1
|
Vieira ARS, Pereira Bersano LMC, Brandão FAS, Barros CHSC, Sousa FCD, Rodrigues ALDS, Alves BG, Gomes FDR, Rodrigues APR, Teixeira DÍA. Heterotopic ovarian allotransplantation in a caprine model: Effects of implant site on morphological parameters. Anim Reprod Sci 2024; 267:107509. [PMID: 38878559 DOI: 10.1016/j.anireprosci.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024]
Abstract
This study aimed to investigate a new implantation site (intra-auricular subcutaneous - IA) compared to intramuscular (IM) in the cervical portion (cervical splenius muscle) of the neck for ovarian transplantation in goats. Morphological aspects of the implant, follicular activation and morphology, and type I and III collagen deposits of the transplanted tissue were evaluated. Four fragments of the ovarian cortex were allotransplanted at the IA and IM sites in all goat recipients and recovered 7 (IA-7; IM-7) or 15 (IA-15; IM-15) days later and submitted to histological analysis. Two fragments/animal were separated for the fresh control (FC) group. There was a higher percentage of normal and developing primordial follicles at the IA-7 site (P < 0.05) compared to the other treatments, with similar values to the fresh control. Type I and III collagen fibers differed between the groups (P < 0.05), showing a considerable decrease in type I collagen fibers at the IA-7 site compared to the FC. However, the IM-7 and IA-15 sites showed higher values of type I collagen fibers, showing similarity to the FC. Therefore, we conclude that the IA site in goats is an effective site for ovarian tissue transplantation, as it is easily accessible, low invasive and has presented satisfactory rates of morphology and follicular activation.
Collapse
Affiliation(s)
- Antonio Renilson Sousa Vieira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará - UECE, Fortaleza, CE, Brazil
| | | | | | | | | | - Ana Luiza de Sousa Rodrigues
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará - UECE, Fortaleza, CE, Brazil
| | | | | | - Ana Paula Ribeiro Rodrigues
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles - LAMOFOPA - UECE, Fortaleza, CE, Brazil
| | - Dárcio Ítalo Alves Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará - UECE, Fortaleza, CE, Brazil.
| |
Collapse
|
2
|
Gomes FDR, de Brito DCC, de Sá NAR, Ñaupas LVS, Palomino GJQ, da Silva RF, Lopes ÉPF, Mbemya GT, Alves BG, Zelinski M, de Figueiredo JR, Rodrigues APR. Development of sheep secondary follicles and preservation of aromatase and metalloproteinases 2 and 9 after vitrification and in vitro culture. Cell Tissue Bank 2022; 23:247-259. [PMID: 34152507 DOI: 10.1007/s10561-021-09937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
The cryopreservation of secondary follicles (SF) is a promising alternative to preserve the reproductive potential both in humans and animals in situations in which the transplantation of ovarian tissue is not possible. The objective of the present study was cryopreserved SF isolated sheep. Beyond follicular morphology, viability and development, we investigated proteins related to steroidogenic function and basement membrane remodeling [metalloproteinases 2 (MMP-2) and 9 (MMP-9)] in fresh SF (FSF) and vitrified SF (VSF) followed by in vitro culture for 6 (D6) or 12 days (D12). The percentage of intact follicles, follicular and oocyte diameter of the VSF were lower than FSF on both days of culture (P < 0.05). The VSF viability was statistically reduced from D6 (95.5%) to D12 (77.3%) but did not differ from the FSF on both days (D6:96.2% to D12:86.5%). Antrum formation in the VSF (D6: 59.13%; D12: 79.56%) was significantly lower than the FSF (D6: 79.61%; D12: 92.23%). However, an increase in this percentage was observed from D6 to D12 in both groups. Aromatase showed stronger labeling on FSF D6 and VSF D12 compared to other treatments (P < 0.05). MMP-2 showed a similar pattern of labeling in FSF D6 and VSF D12, similarly to that observed in FSF D12 and VSF D6. MMP-9 was similar in FSF and VSF cultivated for 6 and 12 days. In conclusion, VSF are able to grow and develop during 12 days of in vitro culture and showed evidence of preservation of steroidogenic function and remodeling of the basement membrane.
Collapse
Affiliation(s)
- Francisco Denilson Rodrigues Gomes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Danielle Cristina Calado de Brito
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Naíza Arcângela Ribeiro de Sá
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Lucy Vanessa Sulca Ñaupas
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Gaby Judith Quispe Palomino
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Renato Felix da Silva
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Éverton Pimentel Ferreira Lopes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Gildas Tetaping Mbemya
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | | | - Mary Zelinski
- Oregon National Primate Research Center, Beaverton, OR, USA
| | - José Ricardo de Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Ana Paula Ribeiro Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE, CEP: 60714-903, Brazil.
| |
Collapse
|
3
|
In vitro- and in vivo-derived early antral follicles have comparable in vitro follicular growth and oocyte maturation rates in goats. Theriogenology 2022; 188:135-144. [DOI: 10.1016/j.theriogenology.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
4
|
Liu G, Li S, Ren J, Wang C, Zhang Y, Su X, Dai Y. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J Ovarian Res 2020; 13:108. [PMID: 32933578 PMCID: PMC7491131 DOI: 10.1186/s13048-020-00695-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the effect of bioactive peptides (BAPT) from animal sources on the development of mouse preantral follicles in vitro. Preantral follicles were isolated and randomly divided into the following groups: an untreated group (control) and three groups supplemented with 20, 40 and 60 μg/mL BAPT, respectively. After establishing the in vitro follicle culture, the gene expression levels and hormone levels were quantified. After in vitro maturation, the developmental rates, reactive oxygen species (ROS) production levels and mitochondrial distributions of MII oocytes were investigated, followed by the analyses of embryonic developmental rates after in vitro fertilization.The results showed that BAPT promoted the growth of mouse preantral follicles. Notably, after 14 d of in vitro culture, the levels of 17 β-estradiol and progesterone were up-regulated with BAPT treatments. Moreover, the expression levels of Oct4, Bmp15, GDF9, FOXO3, Zp3, FOXL2, Inhibin alpha, SOD2, Catalase, GPx and Bcl-2 in the developing follicles were significantly up-regulated after BAPT treatments (P < 0.05), while BAPT significantly inhibited the expression levels of BAX (P < 0.05). Following BAPT treatments, the ROS production levels of MII oocytes were decreased while the mitochondrial distributions were significantly enhanced. Furthermore, increased maturation rates, fertilization and embryonic developmental rates were found in these BAPT-treated groups (P < 0.05).These results demonstrated that BAPT significantly improved the development of preantral follicles in vitro by reducing ROS-dependent cellular damages and by enhancing mitochondrial distributions, thereby promoting the further applications of animal-derived BAPT in biomedical research.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical College, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Shubin Li
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Jinyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Yaxuan Zhang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical College, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
5
|
Liu G, Pan B, Li S, Ren J, Wang B, Wang C, Su X, Dai Y. Effect of bioactive peptide on ram semen cryopreservation. Cryobiology 2020; 97:153-158. [PMID: 32858005 DOI: 10.1016/j.cryobiol.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
This present study investigated the effect of bioactive peptide (BAPT) (BAPT) on the quality of ram semen during cryopreservation. Ram ejaculates were extended with Tris buffer supplemented with no antioxidants (as control group), 20 μg/mL BAPT (as BAPT20 group), 40 μg/mL BAPT (as BAPT40 group) and 60 μg/mL BAPT (as BAPT60 group). After cryopreservation, sperm quality including motility, vitality, the percentage of hypoosmotic swelling test (HOST)-positive spermatozoa and the percentage of intact acrosomes was assessed. Furthermore, the malondialdehyde (MDA) in seminal plasma and spermatozoa were analyzed, followed by the measurement of superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GSH-Px) levels in seminal plasma. After in vitro fertilization, the embryonic cleavage rates and development rates of different groups were analyzed to compare the developmental abilities of spermatozoa. The results showed that the post-thaw sperm motility was significantly higher in the BAPT60 group compared to those in the BAPT20, BAPT40 and control groups (P < 0.05). The percentage of live sperms significantly increased from 48.12 ± 2.35% for the BAPT20 group, 55.43 ± 2.16% for the BAPT40 group to 57.53 ± 3.15% for the BAPT60 group. The percentage of HOST-positive spermatozoa was significantly higher in the BAPT60 group than those in BAPT20, BAPT40 and control groups (P < 0.05). The MDA levels in seminal plasma and spermatozoa were significantly reduced with BAPT supplement (P < 0.05). Additionally, the SOD, CAT and GSH-Px levels in the BAPT experimental groups were significantly higher than those of the control group, which further indicated that BAPT significantly inhibit the reactive oxygen species (ROS) production during the cryopreservation of ram semen. Furthermore, the embryonic cleavage rates and development rates of the BAPT40 and BAPT60 groups were significantly increased in comparison with the BAPT20 and control groups (P < 0.05). In conclusion, BAPT improved the ram sperm quality via inhibiting the ROS production during cryopreservation, and could be applied as a promising supplement for ram semen cryopreservation.
Collapse
Affiliation(s)
- Gang Liu
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China; Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Bin Pan
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Shubin Li
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, 22 Zhaojun Road, Hohhot, 010031, Inner Mongolia, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
6
|
Pimentel MML, Dos Santos FA, de Macêdo LB, de Brito PD, Lima GL, Barreto RA, Bezerra MB. Rescue of caprine fetal ovaries, vitrification and follicular development after xenotransplantation in two immunodeficient mice models. Anim Reprod 2020; 17:e20190115. [PMID: 32714451 PMCID: PMC7375861 DOI: 10.1590/1984-3143-ar2019-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Domestic and wild goats are very susceptible animals to predation, specially when pregnancy occurs. This study aimed to evaluate the use of goat fetal ovarian tissue for vitrification followed by xenotransplantation and fresh xenotransplantation in two immunosuppressed mice models (C57BL/6 SCID and Balb-C NUDE). Goat fetus ovaries were collected in slaughterhouses, divided into small cortical pieces and were destined for fresh xenotransplantation (FX) and cryopreservation followed by xenotransplantation (CX). Five recipients from each lineage were used for FX and 10 animals from each lineage for CX. The mice were euthanized after 65 postoperative days, and the transplants were collected for microscopic assessment. The blood plasma was collected for estradiol measurement. Independently of mice strain, all recipients presented complete estrus cycle in FX and 80% after CX groups. Follicles were observed at all development stages without morphological changes. The volume density and total vessel surface observed in the transplants were different (p <0.01) between groups. The estradiol levels in the recipients did not differ (p <0.05) among the treatments. Thus, it is possible to activate the preantral follicles in the ovaries of fetuses by optimizing germplasm utilization and conservation of domestic and endangered wild goats that are in predatory situations, undesirable drowning or accidental death, since provided conditions for xenotransplantation are performed.
Collapse
Affiliation(s)
- Muriel Magda Lustosa Pimentel
- Centro Universitário Cesmac, Maceió, AL, Brasil.,Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Fernanda Araujo Dos Santos
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Luã Barbalho de Macêdo
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Parmênedes Dias de Brito
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Gabriela Liberalino Lima
- Departamento de Ciência Animal, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Crato, CE, Brasil
| | - Raimundo Alves Barreto
- Departamento de Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Marcelo Barbosa Bezerra
- Departamento de Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| |
Collapse
|
7
|
Lopes EPF, Rodrigues GQ, de Brito DCC, Rocha RMP, Ferreira ACA, de Sá NAR, Silva RFD, de Alcântara GLH, Alves BG, Figueiredo JRD, Zelinski M, Rodrigues APR. Vitrification of caprine secondary and early antral follicles as a perspective to preserve fertility function. Reprod Biol 2020; 20:371-378. [PMID: 32418820 DOI: 10.1016/j.repbio.2020.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/09/2023]
Abstract
The present study aimed to evaluate the structure, survival and development of isolated caprine (secondary-SEC and early antral-EANT) follicles, after vitrification in the presence of synthetic polymers and in vitro culture. Additionally, transzonal projections (TZPs) and p450 aromatase enzyme were evaluated. After isolation, SEC and EANT follicles were in vitro cultured for six days or vitrified. After one week, SEC and EANT follicles were warmed and also in vitro cultured for six days. Data revealed that the percentage of morphologically normal follicles was similar between fresh and vitrified follicles in both follicular categories and antrum formation rate was similar between fresh and vitrified SEC follicles. Fluorescence by calcein-AM did not show difference between fresh and vitrified (SEC and EANT) follicles, however, the trypan blue test showed low viability for vitrified follicles. The integrity of TZPs was not affected between fresh and vitrified SEC follicles, however, in vitrified EANT follicles, there were signs of TZPs loss. Regarding steroidogenic function, it was observed a positive staining for p450 aromatase enzyme in fresh and vitrified SEC and EANT follicles. It was concluded that SEC follicles seem to be more resistant to vitrification than EANT follicles, as shown by the trypan blue test and TZPs assay. Future studies may confirm this hypothesis, in order to consolidate the use of SEC and EANT follicles as an alternative to ovary cryopreservation.
Collapse
Affiliation(s)
- Everton Pimentel Ferreira Lopes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Giovanna Quintino Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Danielle Cristina Calado de Brito
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | | | - Anna Clara Accioly Ferreira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Naíza Arcângela Ribeiro de Sá
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Renato Félix da Silva
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Gabriel Las Heras de Alcântara
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | | | - José Ricardo de Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Mary Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Ana Paula Ribeiro Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
Pinto Y, Alves KA, Alves BG, Souza SS, Brandão FAS, Lima LF, Freitas VJF, Rodrigues APR, Figueiredo JR, Gastal EL, Teixeira DIA. Heterotopic ovarian allotransplantation in goats: Preantral follicle viability and tissue remodeling. Anim Reprod Sci 2020; 215:106310. [PMID: 32216933 DOI: 10.1016/j.anireprosci.2020.106310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 11/25/2022]
Abstract
An appropriate implantation site favors angiogenesis and avoids ovarian tissue damage after tissue grafting. The objective of this study was to evaluate the effects of intramuscular (IM) and subcutaneous (SC) sites for ovarian grafts in goats by evaluating follicular morphology and activation, preantral follicle and stromal cell densities, tissue DNA fragmentation, collagen types I and III depositions, and graft revascularizations. Ovarian cortical tissue was transplanted in IM or SC sites and recovered 7 or 15 days post-transplantation. There was a greater percentage of developing follicles and lesser follicular and stromal cell densities in all grafted tissues as compared to ovarian tissues of the control group. The stromal cell density and percentage of normal follicles were positively associated. At 15 days post-transplantation, tissues at the SC and IM sites had similar amounts of DNA fragmentation and type III collagen content. In contrast, tissues at the SC, as compared with IM site, had greater abundances of collagen type I. Furthermore, there was a positive association between collagen type I and percentage of morphologically normal follicles post-transplantation. In addition to a marked decrease in follicular density 15 days post-transplantation in ovarian grafts at the SC and IM sites, low percentages of normal follicles and follicular activation were observed similarly in both transplantation sites. There were also positive associations of stromal cell density and abundance of type I collagen fibers with the percentage of intact follicles in grafted ovarian tissues.
Collapse
Affiliation(s)
- Yago Pinto
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Kele A Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Samara S Souza
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Fabiana A S Brandão
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA.
| | - Dárcio I A Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|