1
|
Silva SB, Ruiz TFR, Dos Santos FCA, Taboga SR, Vilamaior PSL. Impacts of heavy metal exposure on the prostate of murine models: Mechanisms of toxicity. Reprod Toxicol 2023; 120:108448. [PMID: 37490985 DOI: 10.1016/j.reprotox.2023.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Heavy metals are elements found into the environment mainly due to anthropogenic activities. Naturally occurring and higher released doses cause disorders in the prostate, which depends on appropriate hormonal regulation, and exposure to heavy metals may impair prostate homeostasis. The current work highlighted the main mechanisms of toxicity of different environmental heavy metal contaminants, such as aluminum, arsenic, cadmium, chromium, lead, mercury, and nickel, and their impacts found in the prostate morphophysiology of murine models. The repercussions triggered by heavy metals on the prostate include hormonal imbalance and oxidative damage, leading to morphological alterations, which can vary according to the chemical properties of each element, exposure time and concentration, and age. The information of altered biological pathways and its impacts on the prostate of exposed murines are related to human outcomes being useful in the real context of human exposure.
Collapse
Affiliation(s)
- Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Cristina Alcantara Dos Santos
- Department of Histology, Embryology and Cell Biology, Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
3
|
Fetal programming by high-fat diet promoted the decreased of the prostate in adult Wistar albino rats. Mech Dev 2020; 164:103649. [PMID: 33022371 DOI: 10.1016/j.mod.2020.103649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 01/22/2023]
Abstract
We investigated the effect of a high-fat diet on body metabolism and ventral prostate morphology in 4-months-old offspring. The mother was fed with a control (C) or a high-fat (HF) diet during gestation and lactation. At weaning, the offspring diet remained the same (C/C, n = 8; HF/HF, n = 8) or it was switched (C/HF, n = 8; HF/C, n = 9). Biometry, blood pressure (BP), glucose, lipid metabolism and ventral prostate were evaluated. Triacylglycerol of HF/C increased, and the C/HF group had decreased HDL-c levels (P = 0.0005 and P = 0.0100, respectively). All groups on the HF diet presented hyperglycemia (P = 0.0064). Serum testosterone diminished in the C/HF group (P = 0.0218). The HF diet, regardless of the period, reduced prostatic acinar area (P < 0.0001). The epithelium height was smaller in HF/C and HF/HF groups compared with C/C and C/HF (P < 0.0001), and the volume density of epithelium was lower in HF/C group compared with the C/C and C/HF (P = 0.0024). The volume density of smooth muscle cells diminished in C/HF and HF/C (P = 0.0013), and the volume density of connective tissue was reduced in HF/C and HF/HF (P < 0.0001). High-fat diet intake during prenatal and postnatal life leads to prostatic atrophy, which may impair prostate secretory activity and contractility, and thus disturb reproductive function in adulthood.
Collapse
|
4
|
Ajuogu PK, Al-Aqbi MAK, Hart RA, McFarlane JR, Smart NA. A low protein maternal diet during gestation has negative effects on male fertility markers in rats - A Systematic Review and Meta-analysis. J Anim Physiol Anim Nutr (Berl) 2020; 105:157-166. [PMID: 32654274 DOI: 10.1111/jpn.13411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/20/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Research indicates that some adult diseases including reproductive pathologies are programmed in utero during foetal development. In particular, maternal low dietary protein, during the most critical developmental periods of male foetal development, may have a detrimental impact on male fertility through direct and epigenetic mechanisms. The aim of our study was to evaluate the impact of a gestational low protein diet on fertility markers in male offspring in rats through a systematic review and meta-analysis. A systematic search using PubMed, and EMBASE databases was performed and two investigators independently screened the 1,703 prospective articles. Eleven articles met the eligibility criteria. Outcome measures were pooled using random-effects models and expressed as mean differences (MDs) at 95% CIs for each study. The results reveal significant reduction in testis weight (MD (mean difference) -0.08 g; -0.12, -0.42; p = .0001), epididymal sperm count (MD -35.34 × 106 cells; -52.15, -18.53; p = .0001), number of Sertoli cells (MD -7.27 × 106 (-13.92, -0.62; p = .03), testosterone (T) concentration (MD -0.29 ng/ml; -0.48, -0.09; p = .004) and luteinising hormone (LH) concentration (MD of -0.24 ng/ml; -0.45, 0.04; p = .02) in comparison with controls. In contrast, follicle-stimulating hormone (FSH) concentration (MD of 0.07 ng/ml; -0.16, 0.29; p = .56) was not significantly different from controls. We conclude that low gestational dietary protein maternal intake potentially negatively impacts fertility in male progeny later in life. The mechanisms of action responsible for these phenomena remain unclear.
Collapse
Affiliation(s)
- Peter K Ajuogu
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammed A K Al-Aqbi
- School of Science and Technology, University of New England, Armidale, NSW, Australia.,College of Agriculture, Wasit University, Wasit, Iraq
| | - Robert A Hart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - James R McFarlane
- Centre for Bioactive Discovery in Heath and Ageing, University of New England, Armidale, NSW, Australia
| | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
5
|
Santos SAA, Camargo AC, Constantino FB, Colombelli KT, Mani F, Rinaldi JC, Franco S, Portela LMF, Duran BOS, Scarano WR, Hinton BT, Felisbino SL, Justulin LA. Maternal Low-Protein Diet Impairs Prostate Growth in Young Rat Offspring and Induces Prostate Carcinogenesis With Aging. J Gerontol A Biol Sci Med Sci 2018; 74:751-759. [DOI: 10.1093/gerona/gly118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sergio A A Santos
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Ana C Camargo
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | | | - Ketlin T Colombelli
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Fernanda Mani
- Department of Chemistry and Biochemistry, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Jaqueline C Rinaldi
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Suelen Franco
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Luiz M F Portela
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Bruno O S Duran
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Wellerson R Scarano
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia Health System, Charlottesville
| | - Sergio L Felisbino
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
6
|
Abstract
Well-controlled intrauterine development is an essential condition for many aspects of normal adult physiology and health. This process is disrupted by poor maternal nutrition status during pregnancy. Indeed, physiological adaptations occur in the fetus to ensure nutrient supply to the most vital organs at the expense of the others, leading to irreversible consequences in tissue formation and differentiation. Evidence indicates that maternal undernutrition in early life promotes changes in key hormones, such as glucocorticoids, growth hormones, insulin-like growth factors, estrogens and androgens, during fetal development. These alterations can directly or indirectly affect hormone release, hormone receptor expression/distribution, cellular function or tissue organization, and impair tissue growth, differentiation and maturation to exert profound long-term effects on the offspring. Within the male reproductive system, maternal protein malnutrition alters development, structure, and function of the gonads, testes and prostate gland. Consequently, these changes impair the reproductive capacity of the male offspring. Further, permanent alterations in the prostate gland occur at the molecular and cellular level and thereby affect the onset of late life diseases such as prostatitis, hyperplasia and even prostate cancer. This review assembles current thoughts on the concepts and mechanisms behind the developmental origins of health and disease as they relate to protein malnutrition, and highlights the effects of maternal protein malnutrition on rat prostate development and homeostasis. Such insights on developmental trajectories of adult-onset prostate disease may help provide a foundation for future studies in this field.
Collapse
|
7
|
Colombelli KT, Santos SAA, Camargo ACL, Constantino FB, Barquilha CN, Rinaldi JC, Felisbino SL, Justulin LA. Impairment of microvascular angiogenesis is associated with delay in prostatic development in rat offspring of maternal protein malnutrition. Gen Comp Endocrinol 2017; 246:258-269. [PMID: 28041790 DOI: 10.1016/j.ygcen.2016.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Experimental data demonstrated the negative impact of maternal protein malnutrition (MPM) on rat prostate development, but the mechanism behind the impairment of prostate growth has not been well understood. Male Sprague Dawley rats, borned to dams fed a normal protein diet (CTR group, 17% protein diet), were compared with those borned from dams fed a low protein diet (6% protein diet) during gestation (GLP group) or gestation and lactation (GLLP). The ventral prostate lobes (VP) were removed at post-natal day (PND) 10 and 21, and analyzed via different methods. The main findings were low birth weight, a reduction in ano-genital distance (AGD, a testosterone-dependent parameter), and an impairment of prostate development. A delay in prostate morphogenesis was associated with a reduced testosterone levels and angiogenic process through downregulation of aquaporin-1 (AQP-1), insulin/IGF-1 axis and VEGF signaling pathway. Depletion of the microvascular network, which occurs in parallel to the impairment of proliferation and differentiation of the epithelial cells, affects the bidirectional flux between blood vessels impacting prostatic development. In conclusion, our data support the hypothesis that a reduction in microvascular angiogenesis, especially in the subepithelial compartment, is associated to the impairment of prostate morphogenesis in the offspring of MPM dams.
Collapse
Affiliation(s)
- Ketlin T Colombelli
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio A A Santos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ana C L Camargo
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flávia B Constantino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Caroline N Barquilha
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Jaqueline C Rinaldi
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio L Felisbino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
8
|
de Mello Santos T, da Silveira LTR, Rinaldi JC, Scarano WR, Domeniconi RF. Alterations in prostate morphogenesis in male rat offspring after maternal exposure to Di- n -butyl-phthalate (DBP). Reprod Toxicol 2017; 69:254-264. [DOI: 10.1016/j.reprotox.2017.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 01/09/2023]
|
9
|
Camora LF, Silva APG, Santos SAA, Justulin LA, Perobelli JE, Barbisan LF, Scarano WR. Impact of maternal and postnatal zinc dietary status on the prostate of pubescent and adult rats. Cell Biol Int 2017; 41:1203-1213. [PMID: 28244627 DOI: 10.1002/cbin.10756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Zinc is important for cell physiology and alteration of its levels during development can modulate a series of biological events. The aim of this study was to investigate whether dietary zinc deficiency or supplementation during morphogenesis and early postnatal development could interfere in prostate maturation. Pregnant rats were exposed to a standard diet (NZ:35 mg Zn/kg chow), low-zinc diet (LZ:3 mg of Zn/kg chow) and zinc-supplemented diet (HZ:180 mg/Kg chow) from gestational day 10 (GD10) through postnatal day 21 (PND21). After weaning, male offspring were divided into three groups that were submitted to the same food conditions as their mothers until PND53. The animals were euthanized at PND53 and PND115. The ventral prostate was removed, weighed and its fragments were subjected to histological, western blot and zymography analysis. PND53: body and prostate weight were lower in LZ compared to NZ; the epithelial compartment was reduced while the stromal compartment was increased in LZ compared to NZ; there was an increase in the amount of collagen and reduction in AR and SIRT1 expression in LZ compared to NZ. PND115: body weight was lower in LZ compared to NZ and prostate weight was similar among the groups; peripheral physiological hyperplasia was observed, as well as an increased epithelial proliferation index and reduced PAR4 expression in LZ and HZ compared to NZ. Zinc deficiency during prostate morphogenesis and differentiation is potentially harmful to its morphology, however, by restoring the standard dietary environment, the gland responds to the new microenvironment independent of the previous dietary condition.
Collapse
Affiliation(s)
- Lucas F Camora
- Department of Morphology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Ana Priscila G Silva
- Department of Sciences of the Sea, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Sérgio A A Santos
- Department of Morphology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Juliana E Perobelli
- Department of Sciences of the Sea, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Luis Fernando Barbisan
- Department of Morphology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Wellerson R Scarano
- Department of Morphology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| |
Collapse
|
10
|
Santana VP, Salles ÉS, Correa DE, Gonçalves BF, Campos SG, Justulin LA, Godinho AF, Scarano WR. Long-term effects of perinatal exposure to low doses of cadmium on the prostate of adult male rats. Int J Exp Pathol 2016; 97:310-316. [PMID: 27469444 PMCID: PMC5061764 DOI: 10.1111/iep.12193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/15/2016] [Indexed: 11/29/2022] Open
Abstract
Developmental toxicity caused by environmental exposure to heavy metals during the perinatal period has raised questions about offspring health. Cadmium (Cd) is an endocrine-disrupting chemical with the potential to interfere with morphogenesis and susceptibility to diseases in reproductive organs. Taking into account that in the rat prostate morphogenesis occurs during the perinatal period, and that pregnant females absorb and retain more dietary Cd than their non-pregnant counterparts, it is important to understand the effects of perinatal Cd exposure on the adult rat prostate. Therefore this study investigated the effects of gestational and lactational Cd exposure on adult offspring rat prostate histopathology. Pregnant rats (n = 20) were divided into two groups: Control (treated with aqueous solution of sodium acetate 10 mg/l) and treated (treated with aqueous solution of cadmium acetate 10 mg/l) administered in the drinking water. After weaning, male offspring from different litters (n = 10) received food and water 'ad libitum'. The animals were euthanized at postnatal day 90 (PND90), the ventral prostates (VPs) were removed, weighed and examined histopathologically. Blood was collected for the measurement of testosterone (T) levels. Immunohistochemistry for androgen receptor (AR) and Ki67, and a TUNEL assay were performed. There were no differences in T levels, cell proliferation and apoptosis indexes, or AR immunostaining between the experimental groups. Stromal inflammatory foci and multifocal inflammation increased significantly in the treated group. These changes were associated with inflammatory reactive epithelial atypia and stromal fibrillar rearrangement. In conclusion, VP was permanently affected by perinatal Cd exposition, with increased incidence of inflammatory disorders with ageing.
Collapse
Affiliation(s)
| | - Évila S Salles
- Federal University of Alfenas, UNIFAL-MG, Alfenas, MG, Brazil
| | | | | | - Silvana G Campos
- Institute of Biosciences, Letters and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| | - Luiz A Justulin
- Institute of Biosciences of Botucatu, UNESP, Botucatu, SP, Brazil
| | | | | |
Collapse
|