1
|
Species-Specific Enhancer Activity of OCT4 in Porcine Pluripotency: The Porcine OCT4 Reporter System Could Monitor Pluripotency in Porcine Embryo Development and Embryonic Stem Cells. Stem Cells Int 2022; 2022:6337532. [PMID: 35846983 PMCID: PMC9277468 DOI: 10.1155/2022/6337532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 01/31/2023] Open
Abstract
The present study examined the activity and function of the pig OCT4 enhancer in the porcine early embryonic development stage and porcine authentic embryonic stem cells. OCT4 is known as a pluripotent regulator, and its upstream regulatory region-based dual-fluorescence protein reporter system controlled by distal and proximal enhancers is broadly used in studies examining the states and mechanism of pluripotency. We analyzed how this reporter system functions during early embryo development and in stem cells using a previously established porcine-specific reporter system. We demonstrated that the porcine OCT4 distal enhancer and proximal enhancer were activated with different expression patterns simultaneously as the expression of pluripotent marker genes changed during the development of in vitro pathenotes and the establishment of porcine embryonic stem cells (ESCs). This work demonstrates the applicability of the porcine OCT4 upstream region-derived dual-fluorescence reporter system, which may be applied to investigations of species-specific pluripotency in porcine-origin cells. These reporter systems may be useful tools for studies of porcine-specific pluripotency, early embryo development, and embryonic stem cells.
Collapse
|
2
|
Porcine OCT4 reporter system as a tool for monitoring pluripotency states. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
3
|
Kim SH, Choi KH, Lee M, Lee DK, Lee CK. Porcine OCT4 Reporter System Can Monitor Species-Specific Pluripotency During Somatic Cell Reprogramming. Cell Reprogram 2021; 23:168-179. [PMID: 34037424 DOI: 10.1089/cell.2021.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined the activity and function of pig OCT4 enhancer in porcine reprogramming cells. Dual fluorescent protein reporter systems controlled by the upstream regulatory region of OCT4, which is one of the master regulators for pluripotency, are widely used in studies of the mechanism of pluripotency. We analyzed how this reporter system functions in fibroblast growth factor (FGF)- or leukemia inhibitory factor (LIF)-dependent reprogrammed porcine pluripotent stem cells using the previously established porcine-specific reporter system. Porcine embryonic fibroblasts were coinfected with the pOCT4-ΔPE-eGFP (distal enhancer [DE]-green fluorescent protein [GFP]) and pOCT4-ΔDE-DsRed2 (proximal enhancer [PE]-red fluorescent protein [RFP]) vectors, and GFP and RFP expression were verified during a DOX-dependent reprogramming process. We demonstrated that the porcine OCT4 DE and PE were activated in different expression patterns simultaneously as changes in the expression of pluripotent marker genes during the establishment of porcine-induced pluripotent stem cells (iPSCs). Porcine OCT4 upstream region-derived dual fluorescent protein reporter systems confirmed that porcine iPSCs are in primed state after reprogramming in FGF2- or LIF-containing media. This work demonstrates the applicability of porcine OCT4 upstream region-derived dual fluorescence reporter system, which may be applied to investigations of species-specific pluripotency in porcine-origin cells. These reporter systems may be useful tools for studies of porcine-specific pluripotency, early embryo development, and embryonic stem cells.
Collapse
Affiliation(s)
- Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Designed Animal & Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Gangwon-do, Korea
| |
Collapse
|
4
|
Garbutt TA, Konganti K, Konneker T, Hillhouse A, Phelps D, Jones A, Aylor D, Threadgill DW. Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mamm Genome 2020; 31:263-286. [PMID: 33015751 PMCID: PMC9113365 DOI: 10.1007/s00335-020-09849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.
Collapse
Affiliation(s)
- Tiffany A Garbutt
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Konneker
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Drake Phelps
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexis Jones
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David Aylor
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Identification and Characterization of the OCT4 Upstream Regulatory Region in Sus scrofa. Stem Cells Int 2019; 2019:2130973. [PMID: 30992705 PMCID: PMC6434273 DOI: 10.1155/2019/2130973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
OCT4 plays pivotal roles in maintaining pluripotency during early mammalian embryonic development and in embryonic stem cells. It is essential to establish a reporter system based on the OCT4 promoter region to study pluripotency. However, there is still a lack of information about the porcine OCT4 upstream reporter system. To improve our understanding of the porcine OCT4 regulatory region, we identified conserved regions in the porcine OCT4 promoter upstream region by sequence-based comparative analysis using various mammalian genome sequences. The similarity of nucleotide sequences in the 5′ upstream region was low among mammalian species. However, the OCT4 promoter and four regulatory regions, including distal and proximal enhancer elements, had high similarity. Next, a functional analysis of the porcine OCT4 promoter region was conducted. Luciferase reporter assay results indicated that the porcine OCT4 distal enhancer and proximal enhancer were highly activated in mouse embryonic stem cells and embryonic carcinoma cells, respectively. A comparison analysis of naïve and primed state marker gene expression in a dual-reporter assay showed that the expression levels of naïve and primed markers differed in fluorescence signal between high-expressing cells and low-expressing cells. Similar to OCT4 upstream-based reporter systems derived from other species, the porcine OCT4 upstream region-based reporter constructs showed exclusive expression patterns depending on the state of pluripotency. This work provides basic information about the porcine OCT4 upstream region and various porcine OCT4 fluorescence reporter constructs, which can be applied to study species-specific pluripotency in early embryo development and the establishment of embryonic stem cells in pigs.
Collapse
|
6
|
Tanaka TS. Maintenance, Transgene Delivery, and Pluripotency Measurement of Mouse Embryonic Stem Cells. Methods Mol Biol 2015; 1341:295-319. [PMID: 25863786 DOI: 10.1007/7651_2015_228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This chapter describes standard techniques to (1) maintain mouse embryonic stem cell culture, (2) deliver transgenes into mouse embryonic stem cells mediated by electroporation, nucleofection, lipofection, and retro/lentiviruses, and (3) assess the pluripotency of mouse embryonic stem cells. The last part of this chapter presents induction of random cell differentiation followed by the alkaline phosphatase and embryoid body formation assays, immunofluorescence microscopy, and the teratoma formation assay.
Collapse
Affiliation(s)
- Tetsuya S Tanaka
- Department of Biological Sciences, Chemical and Biomolecular Engineering, University of Notre Dame, 49 Galvin Life Sciences, Notre Dame, IN, 46556, USA.
| |
Collapse
|
7
|
Abstract
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.
Collapse
|
8
|
Li Y, Drnevich J, Akraiko T, Band M, Li D, Wang F, Matoba R, Tanaka TS. Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells. Genomics 2013; 102:456-67. [PMID: 24121003 DOI: 10.1016/j.ygeno.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
We examined the transcriptional activity of Oct3/4 (Pou5f1) in mouse embryonic stem cells (mESCs) maintained under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an expression vector in which the Oct3/4 promoter drives the monocistronic transcription of Venus and a puromycin-resistant gene via the foot-and-mouth disease virus self-cleaving peptide T2A. Then, a genetically-engineered mESC line with the stable integration of this vector was isolated and cultured in the presence or absence of puromycin. The cultures were subsequently subjected to Illumina expression microarray analysis. We identified approximately 4600 probes with statistically significant differential expression. The genes involved in nucleic acid synthesis were overrepresented in the probe set associated with mESCs maintained in the presence of puromycin. In contrast, the genes involved in cell differentiation were overrepresented in the probe set associated with mESCs maintained in the absence of puromycin. Therefore, it is suggested with these data that the transcriptional activity of Oct3/4 fluctuates in mESCs and that Oct3/4 plays an essential role in sustaining the basal transcriptional activities required for cell duplication in populations with equal differentiation potential. Heterogeneity in the transcriptional activity of Oct3/4 was dynamic. Interestingly, we found that genes involved in the hedgehog signaling pathway showed unique expression profiles in mESCs and validated this observation by RT-PCR analysis. The expression of Gli2, Ptch1 and Smo was consistently detected in other types of pluripotent stem cells examined in this study. Furthermore, the Gli2 protein was heterogeneously detected in mESC nuclei by immunofluorescence microscopy and this result correlated with the detection of the Oct3/4 protein. Finally, forced activation of Gli2 in mESCs increased their proliferation rate. Collectively, it is suggested with these results that Gli2 may play a novel role in the self-renewal of pluripotent stem cells.
Collapse
Affiliation(s)
- Yanzhen Li
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jenny Drnevich
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tatiana Akraiko
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark Band
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dong Li
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fei Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryo Matoba
- DNA Chip Research Inc., Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya S Tanaka
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Galvin-Burgess KE, Travis ED, Pierson KE, Vivian JL. TGF-β-superfamily signaling regulates embryonic stem cell heterogeneity: self-renewal as a dynamic and regulated equilibrium. Stem Cells 2013; 31:48-58. [PMID: 23081664 DOI: 10.1002/stem.1252] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/12/2012] [Indexed: 01/06/2023]
Abstract
Embryonic stem cells dynamically fluctuate between phenotypic states, as defined by expression levels of genes such as Nanog, while remaining pluripotent. The dynamic phenotype of stem cells is in part determined by gene expression control and dictated by various signaling pathways and transcriptional regulators. We sought to define the activities of two TGF-β-related signaling pathways, bone morphogenetic protein (BMP) and Nodal signaling, in modulating mouse embryonic stem (ES) cell heterogeneity in undifferentiated culture conditions. Both BMP and Nodal signaling pathways were seen to be active in distinct Nanog subpopulations, with subtle quantitative differences in activity. Pharmacological and genetic modulation of BMP or Nodal signaling strongly influenced the heterogeneous state of undifferentiated ES cells, as assessed by dynamic expression of Nanog reporters. Inhibition of Nodal signaling enhanced BMP activity, which through the downstream target Id factors, enhanced the capacity of ES cells to remain in the Nanog-high epigenetic state. The combined inhibition of Nodal and BMP signaling resulted in the accumulation of Nanog-negative cells, even in the presence of LIF, uncovering a shared role for BMP and Nodal signaling in maintaining Nanog expression and repression of differentiation. These results demonstrate a complex requirement for both arms of TGF-β-related signaling to influence the dynamic cellular phenotype of undifferentiated ES cells in serum-based media, and that differing subpopulations of ES cells in heterogeneous culture have distinct responses to these signaling pathways. Several pathways, including BMP, Nodal, and FGF signaling, have important regulatory function in defining the steady-state distribution of heterogeneity of stem cells.
Collapse
Affiliation(s)
- Katherine E Galvin-Burgess
- Department of Pathology and Laboratory, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
10
|
Funabashi H, Oura S, Saito M, Matsuoka H. Targeted delivery of a decoy oligodeoxynucleotide to a single ES cell by femtoinjection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:855-63. [PMID: 23506950 DOI: 10.1016/j.nano.2013.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/26/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Femtoinjection has been proposed as a feasible approach for the targeted delivery of a decoy oligodeoxynucleotide (ODN) into a single ES cell for the study of transcription factor activity. Here, we evaluated the utility of decoy ODN delivery via femtoinjection in an ES cell model in which Venus fluorescent protein was expressed under the control of the tet-off system. Femtoinjection of a control decoy (Con-decoy) and a tetracycline response element decoy (TRE-decoy) into the cytoplasm had no apparent effect on Venus fluorescent protein expression; however, femtoinjection of the TRE-decoy into the nucleus successfully suppressed expression of the Venus fluorescent protein. We therefore conclude that it is feasible to suppress the activity of a transcription factor in a single ES cell by the delivery of a decoy ODN into the nucleus using the femtoinjection technique. FROM THE CLINICAL EDITOR The authors of this novel basic science study successfully demonstrate a femtoinjection technique to deliver a decoy oligodeoxynucleotide into a single ES cell.
Collapse
Affiliation(s)
- Hisakage Funabashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16, Naka-cho, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Davidson S, Macpherson N, Mitchell JA. Nuclear organization of RNA polymerase II transcription. Biochem Cell Biol 2013; 91:22-30. [PMID: 23442138 DOI: 10.1139/bcb-2012-0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription occurs at distinct nuclear compartments termed transcription factories that are specialized for transcription by 1 of the 3 polymerase complexes (I, II, or III). Protein-coding genes appear to move in and out of RNA polymerase II (RNAPII) compartments as they are expressed and silenced. In addition, transcription factories are sites where several transcription units, either from the same chromosome or different chromosomes, are transcribed. Chromosomes occupy distinct territories in the interphase nucleus with active genes preferentially positioned on the periphery or even looped out of the territory. These chromosome territories have been observed to intermingle in the nucleus, and multiple interactions among different chromosomes have been identified in genome-wide studies. Deep sequencing of the transcriptome and RNAPII associated on DNA obtained by chromatin immunoprecipitation have revealed a plethora of noncoding transcription and intergenic accumulations of RNAPII that must also be considered in models of genome function. The organization of transcription into distinct regions of the nucleus has changed the way we view transcription with the evolving model for silencing or activation of gene expression involving physical relocation of the transcription unit to a silencing or activation compartment, thus, highlighting the need to consider the process of transcription in the 3-dimensional nuclear space.
Collapse
Affiliation(s)
- Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | | | | |
Collapse
|
12
|
Abstract
DUX4, a homeobox-containing gene present in a tandem array, is implicated in facioscapulohumeral muscular dystrophy (FSHD), a dominant autosomal disease. New findings about DUX4 have raised as many fundamental questions about the molecular pathology of this unique disease as they have answered. This review discusses recent studies addressing the question of whether there is extensive FSHD-related transcription dysregulation in adult-derived myoblasts and myotubes, the precursors for muscle repair. Two models for the role of DUX4 in FSHD are presented. One involves transient pathogenic expression of DUX4 in many cells in the muscle lineage before the myoblast stage resulting in a persistent, disease-related transcription profile ('Majority Rules'), which might be enhanced by subsequent oscillatory expression of DUX4. The other model emphasizes the toxic effects of inappropriate expression of DUX4 in only an extremely small percentage of FSHD myoblasts or myotube nuclei ('Minority Rules'). The currently favored Minority Rules model is not supported by recent studies of transcription dysregulation in FSHD myoblasts and myotubes. It also presents other difficulties, for example, explaining the expression of full-length DUX4 transcripts in FSHD fibroblasts. The Majority Rules model is the simpler explanation of findings about FSHD-associated gene expression and the DUX4-encoded homeodomain-type protein.
Collapse
|
13
|
Trott J, Hayashi K, Surani A, Babu MM, Martinez-Arias A. Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. MOLECULAR BIOSYSTEMS 2012; 8:744-52. [PMID: 22222461 DOI: 10.1039/c1mb05398a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Analysis of transcription at the level of single cells in prokaryotes and eukaryotes has revealed the existence of heterogeneities in the expression of individual genes within genetically homogeneous populations. This variation is an emerging hallmark of populations of Embryonic Stem (ES) cells and has been ascribed to the stochasticity associated with the biochemical events that mediate gene expression. It has been suggested that these heterogeneities play a role in the maintenance of pluripotency. However, for the most part, studies have focused on individual genes in large cell populations. Here we use an existing dataset on the expression of eight genes involved in pluripotency in eighty-three ES cells to create Gene Regulatory Networks (GRNs) at the single cell level. We observe widespread heterogeneities in the expression of the eight genes, but analysis of correlations within individual cells reveals three distinct classes centered on the expression of Nanog, a marker of pluripotency, and Fgf5, a gene associated with differentiation: high levels of Nanog and low levels of Fgf5, low levels of Nanog and high levels of Fgf5, and low levels of both. Each of these classes is associated with a collection of active sub-networks, with differing degrees of connectivity between their elements, which define a cellular state: self-renewal, primed for differentiation or transition between the two. Though every cell should be governed by the same network, the active sub-networks may emerge due to considerations such as variation in (i) the expression level of active transcription factors (e.g. through post-translational modification or ligand/co-factor availability) or (ii) access to the target gene locus (e.g. via changes in chromatin status or epigenetic modifications). We conclude that heterogeneities in gene expression should not be interpreted as representing different states of a single unique network, but as a reflection of the activity of different sub-networks in sub-populations of cells.
Collapse
Affiliation(s)
- Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | | | | | |
Collapse
|
14
|
Li Y, Yokohama-Tamaki T, Tanaka TS. Short-term serum-free culture reveals that inhibition of Gsk3β induces the tumor-like growth of mouse embryonic stem cells. PLoS One 2011; 6:e21355. [PMID: 21731714 PMCID: PMC3121758 DOI: 10.1371/journal.pone.0021355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/31/2011] [Indexed: 12/22/2022] Open
Abstract
Here, we present evidence that the tumor-like growth of mouse embryonic stem cells (mESCs) is suppressed by short-term serum-free culture, which is reversed by pharmacological inhibition of Gsk3β. Mouse ESCs maintained under standard conditions using fetal bovine serum (FBS) were cultured in a uniquely formulated chemically-defined serum-free (CDSF) medium, namely ESF7, for three passages before being subcutaneously transplanted into immunocompromised mice. Surprisingly, the mESCs failed to produce teratomas for up to six months, whereas mESCs maintained under standard conditions generated well-developed teratomas in five weeks. Mouse ESCs cultured under CDSF conditions maintained the expression of Oct3/4, Nanog, Sox2 and SSEA1, and differentiated into germ cells in vivo. In addition, when mESCs were cultured under CDSF conditions supplemented with FBS, or when the cells were cultured under CDSF conditions followed by standard culture conditions, they consistently developed into teratomas. Thus, these results validate that the pluripotency of mESCs was not compromised by CDSF conditions. Mouse ESCs cultured under CDSF conditions proliferated significantly more slowly than mESCs cultured under standard conditions, and were reminiscent of Eras-null mESCs. In fact, their slower proliferation was accompanied by the downregulation of Eras and c-Myc, which regulate the tumor-like growth of mESCs. Remarkably, when mESCs were cultured under CDSF conditions supplemented with a pharmacological inhibitor of Gsk3β, they efficiently proliferated and developed into teratomas without upregulation of Eras and c-Myc, whereas mESCs cultured under standard conditions expressed Eras and c-Myc. Although the role of Gsk3β in the self-renewal of ESCs has been established, it is suggested with these data that Gsk3β governs the tumor-like growth of mESCs by means of a mechanism different from the one to support the pluripotency of ESCs.
Collapse
Affiliation(s)
- Yanzhen Li
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tamaki Yokohama-Tamaki
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tetsuya S. Tanaka
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Miranda A, Pericuesta E, Ramírez MÁ, Gutierrez-Adan A. Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One 2011; 6:e18422. [PMID: 21483752 PMCID: PMC3070729 DOI: 10.1371/journal.pone.0018422] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/06/2011] [Indexed: 01/06/2023] Open
Abstract
Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.
Collapse
Affiliation(s)
- Alberto Miranda
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
| | | | | | | |
Collapse
|
16
|
Watanabe K, Meyer MJ, Strizzi L, Lee JM, Gonzales M, Bianco C, Nagaoka T, Farid SS, Margaryan N, Hendrix MJC, Vonderhaar BK, Salomon DS. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells. Stem Cells 2011; 28:1303-14. [PMID: 20549704 DOI: 10.1002/stem.463] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deregulation of stem cells is associated with the generation and progression of malignant tumors. In addition, genes that are associated with early embryogenesis are frequently expressed in cancer. Cripto-1 (CR-1), a glycosylphosphatidylinositol-linked glycoprotein, is expressed during early embryogenesis and in various human carcinomas. We demonstrated that human embryonal carcinoma (EC) cells are heterogeneous for CR-1 expression and consist of two distinct subpopulations: a CR-1(High) and a CR-1(Low) population. By segregating CR-1(High) and CR-1(Low) populations of NTERA2/D1 EC cells by fluorescence-activated cell sorting, we demonstrated that CR-1(High) cells were more tumorigenic than CR-1(Low) cells by an in vitro tumor sphere assay and by in vivo xenograft formation. The CR-1(High) population was enriched in mRNA expression for the pluripotent embryonic stem (ES) cell genes Oct4, Sox2, and Nanog. CR-1 expression in NTERA2/D1 cells was regulated by a Smad2/3-dependent autocrine loop, by the ES cell-related transcription factors Oct4/Nanog, and partially by the DNA methylation status of the promoter region. These results demonstrate that CR-1 expression is enriched in an undifferentiated, tumorigenic subpopulation and is regulated by key regulators of pluripotent stem cells.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Mammary Biology and Tumorigenesis Laboratory, Robert H. LurieCancer Center Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One 2010; 5:e15655. [PMID: 21179449 PMCID: PMC3001487 DOI: 10.1371/journal.pone.0015655] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/20/2010] [Indexed: 01/11/2023] Open
Abstract
Maintaining undifferentiated mouse embryonic stem cell (mESC) culture has been a major challenge as mESCs cultured in Leukemia Inhibitory Factor (LIF) conditions exhibit spontaneous differentiation, fluctuating expression of pluripotency genes, and genes of specialized cells. Here we show that, in sharp contrast to the mESCs seeded on the conventional rigid substrates, the mESCs cultured on the soft substrates that match the intrinsic stiffness of the mESCs and in the absence of exogenous LIF for 5 days, surprisingly still generated homogeneous undifferentiated colonies, maintained high levels of Oct3/4, Nanog, and Alkaline Phosphatase (AP) activities, and formed embryoid bodies and teratomas efficiently. A different line of mESCs, cultured on the soft substrates without exogenous LIF, maintained the capacity of generating homogeneous undifferentiated colonies with relatively high levels of Oct3/4 and AP activities, up to at least 15 passages, suggesting that this soft substrate approach applies to long term culture of different mESC lines. mESC colonies on these soft substrates without LIF generated low cell-matrix tractions and low stiffness. Both tractions and stiffness of the colonies increased with substrate stiffness, accompanied by downregulation of Oct3/4 expression. Our findings demonstrate that mESC self-renewal and pluripotency can be maintained homogeneously on soft substrates via the biophysical mechanism of facilitating generation of low cell-matrix tractions.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yanzhen Li
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yeh-Chuin Poh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tamaki Yokohama-Tamaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (NW); (TST)
| | - Tetsuya S. Tanaka
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (NW); (TST)
| |
Collapse
|
18
|
Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 2010; 464:858-63. [PMID: 20336070 PMCID: PMC2851843 DOI: 10.1038/nature08882] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 02/08/2010] [Indexed: 01/21/2023]
Abstract
Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for 2-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term-genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once within nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by eight passages. Together, our data reveal a unique mode of genome maintenance in ES cells.
Collapse
|