabal, Brazil
| | - Vicente J F Freitas
- 1 Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University , Fortaleza, Brazil
| |
Collapse
|
14
|
Lee JH, Chun JL, Kim KJ, Kim EY, Kim DH, Lee BM, Han KW, Park KS, Lee KB, Kim MK. Effect of Acteoside as a Cell Protector to Produce a Cloned Dog. PLoS One 2016; 11:e0159330. [PMID: 27428333 PMCID: PMC4948914 DOI: 10.1371/journal.pone.0159330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/30/2016] [Indexed: 11/18/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a well-known laboratory technique. The principle of the SCNT involves the reprogramming a somatic nucleus by injecting a somatic cell into a recipient oocyte whose nucleus has been removed. Therefore, the nucleus donor cells are considered as a crucial factor in SCNT. Cell cycle synchronization of nucleus donor cells at G0/G1 stage can be induced by contact inhibition or serum starvation. In this study, acteoside, a phenylpropanoid glycoside compound, was investigated to determine whether it is applicable for inducing cell cycle synchronization, cytoprotection, and improving SCNT efficiency in canine fetal fibroblasts. Primary canine fetal fibroblasts were treated with acteoside (10, 30, 50 μM) for various time periods (24, 48 and 72 hours). Cell cycle synchronization at G0/G1 stage did not differ significantly with the method of induction: acteoside treatment, contact inhibition or serum starvation. However, of these three treatments, serum starvation resulted in significantly increased level of reactive oxygen species (ROS) (99.5 ± 0.3%) and apoptosis. The results also revealed that acteoside reduced ROS and apoptosis processes including necrosis in canine fetal fibroblasts, and improved the cell survival. Canine fetal fibroblasts treated with acteoside were successfully arrested at the G0/G1 stage. Moreover, the reconstructed embryos using nucleus donor cells treated with acteoside produced a healthy cloned dog, but not the embryos produced using nucleus donor cells subjected to contact inhibition. In conclusion, acteoside induced cell cycle synchronization of nucleus donor cells would be an alternative method to improve the efficiency of canine SCNT because of its cytoprotective effects.
Collapse
Affiliation(s)
- Ji Hye Lee
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Ju Lan Chun
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Keun Jung Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Young Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-hee Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Bo Myeong Lee
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kil Woo Han
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-Sun Park
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Bon Lee
- Department of Biology Education, College of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Min Kyu Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Mastromonaco GF, González-Grajales LA, Filice M, Comizzoli P. Somatic cells, stem cells, and induced pluripotent stem cells: how do they now contribute to conservation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:385-427. [PMID: 25091918 DOI: 10.1007/978-1-4939-0820-2_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade has now passed since the birth of the first endangered species produced from an adult somatic cell reprogrammed by somatic cell nuclear transfer. At that time, advances made in domestic and laboratory animal species provided the necessary foundation for attempting cutting-edge technologies on threatened and endangered species. In addition to nuclear transfer, spermatogonial stem cell transplantation and induction of pluripotent stem cells have also been explored. Although many basic scientific questions have been answered and more than 30 wild species have been investigated, very few successes have been reported. The majority of studies document numerous obstacles that still need to be overcome to produce viable gametes or embryos for healthy offspring production. This chapter provides an overview of somatic cell and stem cell technologies in different taxa (mammals, fishes, birds, reptiles and amphibians) and evaluates the potential and impact of these approaches for animal species conservation.
Collapse
|
16
|
Seaby RP, Alexander B, King WA, Mastromonaco GF. In vitro development of bison embryos using interspecies somatic cell nuclear transfer. Reprod Domest Anim 2013; 48:881-7. [PMID: 23692072 DOI: 10.1111/rda.12180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Interspecies somatic cell nuclear transfer (interspecies SCNT) has been explored in many domestic and non-domestic animal species. However, problems arise during the development of these embryos, which may be related to species-specific differences in nuclear-cytoplasmic communication. The objectives of this study were to investigate the possibility of producing bison embryos in vitro using interspecies SCNT and assess the developmental potential of these embryos. Treatment groups consisted of cattle in vitro fertilization (IVF) and cattle SCNT as controls and wood bison SCNT, plains bison SCNT and wisent SCNT as experimental groups. Cleavage and blastocyst rates were assessed, and blastocyst quality was determined using total cell number, apoptotic incidence and relative quantification of mitochondria-related genes NRF1, MT-CYB and TFAM. These results indicate that embryos can be produced by interspecies SCNT in all bison species/subspecies (13.34-33.54% blastocyst rates). Although increased incidence of apoptosis was observed in bison SCNT blastocysts compared to cattle SCNT controls (10.45-12.69 vs 8.76, respectively) that corresponded with significantly lower cell numbers (80-87 cells vs >100 cells, respectively), no major differences were observed in the expression of NRF1, MT-CYB and TFAM. This study is the first to report the production of bison embryos by interspecies SCNT. Blastocyst development in all three bison species/subspecies was greater than the rates obtained in previous studies by IVF, which supports the potential role of SCNT for in vitro embryo production in this species. Yet, further investigation of developmental competence and the factors influencing blastocyst quality and viability is required.
Collapse
Affiliation(s)
- R P Seaby
- Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
17
|
Srirattana K, Imsoonthornruksa S, Laowtammathron C, Sangmalee A, Tunwattana W, Thongprapai T, Chaimongkol C, Ketudat-Cairns M, Parnpai R. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment. Cell Reprogram 2012; 14:248-57. [PMID: 22578161 DOI: 10.1089/cell.2011.0099] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trichostatin A (TSA) has previously been used in somatic cell nuclear transfer (SCNT) to improve the cloning efficiency in several species, which led our team to investigate the effects of TSA on the full-term development of bovine SCNT and gaur-bovine interspecies SCNT (gaur iSCNT; gaur somatic cells as donors and bovine oocytes as recipients) embryos. Treatment with 50 nM TSA for 10 h after fusion had no positive effects on the rates of fusion, cleavage, or the development to eight-cell or morula stages in both bovine SCNT and gaur iSCNT embryos. However, TSA treatment significantly enhanced the blastocyst formation rate in bovine SCNT embryos (44 vs. 32-34% in the TSA-treated and TSA-untreated groups, respectively), but had no effects on gaur iSCNT embryos. The fresh blastocysts derived from bovine SCNT and gaur iSCNT embryos (fresh groups), as well as vitrified bovine SCNT blastocysts (vitrified group), were transferred to bovine recipients. We found that TSA treatment increased the pregnancy rates only in recipients receiving fresh bovine SCNT embryos. In recipients receiving TSA-treated bovine SCNT embryos, three cloned calves from the fresh group and twin cloned calves from the vitrified group were delivered; however, no calf was born from the TSA-untreated bovine SCNT embryos. In contrast, one gaur iSCNT calf was born from a recipient receiving blastocysts from the TSA-untreated group. In summary, TSA improved the preimplantation development and pregnancy rates of bovine SCNT embryos, but did not have any beneficial effect on gaur iSCNT embryos. However, one gaur iSCNT calf reached full-term development.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Saadeldin IM, Choi W, Roibas Da Torre B, Kim B, Lee B, Jang G. Embryonic development and implantation related gene expression of oocyte reconstructed with bovine trophoblast cells. J Reprod Dev 2012; 58:425-31. [PMID: 22522228 DOI: 10.1262/jrd.11-112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temporal progressive increase of interferon tau (IFNτ) secretion from the bovine trophoblast is a major embryonic signal of establishing pregnancy. Here, we cultured and isolated bovine trophoblast cells (BTs) from IVM/IVF oocytes and in vitro produced blastocysts, used them, for the first time, as donor cells for nuclear transfer and compared them with adult fibroblasts (AFs) as donor cells. BTs were reprogrammed in enucleated oocytes to blastocysts with similar efficiency to AFs (14.5% and 15.6% respectively, P≤0.05). The levels of IFNτ, CDX2 and OCT4 expression in IVF-, BT- and AF-derived blastocysts were analyzed using reverse transcription polymerase chain reaction and reverse transcription quantitative polymerase chain reaction (RT-PCR and RT-qPCR). IVF-produced embryos were used as reference to analyze the linear progressive expression of IFNτ through mid, expanded and hatching blastocysts. RT-PCR and RT-qPCR studies showed that IFNτ expression was higher in BT-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and BT-derived blastocysts showed a progressive increase in IFNτ expression as blastocyst development advanced when it compared with AF-derived blastocysts. OCT4 was inversely related with IFNτ expression, while CDX2 was found to be directly related with IFNτ temporal expression. Persistence of high expression of IFNτ and CDX2 was found to be higher in BT-derived embryos than in IVF- or AF-derived embryos. In conclusion, using BTs expressing IFNτ as donor cells for bovine NT could be a useful tool for understanding the IFNτ genetics and epigenetics.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Takeda K, Tasai M, Iwamoto M, Oe M, Chikuni K, Nakamura Y, Tagami T, Nirasawa K, Hanada H, Pinkert CA, Onishi A. Comparative proteomic analysis of liver mitochondrial proteins derived from cloned adult pigs reconstructed with Meishan pig fibroblast cells and European pig enucleated oocytes. J Reprod Dev 2011; 58:248-53. [PMID: 22188878 DOI: 10.1262/jrd.11-074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been exploited in efforts to clone and propagate valuable animal lineages. However, in many instances, recipient oocytes are obtained from sources independent of donor cell populations. As such, influences of potential nuclear-cytoplasmic incompatibility, post SCNT, are largely unknown. In the present study, alterations in mitochondrial protein levels were investigated in adult SCNT pigs produced by microinjection of Meishan pig fetus fibroblast cells into enucleated matured oocytes (maternal Landrace genetic background). Mitochondrial fractions were prepared from liver samples by mechanical homogenization and differential centrifugation. Liver mitochondria were then subjected to two-dimensional difference gel electrophoresis (2-D DIGE). Protein expression changes were confirmed with a volume ratio greater than 2 fold (P<0.05). 2-D DIGE analysis further revealed differential expression of three proteins between the Meishan (n=3) and Landrace (n=3) breeds. Differential expression patterns of 16 proteins were detected in SCNT pig liver tissue (n=3) when compared with Meishan control samples. However, none of the 16 proteins correlated with the three differentially expressed Meishan and Landrace liver mitochondrial proteins. In summary, alteration of mitochondrial protein expression levels was observed in adult SCNT pigs that did not reflect the breed difference of the recipient oocytes. Comparative proteomic analysis represents an important tool for further studies on SCNT animals.
Collapse
Affiliation(s)
- Kumiko Takeda
- National Agricultural and Food Research Organization (NARO), Institute of Livestock and Grassland Science (NILGS), Ibaraki 305-0901, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jeon BG, Rho GJ, Betts DH, Petrik JJ, Favetta LA, King WA. Low levels of X-inactive specific transcript in somatic cell nuclear transfer embryos derived from female bovine freemartin donor cells. Sex Dev 2011; 6:151-9. [PMID: 22095296 DOI: 10.1159/000334050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present study compared developmental potential, telomerase activity and transcript levels of X-linked genes (HPRT, MECP2, RPS4X, SLC25A6, XIAP, XIST and ZFX) in bovine somatic cell nuclear transfer (SCNT) embryos reconstructed with cells derived from a freemartin (female with a male co-twin) or from normal female cattle (control). The rates of cleavage, development to blastocyst and hatched blastocyst stage, and the mean numbers of total and inner cell mass cells in the freemartin SCNT embryos were not significantly different from those of control SCNT embryos (p > 0.05). The levels of telomerase activity analyzed by RQ-TRAP in the freemartin SCNT embryos were also similar to those of the normal SCNT embryos. Transcript levels of HPRT, MECP2, RPS4X and XIAP, measured by quantitative real-time RT-PCR, were not significantly different between the control and freemartin SCNT embryos (p > 0.05). However, the transcript levels of SLC25A6, XIST and ZFX were significantly decreased in the freemartin SCNT embryos compared to control SCNT embryos (p < 0.05). Transfer of 71 freemartin SCNT embryos to 22 recipient cows resulted in 4 (18%) pregnancies, which were lost between days 28 and 90 of gestation. Taken together, the present study demonstrates that the transcript levels of several X-linked genes, especially XIST, showed an aberrant pattern in the freemartin SCNT embryos, suggesting aberrant X inactivation in freemartin clones which may affect embryo survival.
Collapse
Affiliation(s)
- B G Jeon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Srirattana K, Matsukawa K, Akagi S, Tasai M, Tagami T, Nirasawa K, Nagai T, Kanai Y, Parnpai R, Takeda K. Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim Sci J 2011; 82:236-43. [PMID: 21729201 DOI: 10.1111/j.1740-0929.2010.00827.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although interspecies/intergeneric somatic cell nuclear transfer (iSCNT) has been proposed as a tool to produce offspring of endangered species, conflict between donor nucleus and recipient cytoplasm in iSCNT embryos has been identified as an impediment to implementation for agricultural production. To investigate the nuclear-mitochondrial interactions on the developmental potential of iSCNT embryos, we analyzed the mtDNA copy numbers in iSCNT embryos reconstructed with water buffalo (swamp type) fibroblasts and bovine enucleated oocytes (buffalo iSCNT). As controls, SCNT embryos were derived from bovine fibroblasts (bovine SCNT). Buffalo iSCNT and bovine SCNT embryos showed similar rates of cleavage and development to the 8-cell stage (P>0.05). However, buffalo iSCNT embryos did not develop beyond the 16-cell stage. Both bovine and buffalo mtDNA content in buffalo iSCNT embryos was stable throughout the nuclear transfer process, and arrested at the 8- to 16-cell stage (P>0.05). In bovine SCNT embryos that developed to the blastocyst stage, mtDNA copy number was increased (P<0.05). In conclusion, both the donor cell and recipient cytoplast mtDNAs of buffalo iSCNT embryos were identified and maintained through the iSCNT process until the 8-16-cell stage. In addition, the copy number of mtDNA per embryo was a useful monitor to investigate nuclear-mitochondrial interactions.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 2011; 141:1-19. [DOI: 10.1530/rep-10-0236] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preservation of female genetics is currently done primarily by means of oocyte and embryo cryopreservation. The field has seen much progress during its four-decade history, progress driven predominantly by research in humans, cows, and mice. Two basic cryopreservation techniques rule the field – controlled-rate freezing, the first to be developed, and vitrification, which, in recent years, has gained a foothold. While much progress has been achieved in human medicine, the cattle industry, and in laboratory animals, this is far from being the case for most other mammals and even less so for other vertebrates. The major strides and obstacles in human and other vertebrate oocyte and embryo cryopreservation will be reviewed here.
Collapse
|
23
|
Jang G, Kim MK, Lee BC. Current status and applications of somatic cell nuclear transfer in dogs. Theriogenology 2010; 74:1311-20. [DOI: 10.1016/j.theriogenology.2010.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 01/21/2023]
|
24
|
Hossein MS, Jeong YW, Park SW, Kim JJ, Lee E, Ko KH, Hyuk P, Hoon SS, Kim YW, Hyun SH, Shin T, Hwang WS. Birth of Beagle dogs by somatic cell nuclear transfer. Anim Reprod Sci 2009; 114:404-14. [DOI: 10.1016/j.anireprosci.2008.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/24/2008] [Accepted: 10/03/2008] [Indexed: 01/28/2023]
|
25
|
Piña-Aguilar RE, Lopez-Saucedo J, Sheffield R, Ruiz-Galaz LI, de J. Barroso-Padilla J, Gutiérrez-Gutiérrez A. Revival of Extinct Species Using Nuclear Transfer: Hope for the Mammoth, True for the Pyrenean Ibex, But Is It Time for “Conservation Cloning”? CLONING AND STEM CELLS 2009; 11:341-6. [DOI: 10.1089/clo.2009.0026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Raul E. Piña-Aguilar
- Instituto de Ciencias en Reproducción Humana, León, México
- Facultad de Medicina, Universidad Autónoma de Yucatán, Mérida, México
| | | | | | | | | | | |
Collapse
|
26
|
Kim S, Park SW, Hossein MS, Jeong YW, Kim JJ, Lee E, Kim YW, Hyun SH, Shin T, Hwang WS. Production of cloned dogs by decreasing the interval between fusion and activation during somatic cell nuclear transfer. Mol Reprod Dev 2009; 76:483-9. [PMID: 18951374 DOI: 10.1002/mrd.20953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To improve the efficiency of somatic cell nuclear transfer (SCNT) in dogs, we evaluated whether or not the interval between fusion and activation affects the success rate of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells from a male or female Golden Retriever. In total, 151 and 225 reconstructed oocytes were transferred to 9 and 14 naturally synchronized surrogates for male and female donor cells, respectively. Chromosomal morphology was evaluated in 12 oocytes held for an interval of 2 hr between fusion and activation and 14 oocytes held for an interval of 4 hr. Three hundred seventy-six and 288 embryos were transferred to 23 and 16 surrogates for the 2 and 4 hr interval groups, respectively. Both the male (two pregnant surrogates gave birth to three puppies) and female (one pregnant surrogate gave birth to one puppy) donor cells gave birth to live puppies (P > 0.05). In the 2 hr group, significantly more reconstructed oocytes showed condensed, metaphase-like chromosomes compared to the 4 hr group (P < 0.05). A significantly higher pregnancy rate and a greater number of live born puppies were observed in the 2 hr group (13.0% and 1.1%, respectively) compared to the 4 hr group (0%) (P < 0.05). In total, three surrogate dogs carried pregnancies to term and four puppies were born. These results demonstrate that decreasing the interval between fusion and activation increases the success rate of clone production and pregnancy. These results may increase the overall efficiency of SCNT in the canine family.
Collapse
Affiliation(s)
- Sue Kim
- SooAm Biotech Research Foundation, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
CLARKE AG. The Frozen Ark Project: the role of zoos and aquariums in preserving the genetic material of threatened animals. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1748-1090.2008.00074.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology 2008; 69:556-63. [PMID: 18243292 DOI: 10.1016/j.theriogenology.2007.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 10/24/2007] [Accepted: 11/03/2007] [Indexed: 11/23/2022]
Abstract
To date, dogs have been cloned with somatic cell nuclear transfer (SCNT), using donor cells derived from large-breed dogs 2 months to 3 years of age. The objective of the present study was to use SCNT to produce a small-breed dog from ear fibroblasts of an aged poodle, using large-breed oocyte donors and surrogate females, and to determine the origin of its mitochondrial DNA (mtDNA) and the length of its telomeres. Oocytes were derived from large-breed donors, matured in vivo, collected by flushing oviducts, and reconstructed with somatic cells derived from an aged (14-year-old) female toy poodle. Oocytes and donor cells were fused by electric stimuli, activated chemically, and transferred into the oviducts of large-breed recipient females. Overall, 358 activated couplets were surgically transferred into the oviducts of 20 recipient dogs. Two recipients became pregnant; only one maintained pregnancy to term, and a live puppy (weighing 190 g) was delivered by Caesarean section. The cloned poodle was phenotypically and genetically identical to the nuclear donor dog; however, its mtDNA was from the oocyte donor, and its mean telomere length was not significantly different from that of the nuclear donor. In summary, we demonstrated that a small-breed dog could be cloned by transferring activated couplets produced by fusion of somatic cells from a small-breed, aged donor female with enucleated in-vivo-matured oocytes of large-breed females, and transferred into the oviduct of large-breed recipient female dogs.
Collapse
|