1
|
Rock CR, Miller SL, Allison BJ. The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review. Antioxidants (Basel) 2024; 13:1400. [PMID: 39594542 PMCID: PMC11591491 DOI: 10.3390/antiox13111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Fetal growth restriction (FGR) increases the risk of cardiovascular disease. There are currently no treatment options available; however, antioxidants have shown potential to improve cardiovascular deficits associated with FGR. This systematic review aimed to determine whether antenatal antioxidant intervention can effectively protect the developing cardiovascular system in FGR. We searched for interventional studies that used an antenatal antioxidant intervention to improve cardiac and/or vascular outcomes in FGR published between 01/1946 and 09/2024 using MEDLINE and Embase (PROSPERO: CRD42024503756). The risk of bias was assessed with SYRCLE. The studies were assessed for cardiovascular protection based on the percentage of cardiac and/or vascular deficits that were restored with the antioxidant treatment. Studies were characterised as showing strong cardiovascular protection (≥50% restoration), mild cardiovascular protection (>0% but <50% restoration), an antioxidant-only effect (this did not include control group which showed a change with antioxidant intervention compared to FGR) or no cardiovascular protection (0% restoration). Thirty-eight publications met the inclusion criteria, encompassing 43 studies and investigating 15 antioxidant interventions. Moreover, 29/43 studies (71%) reported the restoration of at least one cardiac or vascular deficit with antioxidant intervention, and 21/43 studies (51%) were classified as strong cardiovascular protection. An ex vivo analysis of the arterial function in seven studies revealed endothelial dysfunction in growth-restricted offspring and antioxidant interventions restored the endothelial function in all cases. Additionally, four studies demonstrated that antioxidants reduced peroxynitrite-mediated oxidative stress. Notably, only 13/43 studies (32%) delayed antioxidant administration until after the induction of FGR. Antenatal antioxidant interventions show promise for providing cardiovascular protection in FGR. Melatonin was the most frequently studied intervention followed by nMitoQ, vitamin C and N-acetylcysteine, all of which demonstrated a strong capacity to reduce oxidative stress and improve nitric oxide bioavailability in the cardiovascular system of growth-restricted offspring; however, this systematic review highlights critical knowledge gaps and inconsistencies in preclinical research, which hinder our ability to determine which antioxidant treatments are currently suitable for clinical translation.
Collapse
Affiliation(s)
- Charmaine R. Rock
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia;
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia;
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia;
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
2
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
3
|
Vautier AN, Cadaret CN. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.778440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental perturbations during gestation can alter fetal development and postnatal animal performance. In humans, intrauterine growth restriction (IUGR) resulting from adaptive fetal programming is known as a leading cause of perinatal morbidity and mortality and predisposes offspring to metabolic disease, however, the prevalence and impact in livestock is not characterized as well. Multiple animal models have been developed as a proxy to determine mechanistic changes that underlie the postnatal phenotype resulting from these programming events in humans but have not been utilized as robustly in livestock. While the overall consequences are similar between models, the severity of the conditions appear to be dependent on type, timing, and duration of insult, indicating that some environmental insults are of more relevance to livestock production than others. Thus far, maternofetal stress during gestation has been shown to cause increased death loss, low birth weight, inefficient growth, and aberrant metabolism. A breadth of this data comes from the fetal ruminant collected near term or shortly thereafter, with fewer studies following these animals past weaning. Consequently, even less is known about how adaptive fetal programming impacts subsequent progeny. In this review, we summarize the current knowledge of the postnatal phenotype of livestock resulting from different models of fetal programming, with a focus on growth, metabolism, and reproductive efficiency. We further describe what is currently known about generational impacts of fetal programming in production systems, along with gaps and future directions to consider.
Collapse
|
4
|
Wang KCW, James AL, Noble PB. Fetal Growth Restriction and Asthma: Is the Damage Done? Physiology (Bethesda) 2021; 36:256-266. [PMID: 34159809 DOI: 10.1152/physiol.00042.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Trajectories of airway remodeling and functional impairment in asthma are consistent with the notion that airway pathology precedes or coincides with the onset of asthma symptoms and may be present at birth. An association between intrauterine growth restriction (IUGR) and asthma development has also been established, and there is value in understanding the underlying mechanism. This review considers airway pathophysiology as a consequence of IUGR that increases susceptibility to asthma.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
6
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Identification of Pathways Associated with Placental Adaptation to Maternal Nutrient Restriction in Sheep. Genes (Basel) 2020; 11:genes11091031. [PMID: 32887397 PMCID: PMC7565845 DOI: 10.3390/genes11091031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/21/2023] Open
Abstract
Maternal nutrient restriction impairs placental growth and development, but available evidence suggests that adaptive mechanisms exist, in a subset of nutrient restricted (NR) ewes, that support normal fetal growth and do not result in intrauterine growth restriction (IUGR). This study utilized Affymetrix GeneChip Bovine and Ovine Genome 1.0 ST Arrays to identify novel placental genes associated with differential fetal growth rates within NR ewes. Singleton pregnancies were generated by embryo transfer and, beginning on Day 35 of pregnancy, ewes received either a 100% National Research Council (NRC) (control-fed group; n = 7) or 50% NRC (NR group; n = 24) diet until necropsy on Day 125. Fetuses from NR ewes were separated into NR non-IUGR (n = 6) and NR IUGR (n = 6) groups based on Day 125 fetal weight for microarray analysis. Of the 103 differentially expressed genes identified, 15 were upregulated and 88 were downregulated in NR non-IUGR compared to IUGR placentomes. Bioinformatics analysis revealed that upregulated gene clusters in NR non-IUGR placentomes associated with cell membranes, receptors, and signaling. Downregulated gene clusters associated with immune response, nutrient transport, and metabolism. Results illustrate that placentomal gene expression in late gestation is indicative of an altered placental immune response, which is associated with enhanced fetal growth, in a subpopulation of NR ewes.
Collapse
|
8
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
9
|
Cadaret CN, Merrick EM, Barnes TL, Beede KA, Posont RJ, Petersen JL, Yates DT. Sustained maternal inflammation during the early third-trimester yields intrauterine growth restriction, impaired skeletal muscle glucose metabolism, and diminished β-cell function in fetal sheep1,2. J Anim Sci 2019; 97:4822-4833. [PMID: 31616931 PMCID: PMC6915216 DOI: 10.1093/jas/skz321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Maternal inflammation causes fetal intrauterine growth restriction (IUGR), but its impact on fetal metabolism is not known. Thus, our objective was to determine the impact of sustained maternal inflammation in late gestation on fetal inflammation, skeletal muscle glucose metabolism, and insulin secretion. Pregnant ewes were injected every third day from the 100th to 112th day of gestation (term = 150 d) with saline (controls) or lipopolysaccharide (LPS) to induce maternal inflammation and IUGR (MI-IUGR). Fetal femoral blood vessels were catheterized on day 118 to assess β-cell function on day 123, hindlimb glucose metabolic rates on day 124, and daily blood parameters from days 120 to 125. Fetal muscle was isolated on day 125 to assess ex vivo glucose metabolism. Injection of LPS increased (P < 0.05) rectal temperatures, circulating white blood cells, and plasma tumor necrosis factor α (TNFα) concentrations in MI-IUGR ewes. Maternal leukocytes remained elevated (P < 0.05) and TNFα tended to remain elevated (P < 0.10) compared with controls almost 2 wk after the final LPS injection. Total white blood cells, monocytes, granulocytes, and TNFα were also greater (P < 0.05) in MI-IUGR fetuses than controls over this period. MI-IUGR fetuses had reduced (P < 0.05) blood O2 partial pressures and greater (P < 0.05) maternofetal O2 gradients, but blood glucose and maternofetal glucose gradients did not differ from controls. Basal and glucose-stimulated insulin secretion were reduced (P < 0.05) by 32% and 42%, respectively, in MI-IUGR fetuses. In vivo hindlimb glucose oxidation did not differ between groups under resting conditions but was 47% less (P < 0.05) in MI-IUGR fetuses than controls during hyperinsulinemia. Hindlimb glucose utilization did not differ between fetal groups. At day 125, MI-IUGR fetuses were 22% lighter (P < 0.05) than controls and tended to have greater (P < 0.10) brain/BW ratios. Ex vivo skeletal muscle glucose oxidation did not differ between groups in basal media but was less (P < 0.05) for MI-IUGR fetuses in insulin-spiked media. Glucose uptake rates and phosphorylated-to-total Akt ratios were less (P < 0.05) in muscle from MI-IUGR fetuses than controls regardless of media. We conclude that maternal inflammation leads to fetal inflammation, reduced β-cell function, and impaired skeletal muscle glucose metabolism that persists after maternal inflammation ceases. Moreover, fetal inflammation may represent a target for improving metabolic dysfunction in IUGR fetuses.
Collapse
Affiliation(s)
- Caitlin N Cadaret
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Elena M Merrick
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| |
Collapse
|
10
|
Beede KA, Limesand SW, Petersen JL, Yates DT. Real supermodels wear wool: summarizing the impact of the pregnant sheep as an animal model for adaptive fetal programming. Anim Front 2019; 9:34-43. [PMID: 31608163 PMCID: PMC6777506 DOI: 10.1093/af/vfz018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kristin A Beede
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| |
Collapse
|
11
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
12
|
Polglase GR, Barbuto J, Allison BJ, Yawno T, Sutherland AE, Malhotra A, Schulze KE, Wallace EM, Jenkin G, Ricardo SD, Miller SL. Effects of antenatal melatonin therapy on lung structure in growth-restricted newborn lambs. J Appl Physiol (1985) 2017; 123:1195-1203. [PMID: 28819007 DOI: 10.1152/japplphysiol.00783.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress arising from suboptimal placental function contributes to a multitude of pathologies in infants compromised by fetal growth restriction (FGR). FGR infants are at high risk for respiratory dysfunction after birth and poor long-term lung function. Our objective was to investigate the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. Placental insufficiency and FGR was surgically induced in 13 fetal sheep at ∼105 days of gestation by ligation of a single umbilical artery. Maternal intravenous melatonin infusion was commenced in seven of the ewes 4 h after surgery and continued until birth. Lambs delivered normally at term and lungs were collected 24 h after birth for histological assessment of lung structure and injury and compared with appropriately grown control lambs (n = 8). FGR fetuses were hypoxic and had lower glucose during gestation compared with controls. Melatonin administration prevented chronic hypoxia. Within the lung, FGR caused reduced secondary septal crest density and altered elastin deposition compared with controls. Melatonin administration had no effect on the changes to lung structure induced by FGR. We conclude that chronic FGR disrupts septation of the developing alveoli, which is not altered by melatonin administration. These findings suggest that oxidative stress is not the mechanism driving altered lung structure in FGR neonates. Melatonin administration did not prevent disrupted airway development but also had no apparent adverse effects on fetal lung development.NEW & NOTEWORTHY Fetal growth restriction (FGR) results in poor respiratory outcomes, which may be caused by oxidation in utero. We investigated the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. FGR disrupted septation of the developing alveoli, which is not altered by melatonin administration. Oxidative stress may not be the mechanism driving altered lung structure in FGR neonates.
Collapse
Affiliation(s)
- Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jade Barbuto
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Monash Newborn, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University Clayton, Victoria, Australia; and
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy, Biochemistry, and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; .,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
14
|
Allison BJ, Hooper SB, Coia E, Zahra VA, Jenkin G, Malhotra A, Sehgal A, Kluckow M, Gill AW, Sozo F, Miller SL, Polglase GR. Ventilation-induced lung injury is not exacerbated by growth restriction in preterm lambs. Am J Physiol Lung Cell Mol Physiol 2016; 310:L213-23. [DOI: 10.1152/ajplung.00328.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
Intrauterine growth restriction (IUGR) and preterm birth are frequent comorbidities and, combined, increase the risk of adverse respiratory outcomes compared with that in appropriately grown (AG) infants. Potential underlying reasons for this increased respiratory morbidity in IUGR infants compared with AG infants include altered fetal lung development, fetal lung inflammation, increased respiratory requirements, and/or increased ventilation-induced lung injury. IUGR was surgically induced in preterm fetal sheep (0.7 gestation) by ligation of a single umbilical artery. Four weeks later, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Ventilator requirements, lung inflammation, early markers of lung injury, and morphological changes in lung parenchymal and vascular structure and surfactant composition were analyzed. IUGR preterm lambs weighed 30% less than AG preterm lambs, with increased brain-to-body weight ratio, indicating brain sparing. IUGR did not induce lung inflammation or injury or alter lung parenchymal and vascular structure compared with AG fetuses. IUGR and AG lambs had similar oxygenation and respiratory requirements after birth and had significant, but similar, increases in proinflammatory cytokine expression, lung injury markers, gene expression, and surfactant phosphatidylcholine species compared with unventilated controls. IUGR does not induce pulmonary structural changes in our model. Furthermore, IUGR and AG preterm lambs have similar ventilator requirements in the immediate postnatal period. This study suggests that increased morbidity and mortality in IUGR infants is not due to altered lung tissue or vascular structure, or to an altered response to early ventilation.
Collapse
Affiliation(s)
- Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Elise Coia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Monash Newborn, Monash Medical Centre, and Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Arvind Sehgal
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Monash Newborn, Monash Medical Centre, and Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Martin Kluckow
- Department of Neonatology, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Andrew W. Gill
- Centre for Neonatal Research and Education, The University of Western Australia, Western Australia, Australia; and
| | - Foula Sozo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Abstract
The developmental origins of the metabolic syndrome have been established through the consistent observation that small-for-gestational age and large-for-gestational age fetuses have an increased risk for hypertension and related metabolic disorders later in life. These phenotypes have been reproduced in various species subjected to a range of intrauterine insults and ongoing research is directed towards understanding the underlying molecular mechanisms. Current evidence suggests that the creation of a pro-inflammatory and pro-oxidant intrauterine milieu is a common thread among prenatal factors that have an impact upon fetal size. Furthermore, studies demonstrate that a shift in fetal redox status consequent to environmental cues persists after birth and drives the progression of vascular dysfunction and hypertension in postnatal life. TLR (Toll-like receptor) signalling has emerged as a key link between inflammation and oxidative stress and a pathogenic contributor to hypertension, insulin resistance and obesity, in both human patients and animal models of disease. Thus TLR activation and dysregulation of its signalling components represent potential molecular underpinnings of programmed hypertension and related disorders in those subjected to suboptimal intrauterine conditions, yet their contributions to developmental programming remain unexplored. We propose that danger signals mobilized by the placenta or fetal tissues during complicated pregnancy activate the fetal innate immune system through TLRs and thereby potentiate the generation of ROS (reactive oxygen species) and orchestrate fetal adaptive responses, including changes in gene expression, which later translate to vascular dysfunction. Furthermore, we suggest that, after birth, continual activation of TLR signalling propagates vascular oxidative stress and thereby accelerates the advancement of hypertension and heart failure.
Collapse
|
16
|
Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida A, Yoshiura KI, Masuzaki H. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn 2013; 33:214-22. [DOI: 10.1002/pd.4045] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ai Higashijima
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Kiyonori Miura
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hiroyuki Mishima
- Human Genetics; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Akira Kinoshita
- Human Genetics; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Ozora Jo
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Shuhei Abe
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Yuri Hasegawa
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Shoko Miura
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Kentaro Yamasaki
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Atsushi Yoshida
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Koh-ichiro Yoshiura
- Human Genetics; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hideaki Masuzaki
- Obstetrics and Gynecology; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
17
|
Expression pattern of tumor necrosis factor alpha in placentae of idiopathic fetal growth restriction. J Mol Histol 2012; 43:253-61. [DOI: 10.1007/s10735-012-9410-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|