1
|
Chen S, Ma X, Liu Y, Zhong Z, Wei C, Li M, Zhu X. Creatine Promotes Endometriosis by Inducing Ferroptosis Resistance via Suppression of PrP. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403517. [PMID: 39119937 PMCID: PMC11481182 DOI: 10.1002/advs.202403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Endometriosis, a chronic inflammatory disease, significantly impairs the quality of life of women in their reproductive years; however, its pathogenesis remains poorly understood. The accumulation of retrograde menstruation and recurrent bleeding fosters a high-iron environment in ectopic lesions, triggering ferroptosis in ectopic endometrial stromal cells (EESCs), thereby hindering the establishment of endometriosis. However, abnormal EESCs demonstrate resistance to ferroptosis in high-iron environments, promoting the progression of this disease. Here, novel findings on the accumulation of creatine, derived from endogenous synthesis, in both peritoneal fluid and EESCs of patients with endometriosis are presented. Creatine supplementation reduces cellular iron concentrations, mitigating oxidative stress and lipid peroxidation, thereby enhancing cell viability and preventing ferroptosis under high-iron conditions. Utilizing the drug affinity-responsive target stabilization (DARTS) assay, prion protein (PrP) as a potential creatine-sensing protein is identified. Mechanistically, creatine binds to the active site of PrP, inhibits the conversion of trivalent iron to divalent iron, and decreases iron uptake, promoting the tolerance of EESCs to ferroptosis. This interaction contributes to the development of endometriosis. The novel association between creatine and ferroptosis provides valuable insights into the role of creatine in endometriosis progression and highlights its potential as a therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Siman Chen
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
| | - Xiaoqian Ma
- Fujian Provincial Key Laboratory of Reproductive Health ResearchDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityFujian361102P. R. China
| | - Yukai Liu
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
| | - Zhiqi Zhong
- Xinglin CollegeNantong UniversityNantong226001P. R. China
| | - Chunyan Wei
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
| | - Mingqing Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesFudan UniversityShanghai200090P. R. China
| | - Xiaoyong Zhu
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesFudan UniversityShanghai200090P. R. China
| |
Collapse
|
2
|
Rashidi A, Billingham LK, Zolp A, Chia TY, Silvers C, Katz JL, Park CH, Delay S, Boland L, Geng Y, Markwell SM, Dmello C, Arrieta VA, Zilinger K, Jacob IM, Lopez-Rosas A, Hou D, Castro B, Steffens AM, McCortney K, Walshon JP, Flowers MS, Lin H, Wang H, Zhao J, Sonabend A, Zhang P, Ahmed AU, Brat DJ, Heiland DH, Lee-Chang C, Lesniak MS, Chandel NS, Miska J. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth. Cell Metab 2024; 36:62-77.e8. [PMID: 38134929 PMCID: PMC10842612 DOI: 10.1016/j.cmet.2023.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/08/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Glioblastoma (GBM) is a malignancy dominated by the infiltration of tumor-associated myeloid cells (TAMCs). Examination of TAMC metabolic phenotypes in mouse models and patients with GBM identified the de novo creatine metabolic pathway as a hallmark of TAMCs. Multi-omics analyses revealed that TAMCs surround the hypoxic peri-necrotic regions of GBM and express the creatine metabolic enzyme glycine amidinotransferase (GATM). Conversely, GBM cells located within these same regions are uniquely specific in expressing the creatine transporter (SLC6A8). We hypothesized that TAMCs provide creatine to tumors, promoting GBM progression. Isotopic tracing demonstrated that TAMC-secreted creatine is taken up by tumor cells. Creatine supplementation protected tumors from hypoxia-induced stress, which was abrogated with genetic ablation or pharmacologic inhibition of SLC6A8. Lastly, inhibition of creatine transport using the clinically relevant compound, RGX-202-01, blunted tumor growth and enhanced radiation therapy in vivo. This work highlights that myeloid-to-tumor transfer of creatine promotes tumor growth in the hypoxic niche.
Collapse
Affiliation(s)
- Aida Rashidi
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Andrew Zolp
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Tzu-Yi Chia
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Joshua L Katz
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Cheol H Park
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Suzi Delay
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Lauren Boland
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Yuheng Geng
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Steven M Markwell
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Kaylee Zilinger
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Irene M Jacob
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - David Hou
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Alicia M Steffens
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Jordain P Walshon
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Mariah S Flowers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Hanxiang Wang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Adam Sonabend
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Daniel J Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA; Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany. German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Huang J, Rao L, Zhang W, Chen X, Li H, Zhang F, Xie J, Wei Q. Effect of crossbreeding and sex on slaughter performance and meat quality in Xingguo gray goose based on multiomics data analysis. Poult Sci 2023; 102:102753. [PMID: 37267641 PMCID: PMC10244692 DOI: 10.1016/j.psj.2023.102753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023] Open
Abstract
Here, we examined the effects of crossbreeding and sex on growth performance, slaughter performance, and meat quality in Xingguo gray (XG) goose, using transcriptomic and metabolomic techniques. The experiment was conducted using 400 goslings (1-day old) of 2 genotypes: the XG breed and its ternary hybrids [F2 geese; (XG Goose♂ × Yangzhou Goose♀)♀ × Shitou Goose♂]. The goslings were divided into 4 groups: female XG, male XG, female F2 geese, and male F2 geese, and growth parameters were examined at 70 d of age, using 30 birds from each group. Following slaughter, samples of breast and thigh muscles were collected from each group for chemical, metabolome, and transcriptome analyses. Growth rate, live body and slaughter weights, meat chemical composition, and muscle fiber diameter were affected by crossbreeding and sex. Crossbreeding significantly improved the dressing percentage, semieviscerated rate, eviscerated yield, and abdominal fat yield of XG geese. To clarify the potential regulatory network affected by crossbreeding and sex, we used RNA-seq and nontargeted metabolomics to detect changes in male and female goose breast muscle. The transcriptome results showed that there were 534, 323, 297, and 492 differently expressed genes (DEGs) among the 4 comparison groups (XG-Female vs. F2-Female, XG-Male vs. F2-Male, F2-Male vs. F2-Female, and XG-Male vs. XG-Female, respectively) that were mainly related to muscle growth and development and fatty acid metabolism pathways. A total of 141 significantly differentially accumulated metabolites (DAMs) were enriched in serine and threonine, propionate, and pyruvate metabolism. Finally, we comprehensively analyzed the metabolome and transcriptome data and found that many DEGs and DAMs played crucial roles in lipid metabolism and muscle growth and development. In summary, crossbreeding can improve XG goose production performance and affect breast muscle gene expression and metabolites in both female and male geese.
Collapse
Affiliation(s)
- Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Linjie Rao
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| |
Collapse
|
4
|
Banerjee P, Diniz WJS, Rodning SP, Dyce PW. miRNA expression profiles of peripheral white blood cells from beef heifers with varying reproductive potential. Front Genet 2023; 14:1174145. [PMID: 37234872 PMCID: PMC10206245 DOI: 10.3389/fgene.2023.1174145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Reproductive performance is the most critical factor affecting production efficiency in the cow-calf industry. Heifers with low reproductive efficiency may fail to become pregnant during the breeding season or maintain a pregnancy. The cause of reproductive failure often remains unknown, and the non-pregnant heifers are not identified until several weeks after the breeding season. Therefore, improving heifer fertility utilizing genomic information has become increasingly important. One approach is using microRNAs (miRNA) in the maternal blood that play an important role in regulating the target genes underlying pregnancy success and thereby in selecting reproductively efficient heifers. Therefore, the current study hypothesized that miRNA expression profiles from peripheral white blood cells (PWBC) at weaning could predict the future reproductive outcome of beef heifers. To this end, we measured the miRNA profiles using small RNA-sequencing in Angus-Simmental crossbred heifers sampled at weaning and retrospectively classified as fertile (FH, n = 7) or subfertile (SFH, n = 7). In addition to differentially expressed miRNAs (DEMIs), their target genes were predicted from TargetScan. The PWBC gene expression from the same heifers were retrieved and co-expression networks were constructed between DEMIs and their target genes. We identified 16 differentially expressed miRNAs between the groups (p-value ≤0.05 and absolute (log2 fold change ≥0.05)). Interestingly, based on a strong negative correlation identified from miRNA-gene network analysis with PCIT (partial correlation and information theory), we identified miRNA-target genes in the SFH group. Additionally, TargetScan predictions and differential expression analysis identified bta-miR-1839 with ESR1 , bta-miR-92b with KLF4 and KAT2B, bta-miR-2419-5p with LILRA4, bta-miR-1260b with UBE2E1, SKAP2 and CLEC4D, and bta-let-7a-5p with GATM, MXD1 as miRNA-gene targets. The miRNA-target gene pairs in the FH group are over-represented for MAPK, ErbB, HIF-1, FoxO, p53, mTOR, T-cell receptor, insulin and GnRH signaling pathways, while those in the SFH group include cell cycle, p53 signaling pathway and apoptosis. Some miRNAs, miRNA-target genes and regulated pathways identified in this study have a potential role in fertility; other targets are identified as novel and need to be validated in a bigger cohort that could help to predict the future reproductive outcomes of beef heifers.
Collapse
|
5
|
Shestakova MA, Vishnyakova PA, Fatkhudinov TK. Placenta: an organ with high energy requirements. RUDN JOURNAL OF MEDICINE 2022; 26:353-363. [DOI: 10.22363/2313-0245-2022-26-4-353-363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Placenta is a unique organ, without which the very phenomenon of human pregnancy is impossible. Semiallogeneous nature, localization of the placenta, complex and heterogeneous cellular composition determines its complex and multifaceted role in the course of physiological pregnancy, indicates the importance of studying this organ in a number of reproductive pathologies. The purpose of this review was to analyze the literature sources illustrating the importance of energydependent processes in placental metabolism and to determine the molecular basis of placental energy conversion. Publications of foreign and Russian authors from PubMed database and scientific electronic library eLIBRARY.ru were used when writing the review. The review highlights the main functions of the placenta: transport and synthetic functions in terms of their place in the structure of energy expenditure of the organ. The systems by which the transport of ions and gases from maternal blood through the placental barrier is performed, are considered. The role of the placenta in the synthesis of steroid hormones and glucocorticoids is detailed. The main bioenergetic systems are also considered: placental glucose metabolism, the functional activity of mitochondria and the creatine kinase system of the placenta. These data allow us to put the placenta on a par with other organs with high energy requirements (brain, transverse striated skeletal muscles, heart, kidneys, liver), which are most susceptible to metabolic disorders. Maintaining a balance between expenditure and synthesis of macroergic compounds in the placenta is critical for an adequate course of physiological pregnancy, and imbalances can lead to such pathologies as fetal retardation syndrome or preeclampsia. Further study of placental energy supply systems seems important for understanding the mechanisms of intrauterine development disorders and developing their pathogenetic treatment.
Collapse
|
6
|
Liu W, Liu Y, Fang S, Yao W, Wang X, Bao Y, Shi W. Salvia miltiorrhiza polysaccharides alleviates florfenicol-induced liver metabolic disorder in chicks by regulating drug and amino acid metabolic signaling pathways. Poult Sci 2022; 101:101989. [PMID: 35841637 PMCID: PMC9289867 DOI: 10.1016/j.psj.2022.101989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Excessive and nonstandard use of florfenicol (FFC) can damage animal body, pollute ecological environment, and even harm human health. The toxic and side effects of FFC directly affect the production performance of poultry and the safe supply of chicken-related food. Salvia miltiorrhaza polysaccharides (SMPs) are natural macromolecular compounds, and were proved to have the effect of protecting animal liver. We used transcriptome and proteome sequencing technologies to study the effect of FFC on specific signal transduction pathways in chick livers and further explored the regulatory effect of SMPs on the above same signal pathways, and finally revealed the intervention effect and mechanism of SMPs on FFC-induced changes of liver function. The screened sequencing results were verified by qPCR and PRM methods. The results showed that FFC changed significantly 9 genes and 5 proteins in drug metabolism-cytochrome P450 signaling pathway, and the intervention of SMPs adjusted the expression levels of 5 genes and 4 proteins of the above factors. In glycine, serine and threonine metabolism signaling pathway, 8 genes and 8 proteins were significantly changed due to FFC exposure, and SMPs corrected the expression levels of 5 genes and 6 proteins to a certain extent. In conclusion, SMPs alleviated FFC-induced liver metabolic disorder in chicks by regulating the drug and amino acid metabolism pathway. This study is of great significance for promoting the healthy breeding of broilers and ensuring the safe supply of chicken-related products.
Collapse
Affiliation(s)
- Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Siyuan Fang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Weiyu Yao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
7
|
Spielmann N, Miller G, Oprea TI, Hsu CW, Fobo G, Frishman G, Montrone C, Haseli Mashhadi H, Mason J, Munoz Fuentes V, Leuchtenberger S, Ruepp A, Wagner M, Westphal DS, Wolf C, Görlach A, Sanz-Moreno A, Cho YL, Teperino R, Brandmaier S, Sharma S, Galter IR, Östereicher MA, Zapf L, Mayer-Kuckuk P, Rozman J, Teboul L, Bunton-Stasyshyn RKA, Cater H, Stewart M, Christou S, Westerberg H, Willett AM, Wotton JM, Roper WB, Christiansen AE, Ward CS, Heaney JD, Reynolds CL, Prochazka J, Bower L, Clary D, Selloum M, Bou About G, Wendling O, Jacobs H, Leblanc S, Meziane H, Sorg T, Audain E, Gilly A, Rayner NW, Hitz MP, Zeggini E, Wolf E, Sedlacek R, Murray SA, Svenson KL, Braun RE, White JK, Kelsey L, Gao X, Shiroishi T, Xu Y, Seong JK, Mammano F, Tocchini-Valentini GP, Beaudet AL, Meehan TF, Parkinson H, Smedley D, Mallon AM, Wells SE, Grallert H, Wurst W, Marschall S, Fuchs H, Brown SDM, Flenniken AM, Nutter LMJ, McKerlie C, Herault Y, Lloyd KCK, Dickinson ME, Gailus-Durner V, Hrabe de Angelis M. Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2022; 1:157-173. [PMID: 39195995 PMCID: PMC11358025 DOI: 10.1038/s44161-022-00018-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/03/2022] [Indexed: 08/29/2024]
Abstract
Clinical presentation of congenital heart disease is heterogeneous, making identification of the disease-causing genes and their genetic pathways and mechanisms of action challenging. By using in vivo electrocardiography, transthoracic echocardiography and microcomputed tomography imaging to screen 3,894 single-gene-null mouse lines for structural and functional cardiac abnormalities, here we identify 705 lines with cardiac arrhythmia, myocardial hypertrophy and/or ventricular dilation. Among these 705 genes, 486 have not been previously associated with cardiac dysfunction in humans, and some of them represent variants of unknown relevance (VUR). Mice with mutations in Casz1, Dnajc18, Pde4dip, Rnf38 or Tmem161b genes show developmental cardiac structural abnormalities, with their human orthologs being categorized as VUR. Using UK Biobank data, we validate the importance of the DNAJC18 gene for cardiac homeostasis by showing that its loss of function is associated with altered left ventricular systolic function. Our results identify hundreds of previously unappreciated genes with potential function in congenital heart disease and suggest causal function of five VUR in congenital heart disease.
Collapse
Affiliation(s)
- Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Gregor Miller
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Tudor I Oprea
- Department of Internal Medicine, Division of Translational Informatics and Center of Biomedical Research Excellence in Autophagy, Inflammation, and Metabolism, UNM Health Sciences Center and UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Gisela Fobo
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Goar Frishman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Corinna Montrone
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Violeta Munoz Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ruepp
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Matias Wagner
- Institut für Humangenetik, Technische Universität Munich, Munich, Germany
| | - Dominik S Westphal
- Institut für Humangenetik, Technische Universität Munich, Munich, Germany
- Klinik und Poliklinik Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Cordula Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Isabella Rikarda Galter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Lilly Zapf
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Rozman
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydia Teboul
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | | | - Heather Cater
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Skevoulla Christou
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Henrik Westerberg
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | | | | | | | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Christopher S Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason D Heaney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Corey L Reynolds
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lynette Bower
- Mouse Biology Program, University of California, Davis, Davis, CA, USA
| | - David Clary
- Mouse Biology Program, University of California, Davis, Davis, CA, USA
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Ghina Bou About
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Hugues Jacobs
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Kiel, Germany
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nigel W Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Kiel, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | - Lois Kelsey
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | | | - Ying Xu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Je Kyung Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy
| | | | - Arthur L Beaudet
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square Barts and the London School of Medicine and Dentistry Queen Mary University of London, London, UK
| | - Ann-Marie Mallon
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Sara E Wells
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Developmental Genetics, TUM School of Life Sciences, Technische Universität Munich, Freising, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Steve D M Brown
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin McKerlie
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, Davis, CA, USA
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Experimental Genetics, TUM School of Life Science, Technische Universität Munich, Freising, Germany.
| |
Collapse
|
8
|
Zhloba AA, Subbotina TF. Homoarginine test for evaluation of metabolic renal dysfunction. Klin Lab Diagn 2021; 66:709-717. [PMID: 35020282 DOI: 10.51620/0869-2084-2021-66-12-709-717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Low plasma L-homoarginine (hArg) concentration is an independent predictor of adverse cardiovascular outcomes and overall mortality, as well as the progression of chronic kidney disease (CKD). The enzyme L-arginine:glycinamidinotransferase (AGAT, EC 2.1.4.1) acts in the mitochondrial membrane of the renal tubular epithelium, forming the precursor of creatine, guanidinoacetic acid, and additionnaly by-product hArg. As it was shown recently, there is a decreased level of hArg in the late stages of CKD, however, the the level of hArg in the early stages of CKD remained unexplored. The aim of this study was to determine the diagnostic threshold levels of hArg in the blood of patients with stages 1 and 2 of CKD. In patients with the initial stages of CKD (n = 44) at the age of 58 (45-67) years, compared with the group of donors of 55 (42-58) years (n = 30), a significant decrease of hArg level was found. In the subgroup with stage CKD 2, the cut-off point of 1.59 μM threshold was characterized by greater sensitivity and specificity than in the subgroup with stage CKD 1 with 1.66 μM threshold level of hArg. For the full group, the hArg cut-off threshold was 1.60 μM, which is about to 0.2 μM lower than the lower limit of the reference interval for healthy individuals. It can be assumed that even before the formation of symptoms of proteinuria and albuminuria, a significant part of individuals from population cohort develops a state of decreased AGAT activity, since the expression of this enzyme is associated with a certain regulatory feedback inhibition at the body level. As a result of the study, it can be noted that in patients with early stages of CKD in the age group 45-67 years, there is a disturbance of the kidneys metabolic function. These metabolic changes can be detected by testing the level of hArg.
Collapse
Affiliation(s)
- A A Zhloba
- Pavlov First Saint Petersburg State Medical University of Minzdrav of Russia
| | - T F Subbotina
- Pavlov First Saint Petersburg State Medical University of Minzdrav of Russia
| |
Collapse
|
9
|
Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients 2021; 13:nu13020490. [PMID: 33540766 PMCID: PMC7912953 DOI: 10.3390/nu13020490] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research “road forward” to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.
Collapse
|
10
|
Hughes GL, Lones MA, Bedder M, Currie PD, Smith SL, Pownall ME. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. Dis Model Mech 2020; 13:dmm045815. [PMID: 32859696 PMCID: PMC7578351 DOI: 10.1242/dmm.045815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Animal models of human disease provide an in vivo system that can reveal molecular mechanisms by which mutations cause pathology, and, moreover, have the potential to provide a valuable tool for drug development. Here, we have developed a zebrafish model of Parkinson's disease (PD) together with a novel method to screen for movement disorders in adult fish, pioneering a more efficient drug-testing route. Mutation of the PARK7 gene (which encodes DJ-1) is known to cause monogenic autosomal recessive PD in humans, and, using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-function zebrafish with molecular hallmarks of PD. To establish whether there is a human-relevant parkinsonian phenotype in our model, we adapted proven tools used to diagnose PD in clinics and developed a novel and unbiased computational method to classify movement disorders in adult zebrafish. Using high-resolution video capture and machine learning, we extracted novel features of movement from continuous data streams and used an evolutionary algorithm to classify parkinsonian fish. This method will be widely applicable for assessing zebrafish models of human motor diseases and provide a valuable asset for the therapeutics pipeline. In addition, interrogation of RNA-seq data indicate metabolic reprogramming of brains in the absence of Dj-1, adding to growing evidence that disruption of bioenergetics is a key feature of neurodegeneration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gideon L Hughes
- Department of Biology, University of York, York YO10 5DD, UK
| | - Michael A Lones
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Matthew Bedder
- Department of Biology, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Stephen L Smith
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
| | - Mary Elizabeth Pownall
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| |
Collapse
|
11
|
Zheng XZ, Qin XY, Chen SW, Wang P, Zhan Y, Zhong PP, Buza N, Jin YL, Wu BQ, Hui P. Heterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease. Mod Pathol 2020; 33:1979-1988. [PMID: 32404958 DOI: 10.1038/s41379-020-0566-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/25/2020] [Indexed: 01/29/2023]
Abstract
Hydatidiform moles are classified at the genetic level as androgenetic complete mole and diandric-monogynic partial mole. Conflicting data exist whether heterozygous complete moles are more aggressive clinically than homozygous complete moles. We investigated clinical outcome in a large cohort of hydatidiform moles in Chinese patients with an emphasis on genotypical correlation with post-molar gestational trophoblastic disease. Consecutive products of conceptions undergoing DNA genotyping and p57 immunohistochemistry to rule out molar gestations were included from a 5-year period at Beijing Obstetrics and Gynecology Hospital. Patient demographics and clinical follow-up information were obtained. Post-molar gestational trophoblastic disease or gestational trophoblastic neoplasia was determined by the 2002 WHO/FIGO criteria. A total of 1245 products of conceptions were classified based on genotyping results into 219 complete moles, 250 partial moles, and 776 non-molar gestations. Among 219 complete moles, 186 were homozygous/monospermic and 33 were heterozygous/dispermic. Among 250 partial moles, 246 were triploid dispermic, 2 were triploid monospermic, and 2 were tetraploid heterozygous partial moles. Among 776 non-molar gestations, 644 were diploid without chromosomal aneuploidies detectable by STR genotyping and 132 had various genetic abnormalities including 122 cases of various trisomies, 2 triploid digynic-monoandric non-molar gestations, 7 cases of possible chromosomal monosomy or uniparental disomy. Successful follow-up was achieved in 165 complete moles: post-molar gestational trophoblastic disease developed in 11.6% (16/138 cases) of homozygous complete moles and 37.0% (10/27 cases) of heterozygous complete moles. The difference between the two groups was highly significant (p = 0.0009, chi-square). None of the 218 partial moles and 367 non-molar gestations developed post-molar gestational trophoblastic disease. In conclusion, heterozygous/dispermic complete moles are clinically more aggressive with a significantly higher risk for development of post-molar gestational trophoblastic disease compared with homozygous/monospermic complete moles. Therefore, precise genotyping classification of complete moles is important for clinical prognosis and patient management.
Collapse
Affiliation(s)
- Xing-Zheng Zheng
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu-Ying Qin
- Department of Molecular Pathology, Beijing Taipu-Shunkang Institute for Laboratory Medicine, Beijing, China
| | - Su-Wen Chen
- Department of Birth Control, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Molecular Pathology, Beijing Taipu-Shunkang Institute for Laboratory Medicine, Beijing, China
| | - Yang Zhan
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ping-Ping Zhong
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yu-Lan Jin
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Bing-Quan Wu
- Department of Pathology, Peking University Health Sciences Center, Beijing, China
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Identification of Pathways Associated with Placental Adaptation to Maternal Nutrient Restriction in Sheep. Genes (Basel) 2020; 11:genes11091031. [PMID: 32887397 PMCID: PMC7565845 DOI: 10.3390/genes11091031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/21/2023] Open
Abstract
Maternal nutrient restriction impairs placental growth and development, but available evidence suggests that adaptive mechanisms exist, in a subset of nutrient restricted (NR) ewes, that support normal fetal growth and do not result in intrauterine growth restriction (IUGR). This study utilized Affymetrix GeneChip Bovine and Ovine Genome 1.0 ST Arrays to identify novel placental genes associated with differential fetal growth rates within NR ewes. Singleton pregnancies were generated by embryo transfer and, beginning on Day 35 of pregnancy, ewes received either a 100% National Research Council (NRC) (control-fed group; n = 7) or 50% NRC (NR group; n = 24) diet until necropsy on Day 125. Fetuses from NR ewes were separated into NR non-IUGR (n = 6) and NR IUGR (n = 6) groups based on Day 125 fetal weight for microarray analysis. Of the 103 differentially expressed genes identified, 15 were upregulated and 88 were downregulated in NR non-IUGR compared to IUGR placentomes. Bioinformatics analysis revealed that upregulated gene clusters in NR non-IUGR placentomes associated with cell membranes, receptors, and signaling. Downregulated gene clusters associated with immune response, nutrient transport, and metabolism. Results illustrate that placentomal gene expression in late gestation is indicative of an altered placental immune response, which is associated with enhanced fetal growth, in a subpopulation of NR ewes.
Collapse
|
13
|
He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020; 156:46-58. [PMID: 32673901 DOI: 10.1016/j.theriogenology.2020.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Mammalian oocyte maturation and early embryo development are highly sensitive to the in vitro culture environment, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effects of different oxygen concentrations (20%, 10%, 5% or 1% O2) on yak oocyte maturation, in vitro fertilization (IVF), and embryo development competence, as well as its effects on the oxidative response, metabolism, and apoptosis in cumulus-oocyte complexes (COCs) and the embryo. The results revealed that the maturation rate of oocytes, blastocysts rate and hatched blastocysts rate in the group with 5% oxygen concentration were significantly higher (P < 0.05) than other groups, but the cleavage rate with 5% oxygen concentration was significantly lower (P < 0.05) than the 20% and 10% oxygen concentrations. The maturation rate of oocytes, the cleavage rate, blastocysts rate and hatched blastocysts rate with the 1% oxygen concentration were the lowest. The blastocyst cultured with 5% oxygen concentration had significantly greater (P < 0.05) numbers of total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells compared to the other groups. Analysis of the apoptosis index of oocytes and blastocyst cells by transferase dUTP nick end labeling (TUNEL) showed that the number of apoptotic cells significantly reduced (P < 0.05) with 5% oxygen concentration, but increased significantly (P < 0.05) in the 1% oxygen concentration group. Also, the qRT-PCR and western immunoblotting analysis confirmed that the transcription levels of the metabolism genes, antioxidant response genes, apoptosis genes, oocyte competence genes and embryonic developmental markers showed significant differences (P < 0.05) in the COCs or blastocysts matured in 5% oxygen concentration group compared to the other groups. In summary, our findings demonstrate that 5% oxygen concentration improves oocyte maturation and blastocyst development in the yak, increases blastocyst cell numbers, reduces apoptosis rate in the oocyte and blastocyst as well as reduces embryo cleavage rate.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
14
|
Large-Scale Differential Gene Expression Transcriptomic Analysis Identifies a Metabolic Signature Shared by All Cancer Cells. Biomolecules 2020; 10:biom10050701. [PMID: 32365991 PMCID: PMC7277211 DOI: 10.3390/biom10050701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer-dependent metabolic rewiring is often manifested by selective expression of enzymes essential for the transformed cells’ viability. However, the metabolic variations between normal and transformed cells are not fully characterized, and therefore, a systematic analysis will result in the identification of unknown cellular mechanisms crucial for tumorigenesis. Here, we applied differential gene expression transcriptome analysis to examine the changes in metabolic gene profiles between a wide range of normal tissues and cancer samples. We found that, in contrast to normal tissues which exhibit a tissue-specific expression profile, cancer samples are more homogenous despite their diverse origins. This similarity is due to a “proliferation metabolic signature” (PMS), composed of 158 genes (87 upregulated and 71 downregulated gene sets), where 143 are common to all proliferative cells but 15 are cancer specific. Intriguingly, the PMS gene set is enriched for genes encoding rate-limiting enzymes, and its upregulated set with genes associated with poor patient outcome and essential genes. Among these essential genes is ribulose-5-phosphate-3-epimerase (RPE), which encodes a pentose phosphate pathway enzyme and whose role in cancer is still unclear. Collectively, we identified a set of metabolic genes that can serve as novel cancer biomarkers and potential targets for drug development.
Collapse
|
15
|
Imprinted genes in clinical exome sequencing: Review of 538 cases and exploration of mouse-human conservation in the identification of novel human disease loci. Eur J Med Genet 2020; 63:103903. [PMID: 32169557 DOI: 10.1016/j.ejmg.2020.103903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Human imprinting disorders cause a range of dysmorphic and neurocognitive phenotypes, and they may elude traditional molecular diagnosis such exome sequencing. The discovery of novel disorders related to imprinted genes has lagged behind traditional Mendelian disorders because current diagnostic technology, especially unbiased testing, has limited utility in their discovery. To identify novel imprinting disorders, we reviewed data for every human gene hypothesized to be imprinted, identified each mouse ortholog, determined its imprinting status in the mouse, and analyzed its function in humans and mice. We identified 17 human genes that are imprinted in both humans and mice, and have functional data in mice or humans to suggest that dysregulated expression would lead to an abnormal phenotype in humans. These 17 genes, along with known imprinted genes, were preferentially flagged 538 clinical exome sequencing tests. The identified genes were: DIRAS3 [1p31.3], TP73 [1p36.32], SLC22A3 [6q25.3], GRB10 [7p12.1], DDC [7p12.2], MAGI2 [7q21.11], PEG10 [7q21.3], PPP1R9A [7q21.3], CALCR [7q21.3], DLGAP2 [8p23.3], GLIS3 [9p24.2], INPP5F [10q26.11], ANO1 [11q13.3], SLC38A4 [12q13.11], GATM [15q21.1], PEG3 [19q13.43], and NLRP2 [19q13.42]. In the 538 clinical cases, eight cases (1.7%) reported variants in a causative known imprinted gene. There were 367/758 variants (48.4%) in imprinted genes that were not known to cause disease, but none of those variants met the criteria for clinical reporting. Imprinted disorders play a significant role in human disease, and additional human imprinted disorders remain to be discovered. Therefore, evolutionary conservation is a potential tool to identify novel genes involved in human imprinting disorders and to identify them in clinical testing.
Collapse
|
16
|
Xie J, Ji T, Ferreira MAR, Li Y, Patel BN, Rivera RM. Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model. BMC Bioinformatics 2019; 20:530. [PMID: 31660858 PMCID: PMC6819473 DOI: 10.1186/s12859-019-3141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND High-throughput sequencing experiments, which can determine allele origins, have been used to assess genome-wide allele-specific expression. Despite the amount of data generated from high-throughput experiments, statistical methods are often too simplistic to understand the complexity of gene expression. Specifically, existing methods do not test allele-specific expression (ASE) of a gene as a whole and variation in ASE within a gene across exons separately and simultaneously. RESULTS We propose a generalized linear mixed model to close these gaps, incorporating variations due to genes, single nucleotide polymorphisms (SNPs), and biological replicates. To improve reliability of statistical inferences, we assign priors on each effect in the model so that information is shared across genes in the entire genome. We utilize Bayesian model selection to test the hypothesis of ASE for each gene and variations across SNPs within a gene. We apply our method to four tissue types in a bovine study to de novo detect ASE genes in the bovine genome, and uncover intriguing predictions of regulatory ASEs across gene exons and across tissue types. We compared our method to competing approaches through simulation studies that mimicked the real datasets. The R package, BLMRM, that implements our proposed algorithm, is publicly available for download at https://github.com/JingXieMIZZOU/BLMRM . CONCLUSIONS We will show that the proposed method exhibits improved control of the false discovery rate and improved power over existing methods when SNP variation and biological variation are present. Besides, our method also maintains low computational requirements that allows for whole genome analysis.
Collapse
Affiliation(s)
- Jing Xie
- Department of Statistics, University of Missouri at Columbia, Columbia, 65211 MO USA
| | - Tieming Ji
- Department of Statistics, University of Missouri at Columbia, Columbia, 65211 MO USA
| | | | - Yahan Li
- Division of Animal Science, University of Missouri at Columbia, Columbia, 65211 MO USA
| | - Bhaumik N. Patel
- Division of Animal Science, University of Missouri at Columbia, Columbia, 65211 MO USA
| | - Rocio M. Rivera
- Division of Animal Science, University of Missouri at Columbia, Columbia, 65211 MO USA
| |
Collapse
|
17
|
Borchel A, Verleih M, Kühn C, Rebl A, Goldammer T. Evolutionary expression differences of creatine synthesis-related genes: Implications for skeletal muscle metabolism in fish. Sci Rep 2019; 9:5429. [PMID: 30931999 PMCID: PMC6443941 DOI: 10.1038/s41598-019-41907-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
The creatine/phosphocreatine system is the principal energy buffer in mammals, but is scarcely documented in fish. We measured the gene expression of major enzymes of this system, glycine amidinotransferase (GATM), guanidinoacetate N-methyltransferase (GAMT) and muscle-type creatine kinase (CKM) in kidney, liver, and muscle tissues of fish and mammals. CKM was expressed strongly in the muscles of all examined species. In contrast, GATM and GAMT were strongly expressed in the muscle tissue of fish, but not of mammals. This indicates that creatine synthesis and usage are spatially separated in mammals, but not in fish, which is supported by RNA-Seq data of 25 species. Differences in amino acid metabolism along with methionine adenosyltransferase gene expression in muscle from fishes but not mammals further support a central metabolic role of muscle in fish, and hence different organization of the creatine/phosphocreatine biosynthesis system in higher and lower vertebrates.
Collapse
Affiliation(s)
- Andreas Borchel
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- SLRC-Sea Lice Research Centre, Department of Biology, University of Bergen, Mailbox 7803, 5020, Bergen, Norway
| | - Marieke Verleih
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Carsten Kühn
- Institute of Fisheries, State Research Centre for Agriculture and Fisheries Mecklenburg-Western Pomerania (LFA MV), Fischerweg 408, 18069, Rostock, Germany
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
18
|
Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients 2018; 10:nu10040417. [PMID: 29597262 PMCID: PMC5946202 DOI: 10.3390/nu10040417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Collapse
Affiliation(s)
| | - Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA.
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
19
|
Ellery SJ, Della Gatta PA, Bruce CR, Kowalski GM, Davies-Tuck M, Mockler JC, Murthi P, Walker DW, Snow RJ, Dickinson H. Creatine biosynthesis and transport by the term human placenta. Placenta 2017; 52:86-93. [PMID: 28454702 DOI: 10.1016/j.placenta.2017.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Creatine is an amino acid derivative that is involved in preserving ATP homeostasis. Previous studies suggest an important role for the creatine kinase circuit for placental ATP turnover. Creatine is obtained from both the diet and endogenous synthesis, usually along the renal-hepatic axis. However, some tissues with a high-energy demand have an inherent capacity to synthesise creatine. In this study, we determined if the term human placenta has the enzymatic machinary to synthesise creatine. METHODS Eleven placentae were collected following elective term caesarean section. Samples from the 4 quadrants of each placenta were either fixed in formalin or frozen. qPCR was used to determine the mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (SLC6A8). Protein expression of AGAT and GAMT was quantified by Western blot, and observations of cell localisation of AGAT, GAMT and SLC6A8 made with immunohistochemistry. Synthesis of guanidinoacetate (GAA; creatine precursor) and creatine in placental homogenates was determined via GC-MS and HPLC, respectively. RESULTS AGAT, GAMT and SLC6A8 mRNA and protein were detected in the human placenta. AGAT staining was identified in stromal and endothelial cells of the fetal capillaries. GAMT and SLC6A8 staining was localised to the syncytiotrophoblast of the fetal villi. Ex vivo, tissue homogenates produce both GAA (4.6 nmol mg protein-1h-1) and creatine (52.8 nmol mg protein-1h-1). DISCUSSION The term human placenta has the capacity to synthesise creatine. These data present a new understanding of placental energy metabolism.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Miranda Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Joanne C Mockler
- Department of Obstetrics and Gynaecology, Monash University & Monash Health, Melbourne, Australia
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Rod J Snow
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Hayley Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform Moles: Genetic Basis and Precision Diagnosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:449-485. [DOI: 10.1146/annurev-pathol-052016-100237] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510;
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510;
| | | | - Brigitte M. Ronnett
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| |
Collapse
|
21
|
RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Sci Rep 2016; 6:26813. [PMID: 27254118 PMCID: PMC4890585 DOI: 10.1038/srep26813] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/09/2016] [Indexed: 01/19/2023] Open
Abstract
Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis.
Collapse
|
22
|
Hanna-El-Daher L, Braissant O. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models? Amino Acids 2016; 48:1877-95. [PMID: 26861125 DOI: 10.1007/s00726-016-2189-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
While it has long been thought that most of cerebral creatine is of peripheral origin, the last 20 years has provided evidence that the creatine synthetic pathway (AGAT and GAMT enzymes) is expressed in the brain together with the creatine transporter (SLC6A8). It has also been shown that SLC6A8 is expressed by microcapillary endothelial cells at the blood-brain barrier, but is absent from surrounding astrocytes, raising the concept that the blood-brain barrier has a limited permeability for peripheral creatine. The first creatine deficiency syndrome in humans was also discovered 20 years ago (GAMT deficiency), followed later by AGAT and SLC6A8 deficiencies, all three diseases being characterized by creatine deficiency in the CNS and essentially affecting the brain. By reviewing the numerous and latest experimental studies addressing creatine transport and synthesis in the CNS, as well as the clinical and biochemical characteristics of creatine-deficient patients, our aim was to delineate a clearer view of the roles of the blood-brain and blood-cerebrospinal fluid barriers in the transport of creatine and guanidinoacetate between periphery and CNS, and on the intracerebral synthesis and transport of creatine. This review also addresses the question of guanidinoacetate toxicity for brain cells, as probably found under GAMT deficiency.
Collapse
MESH Headings
- Amidinotransferases/deficiency
- Amidinotransferases/genetics
- Amidinotransferases/metabolism
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Capillaries/metabolism
- Capillaries/pathology
- Creatine/biosynthesis
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Developmental Disabilities/pathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Guanidinoacetate N-Methyltransferase/deficiency
- Guanidinoacetate N-Methyltransferase/genetics
- Guanidinoacetate N-Methyltransferase/metabolism
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Language Development Disorders/genetics
- Language Development Disorders/metabolism
- Language Development Disorders/pathology
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Movement Disorders/congenital
- Movement Disorders/genetics
- Movement Disorders/metabolism
- Movement Disorders/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Speech Disorders/genetics
- Speech Disorders/metabolism
- Speech Disorders/pathology
Collapse
Affiliation(s)
- Layane Hanna-El-Daher
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| |
Collapse
|
23
|
Hu Y, Rosa GJ, Gianola D. A GWAS assessment of the contribution of genomic imprinting to the variation of body mass index in mice. BMC Genomics 2015; 16:576. [PMID: 26238105 PMCID: PMC4523993 DOI: 10.1186/s12864-015-1721-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Genomic imprinting is an epigenetic mechanism that can lead to differential gene expression depending on the parent-of-origin of a received allele. While most studies on imprinting address its underlying molecular mechanisms or attempt at discovering genomic regions that might be subject to imprinting, few have focused on the amount of phenotypic variation contributed by such epigenetic process. In this report, we give a brief review of a one-locus imprinting model in a quantitative genetics framework, and provide a decomposition of the genetic variance according to this model. Analytical deductions from the proposed imprinting model indicated a non-negligible contribution of imprinting to genetic variation of complex traits. Also, we performed a whole-genome scan analysis on mouse body mass index (BMI) aiming at revealing potential consequences when existing imprinting effects are ignored in genetic analysis. Results 10,021 SNP markers were used to perform a whole-genome single marker regression on mouse BMI using an additive and an imprinting model. Markers significant for imprinting indicated that BMI is subject to imprinting. Marked variance changed from 1.218 ×10−4 to 1.842 ×10−4 when imprinting was considered in the analysis, implying that one third of marked variance would be lost if existing imprinting effects were not accounted for. When both marker and pedigree information were used, estimated heritability increased from 0.176 to 0.195 when imprinting was considered. Conclusions When a complex trait is subject to imprinting, using an additive model that ignores this phenomenon may result in an underestimate of additive variability, potentially leading to wrong inferences about the underlying genetic architecture of that trait. This could be a possible factor explaining part of the missing heritability commonly observed in genome-wide association studies (GWAS).
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin - Madison, 1675 Observatory Dr., Madison, 53706, WI, USA.
| | - Guilherme Jm Rosa
- Department of Animal Sciences, University of Wisconsin - Madison, 1675 Observatory Dr., Madison, 53706, WI, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, 600 Highland Avenue, Madison, 53792, WI, USA.
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin - Madison, 1675 Observatory Dr., Madison, 53706, WI, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, 600 Highland Avenue, Madison, 53792, WI, USA. .,Department of Dairy Science, University of Wisconsin - Madison, 1675 Observatory Dr., Madison, 53706, WI, USA.
| |
Collapse
|
24
|
Sethi N, Mahar R, Shukla SK, Kumar A, Sinha N. A novel approach for testing the teratogenic potential of chemicals on the platform of metabolomics: studies employing HR-MAS nuclear magnetic resonance spectroscopy. RSC Adv 2015. [DOI: 10.1039/c5ra00671f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective is to develop a quick, reliable method for testing the teratogenic potential of a new chemical entity (NCE) on the platform of metabonomics, as an alternative to conventional procedures.
Collapse
Affiliation(s)
- Nikunj Sethi
- Division of Toxicology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rohit Mahar
- Sophisticated Analytical Instrument Facilities
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sanjeev K. Shukla
- Sophisticated Analytical Instrument Facilities
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Akhilesh Kumar
- Division of Toxicology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Neeraj Sinha
- Division of Toxicology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
25
|
Borchel A, Verleih M, Rebl A, Kühn C, Goldammer T. Creatine metabolism differs between mammals and rainbow trout (Oncorhynchus mykiss). SPRINGERPLUS 2014; 3:510. [PMID: 25279302 PMCID: PMC4167887 DOI: 10.1186/2193-1801-3-510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022]
Abstract
Creatine plays an important role in the cell as an energy buffer. As the energy system is a basic element of the organism it may possibly contribute to differences between rainbow trout strains selected for the traits growth and robustness, respectively. The cDNA sequences of creatine-related genes encoding glycine amidinotransferase (GATM), guanidinoacetate N-methyltransferase (GAMT), creatine kinase muscle-type (CKM) and creatine transporter 1 (CT1, encoded by gene solute carrier family 6, member 8 (SLC6A8)) were characterized in rainbow trout. Transcripts of the respective genes were quantified in kidney, liver, brain and skeletal muscle in both trout strains that had been acclimated to different temperatures. Several differences between the compared trout strains were found as well as between temperatures indicating that the energy system may contribute to differences between both strains. In addition to that, the expression data showed clear differences between the creatine system in rainbow trout and mammals, as the spatial distribution of the enzyme-encoding gene expression was clearly different from the patterns described for mammals. In rainbow trout, creatine synthesis seems to take place to a big extent in the skeletal muscle.
Collapse
Affiliation(s)
- Andreas Borchel
- />Leibniz-Institut für Nutztierbiologie (FBN), Institut für Genombiologie, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196 Germany
| | - Marieke Verleih
- />Leibniz-Institut für Nutztierbiologie (FBN), Institut für Genombiologie, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196 Germany
| | - Alexander Rebl
- />Leibniz-Institut für Nutztierbiologie (FBN), Institut für Genombiologie, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196 Germany
| | - Carsten Kühn
- />Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern (LFA M-V), Institut für Fischerei, Born, Germany
| | - Tom Goldammer
- />Leibniz-Institut für Nutztierbiologie (FBN), Institut für Genombiologie, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196 Germany
| |
Collapse
|
26
|
Jang HJ, Lee MO, Kim S, Kim TH, Kim SK, Song G, Womack JE, Han JY. Biallelic expression of the L-arginine:glycine amidinotransferase gene with different methylation status between male and female primordial germ cells in chickens. Poult Sci 2013; 92:760-9. [PMID: 23436527 DOI: 10.3382/ps.2012-02538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic functions of DNA methylation include in gene silencing by methylation of specific gene promoters, defense of the host genome from retrovirus, and transcriptional suppression of transgenes. In addition, genomic imprinting, by which certain genes are expressed in a parent-of-origin-specific manner, has been observed in a wide range of plants and animals and has been associated with differential methylation. However, imprinting phenomena of DNA methylation effects have not been revealed in chickens. To analyze whether genomic imprinting occurs in chickens, methyl-DNA immunoprecipitation array analysis was applied across the entire genome of germ cells in early chick embryos. A differentially methylated region (DMR) was detected in the eighth intron of the l-arginine:glycine amidinotransferase (GATM) gene. When the DMR in GATM was analyzed by bisulfite sequencing, the methylation in male primordial germ cells (PGC) of 6-d-old embryos was higher than that in female PGC (57.5 vs. 35.0%). At 8 d, the DMR methylation of GATM in male PGC was 3.7-fold higher than that in female PGC (65.0 vs. 17.5%). Subsequently, to investigate mono- or biallelic expression of the GATM gene during embryo development, we found 2 indel sequences (GTTTAATGC and CAAAAA) within the GATM 3'-untranslated region in Korean Oge (KO) and White Leghorn (WL) chickens. When individual WL and KO chickens were genotyped for indel sequences, 3 allele combinations (homozygous insertion, homozygous deletion, and heterozygotes) were detected in both breeds using a gel shift assay and high-resolution melt assay. The deletion allele was predominant in KO, whereas the insertion allele was predominant in WL. Heterozygous animals were evenly distributed in both breeds (P < 0.01). Despite the different methylation status between male and female PGC, the GATM gene conclusively displayed biallelic expression in PGC as well as somatic embryonic, extraembryonic, and adult chicken tissues.
Collapse
Affiliation(s)
- H J Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
28
|
Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate. J Hum Genet 2013; 58:461-6. [PMID: 23535967 PMCID: PMC3711970 DOI: 10.1038/jhg.2013.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 01/07/2023]
Abstract
Studies of multiple measures of a quantitative trait can have greater precision and thus statistical power compared with single-measure studies, but this has rarely been studied in the relation to quantitative trait measurement error models in genetic association studies. Using estimated glomerular filtration rate (eGFR), a quantitative measure of kidney function, as an example we constructed measurement error models of a quantitative trait with systematic and random error components. We then examined the effects on precision of the parameter estimate between genetic loci and eGFR, resulting from varying the correlation and contribution of the error components. We also compared the empirical results from three genome-wide association studies (GWAS) of kidney function in 9049 European Americans: a single measure model, a three-measure model of the same biomarker of kidney function and a six-measure model of different biomarkers of kidney function. Simulations showed that given the same amount of overall errors, inclusion of measures with less correlated systematic errors led to greater gain in precision. The empirical GWAS results confirmed that both the three- and six-measure models detected more eGFR-associated genomic loci with stronger statistical association than the single-measure model despite some heterogeneity among the measures. Multiple measures of a quantitative trait can increase the statistical power of a study without additional participant recruitment. However, careful attention must be paid to the correlation of systematic errors and inconsistent associations when different biomarkers or methods are used to measure the quantitative trait.
Collapse
|
29
|
Robbins KM, Chen Z, Wells KD, Rivera RM. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J Biomed Sci 2012; 19:95. [PMID: 23153226 PMCID: PMC3533950 DOI: 10.1186/1423-0127-19-95] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 01/22/2023] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is a loss-of-imprinting pediatric overgrowth syndrome. The primary features of BWS include macrosomia, macroglossia, and abdominal wall defects. Secondary features that are frequently observed in BWS patients are hypoglycemia, nevus flammeus, polyhydramnios, visceromegaly, hemihyperplasia, cardiac malformations, and difficulty breathing. BWS is speculated to occur primarily as the result of the misregulation of imprinted genes associated with two clusters on chromosome 11p15.5, namely the KvDMR1 and H19/IGF2. A similar overgrowth phenotype is observed in bovine and ovine as a result of embryo culture. In ruminants this syndrome is known as large offspring syndrome (LOS). The phenotypes associated with LOS are increased birth weight, visceromegaly, skeletal defects, hypoglycemia, polyhydramnios, and breathing difficulties. Even though phenotypic similarities exist between the two syndromes, whether the two syndromes are epigenetically similar is unknown. In this study we use control Bos taurus indicus X Bos taurus taurus F1 hybrid bovine concepti to characterize baseline imprinted gene expression and DNA methylation status of imprinted domains known to be misregulated in BWS. This work is intended to be the first step in a series of experiments aimed at determining if LOS will serve as an appropriate animal model to study BWS. Results The use of F1 B. t. indicus x B. t. taurus tissues provided us with a tool to unequivocally determine imprinted status of the regions of interest in our study. We found that imprinting is conserved between the bovine and human in imprinted genes known to be associated with BWS. KCNQ1OT1 and PLAGL1 were paternally-expressed while CDKN1C and H19 were maternally-expressed in B. t. indicus x B. t. taurus F1 concepti. We also show that in bovids, differential methylation exists at the KvDMR1 and H19/IGF2 ICRs. Conclusions Based on these findings we conclude that the imprinted gene expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 ICRs are conserved between human and bovine. Future work will determine if LOS is associated with misregulation at these imprinted loci, similarly to what has been observed for BWS.
Collapse
|
30
|
Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One 2012; 7:e49248. [PMID: 23145134 PMCID: PMC3492272 DOI: 10.1371/journal.pone.0049248] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022] Open
Abstract
Despite the importance of placenta in mediating rapid physiological changes in pregnancy, data on temporal dynamics of placental gene expression are limited. We completed the first transcriptome profiling of human placental gene expression dynamics (GeneChips, Affymetrix®; ∼47,000 transcripts) from early to mid-gestation (n = 10; gestational weeks 5–18) and report 154 genes with significant transcriptional changes (ANOVA, FDR P<0.1). TaqMan RT-qPCR analysis (n = 43; gestational weeks 5–41) confirmed a significant (ANOVA and t-test, FDR P<0.05) mid-gestational peak of placental gene expression for BMP5, CCNG2, CDH11, FST, GATM, GPR183, ITGBL1, PLAGL1, SLC16A10 and STC1, followed by sharp decrease in mRNA levels at term (t-test, FDR P<0.05). We hypothesized that normal course of late pregnancy may be affected when genes characteristic to mid-gestation placenta remain highly expressed until term, and analyzed their expression in term placentas from normal and complicated pregnancies [preeclampsia (PE), n = 12; gestational diabetes mellitus (GDM), n = 12; small- and large-for-gestational-age newborns (SGA, LGA), n = 12+12]. STC1 (stanniocalcin 1) exhibited increased mRNA levels in all studied complications, with the most significant effect in PE- and SGA-groups (t-test, FDR P<0.05). In post-partum maternal plasma, the highest STC1 hormone levels (ELISA, n = 129) were found in women who had developed PE and delivered a SGA newborn (median 731 vs 418 pg/ml in controls; ANCOVA, P = 0.00048). Significantly higher expression (t-test, FDR P<0.05) of CCNG2 and LYPD6 accompanied with enhanced immunostaining of the protein was detected in placental sections of PE and GDM cases (n = 15). Our study demonstrates the importance of temporal dynamics of placental transcriptional regulation across three trimesters of gestation. Interestingly, many genes with high expression in mid-gestation placenta have also been implicated in adult complex disease, promoting the discussion on the role of placenta in developmental programming. The discovery of elevated maternal plasma STC1 in pregnancy complications warrants further investigations of its potential as a biomarker.
Collapse
|
31
|
A survey of tissue-specific genomic imprinting in mammals. Mol Genet Genomics 2012; 287:621-30. [PMID: 22821278 DOI: 10.1007/s00438-012-0708-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/03/2012] [Indexed: 01/20/2023]
Abstract
In mammals, most somatic cells contain two copies of each autosomal gene, one inherited from each parent. When a gene is expressed, both parental alleles are usually transcribed. However, a subset of genes is subject to the epigenetic silencing of one of the parental copies by genomic imprinting. In this review, we explore the evidence for variability in genomic imprinting between different tissue and cell types. We also consider why the imprinting of particular genes may be restricted to, or lost in, specific tissues and discuss the potential for high-throughput sequencing technologies in facilitating the characterisation of tissue-specific imprinting and assaying the potentially functional variations in epigenetic marks.
Collapse
|
32
|
Peromyscus as a Mammalian epigenetic model. GENETICS RESEARCH INTERNATIONAL 2012; 2012:179159. [PMID: 22567379 PMCID: PMC3335729 DOI: 10.1155/2012/179159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/10/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Deer mice (Peromyscus) offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.
Collapse
|
33
|
Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 2011; 21:548-58. [PMID: 22025075 DOI: 10.1093/hmg/ddr488] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang Q, Chow J, Hong J, Smith AF, Moreno C, Seaby P, Vrana P, Miri K, Tak J, Chung ED, Mastromonaco G, Caniggia I, Varmuza S. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genomics 2011; 12:204. [PMID: 21510876 PMCID: PMC3110154 DOI: 10.1186/1471-2164-12-204] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022] Open
Abstract
Background The proximal region of murine Chr 2 has long been known to harbour one or more imprinted genes from classic genetic studies involving reciprocal translocations. No imprinted gene had been identified from this region until our study demonstrated that the PcG gene Sfmbt2 is expressed from the paternally inherited allele in early embryos and extraembryonic tissues. Imprinted genes generally reside in clusters near elements termed Imprinting Control Regions (ICRs), suggesting that Sfmbt2 might represent an anchor for a new imprinted domain. Results We analyzed allelic expression of approximately 20 genes within a 3.9 Mb domain and found that Sfmbt2 and an overlapping non-coding antisense transcript are the only imprinted genes in this region. These transcripts represent a very narrow imprinted gene locus. We also demonstrate that rat Sfmbt2 is imprinted in extraembryonic tissues. An interesting feature of both mouse and rat Sfmbt2 genes is the presence of a large block of miRNAs in intron 10. Other mammals, including the bovine, lack this block of miRNAs. Consistent with this association, we show that human and bovine Sfmbt2 are biallelic. Other evidence indicates that pig Sfmbt2 is also not imprinted. Further strengthening the argument for recent evolution of Sfmbt2 is our demonstration that a more distant muroid rodent, Peromyscus also lacks imprinting and the block of miRNAs. Conclusions These observations are consistent with the hypothesis that the block of miRNAs are driving imprinting at this locus. Our results are discussed in the context of ncRNAs at other imprinted loci. Accession numbers for Peromyscus cDNA and intron 10 genomic DNA are [Genbank:HQ416417 and Genbank:HQ416418], respectively.
Collapse
Affiliation(s)
- Qianwei Wang
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Braissant O, Henry H, Béard E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 2011; 40:1315-24. [DOI: 10.1007/s00726-011-0852-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
36
|
Longo N, Ardon O, Vanzo R, Schwartz E, Pasquali M. Disorders of creatine transport and metabolism. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:72-8. [PMID: 21308988 DOI: 10.1002/ajmg.c.30292] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Creatine is a nitrogen containing compound that serves as an energy shuttle between the mitochondrial sites of ATP production and the cytosol where ATP is utilized. There are two known disorders of creatine synthesis (both transmitted as autosomal recessive traits: arginine: glycine amidinotransferase (AGAT) deficiency; OMIM 602360; and guanidinoacetate methyltransferase (GAMT) deficiency (OMIM 601240)) and one disorder of creatine transport (X-linked recessive SLC6A8 creatine transporter deficiency (OMIM 300036)). All these disorders are characterized by brain creatine deficiency, detectable by magnetic resonance spectroscopy. Affected patients can have mental retardation, hypotonia, autism or behavioral problems and seizures. The diagnosis of these conditions relies on the measurement of plasma and urine creatine and guanidinoacetate. Creatine levels in plasma are reduced in both creatine synthesis defects and guanidinoacetate is increased in GAMT deficiency. The urine creatine/creatinine ratio is elevated in creatine transporter deficiency with normal plasma levels of creatine and guanidinoacetate. The diagnosis is confirmed in all cases by DNA testing or functional studies. Defects of creatine biosynthesis are treated with creatine supplements and, in GAMT deficiency, with ornithine and dietary restriction of arginine through limitation of protein intake. No causal therapy is yet available for creatine transporter deficiency and supplementation with the guanidinoacetate precursors arginine and glycine is being explored. The excellent response to therapy of early identified patients with GAMT or AGAT deficiency candidates these condition for inclusion in newborn screening programs.
Collapse
Affiliation(s)
- Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, 84132, USA.
| | | | | | | | | |
Collapse
|
37
|
Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011; 12:R10. [PMID: 21251332 PMCID: PMC3091299 DOI: 10.1186/gb-2011-12-1-r10] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/17/2010] [Accepted: 01/20/2011] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an essential epigenetic mechanism involved in gene regulation and disease, but little is known about the mechanisms underlying inter-individual variation in methylation profiles. Here we measured methylation levels at 22,290 CpG dinucleotides in lymphoblastoid cell lines from 77 HapMap Yoruba individuals, for which genome-wide gene expression and genotype data were also available. Results Association analyses of methylation levels with more than three million common single nucleotide polymorphisms (SNPs) identified 180 CpG-sites in 173 genes that were associated with nearby SNPs (putatively in cis, usually within 5 kb) at a false discovery rate of 10%. The most intriguing trans signal was obtained for SNP rs10876043 in the disco-interacting protein 2 homolog B gene (DIP2B, previously postulated to play a role in DNA methylation), that had a genome-wide significant association with the first principal component of patterns of methylation; however, we found only modest signal of trans-acting associations overall. As expected, we found significant negative correlations between promoter methylation and gene expression levels measured by RNA-sequencing across genes. Finally, there was a significant overlap of SNPs that were associated with both methylation and gene expression levels. Conclusions Our results demonstrate a strong genetic component to inter-individual variation in DNA methylation profiles. Furthermore, there was an enrichment of SNPs that affect both methylation and gene expression, providing evidence for shared mechanisms in a fraction of genes.
Collapse
Affiliation(s)
- Jordana T Bell
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 2010; 115:297-313. [DOI: 10.1111/j.1471-4159.2010.06935.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Hudson QJ, Kulinski TM, Huetter SP, Barlow DP. Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity (Edinb) 2010; 105:45-56. [PMID: 20234385 PMCID: PMC2887385 DOI: 10.1038/hdy.2010.23] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Imprinted genes in mice and humans mainly occur in clusters that are associated with differential DNA methylation of an imprint control element (ICE) and at least one nonprotein-coding RNA (ncRNA). Imprinted gene silencing is achieved by parental-specific insulator activity of the unmethylated ICE mediated by CTCF (CCCTC-binding factor) binding, or by ncRNA expression from a promoter in the unmethylated ICE. In many imprinted clusters, some genes, particularly those located furthest away from the ICE, show imprinted expression only in extraembryonic tissues. Recent research indicates that genes showing imprinted expression only in extraembryonic tissues may be regulated by different epigenetic mechanisms compared with genes showing imprinted expression in extraembryonic tissues and in embryonic/adult tissues. The study of extraembryonic imprinted expression, thus, has the potential to illuminate novel epigenetic strategies, but is complicated by the need to collect tissue from early stages of mouse development, when extraembryonic tissues may be contaminated by maternal cells or be present in limited amounts. Research in this area would be advanced by the development of an in vitro model system in which genetic experiments could be conducted in less time and at a lower cost than with mouse models. Here, we summarize what is known about the mechanisms regulating imprinted expression in mouse extraembryonic tissues and explore the possibilities for developing an in vitro model.
Collapse
Affiliation(s)
- Q J Hudson
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | | | | | | |
Collapse
|
40
|
Fauque P, Ripoche MA, Tost J, Journot L, Gabory A, Busato F, Le Digarcher A, Mondon F, Gut I, Jouannet P, Vaiman D, Dandolo L, Jammes H. Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum Mol Genet 2010; 19:1779-90. [DOI: 10.1093/hmg/ddq059] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Bressan FF, De Bem THC, Perecin F, Lopes FL, Ambrosio CE, Meirelles FV, Miglino MA. Unearthing the roles of imprinted genes in the placenta. Placenta 2009; 30:823-34. [PMID: 19679348 DOI: 10.1016/j.placenta.2009.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
Mammalian fetal survival and growth are dependent on a well-established and functional placenta. Although transient, the placenta is the first organ to be formed during pregnancy and is responsible for important functions during development, such as the control of metabolism and fetal nutrition, gas and metabolite exchange, and endocrine control. Epigenetic marks and gene expression patterns in early development play an essential role in embryo and fetal development. Specifically, the epigenetic phenomenon known as genomic imprinting, represented by the non-equivalence of the paternal and maternal genome, may be one of the most important regulatory pathways involved in the development and function of the placenta in eutherian mammals. A lack of pattern or an imprecise pattern of genomic imprinting can lead to either embryonic losses or a disruption in fetal and placental development. Genetically modified animals present a powerful approach for revealing the interplay between gene expression and placental function in vivo and allow a single gene disruption to be analyzed, particularly focusing on its role in placenta function. In this paper, we review the recent transgenic strategies that have been successfully created in order to provide a better understanding of the epigenetic patterns of the placenta, with a special focus on imprinted genes. We summarize a number of phenotypes derived from the genetic manipulation of imprinted genes and other epigenetic modulators in an attempt to demonstrate that gene-targeting studies have contributed considerably to the knowledge of placentation and conceptus development.
Collapse
Affiliation(s)
- F F Bressan
- Department of Basic Sciences, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Miri K, Varmuza S. Chapter 5 Imprinting and Extraembryonic Tissues—Mom Takes Control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:215-62. [DOI: 10.1016/s1937-6448(09)76005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Wiley CD, Matundan HH, Duselis AR, Isaacs AT, Vrana PB. Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation. PLoS One 2008; 3:e3572. [PMID: 18958286 PMCID: PMC2570336 DOI: 10.1371/journal.pone.0003572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bwxpo) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (POxBW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include POxBW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the POxBW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. METHODOLOGY/PRINCIPAL FINDINGS Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal POxBW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. CONCLUSIONS/SIGNIFICANCE These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variation exists in recently diverged species suggests a role in reproductive isolation, and that this variation is likely to be adaptive.
Collapse
Affiliation(s)
- Christopher D. Wiley
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Harry H. Matundan
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amanda R. Duselis
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alison T. Isaacs
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Paul B. Vrana
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Yu Y, Singh U, Shi W, Konno T, Soares MJ, Geyer R, Fundele R. Influence of murine maternal diabetes on placental morphology, gene expression, and function. Arch Physiol Biochem 2008; 114:99-110. [PMID: 18484278 DOI: 10.1080/13813450802033776] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Maternal diabetes causes placental and foetal abnormalities in both rat and humans; however, its effect is less well documented in the mouse. We used a standard approach to induce manifest diabetes in pregnant mice and assessed morphology, function and gene expression in the placentas isolated from these females. We found that diabetic placentas exhibit a consistent abnormal phenotype characterized by increased junctional zone cross sectional area. Lipid profiling of diabetic foetuses and placentas showed that the placental phenotypes do not compromise the lipid transport function of this organ. In a genome-wide survey of mRNA expression by using cDNA micro-arrays, we identified 118 ESTs, corresponding to 59 annotated genes, with differential expression in the diabetic placentas. A significant proportion of these known is involved in metabolism, immunity and defence, and signal transduction. In addition, we found two imprinted genes, Igf2 and Gatm, which exhibited altered expression. The expression of other imprinted genes, Peg1, Gtl2, Peg3, Igf2r and Grb10, was determined by quantitative RT-PCR. For all of these genes, slight changes in gene expression were observed between diabetic placentas and control placentas. Our study thus provides the basis for future work that will address gene action in the diabetic mouse placenta.
Collapse
Affiliation(s)
- Yang Yu
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
XU C, SU L, ZHOU Q, LI C, ZHAO S. Imprinting analysis of the porcine MEST gene in 75 and 90 day placentas and prenatal tissues. Acta Biochim Biophys Sin (Shanghai) 2007; 39:633-9. [PMID: 17687499 DOI: 10.1111/j.1745-7270.2007.00315.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Imprinted genes play important roles in mammalian growth, development and behavior. Mouse mesoderm-specific transcript (MEST) has been identified as an imprinted gene and mapped to an imprinted region of mouse chromosome 6 (MMU6). It plays essential roles in embryonic and placental growth, and it is required for maternal behavior in adult female mouse. Here, we isolated the porcine MEST gene and detected a single nucleotide polymorphism in the 3 -untranslated region. The RsaI polymorphism was used to investigate the allele frequencies in different pig breeds and the imprinting status in prenatal porcine tissues. Allele frequencies were significantly different between the native Chinese and Landrace breeds, except that most of the native Yushan pigs (21/26) are heterozygous at this locus. The results indicate that MEST was imprinted in placentas on days 75 and 90 of gestation as well as in the 75 d fetal heart, muscle, kidney, lung and liver.
Collapse
Affiliation(s)
- Chenchang XU
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
46
|
Braissant O, Bachmann C, Henry H. Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell Biochem 2007; 46:67-81. [PMID: 18652072 DOI: 10.1007/978-1-4020-6486-9_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In mammals, creatine is taken up from the diet and can be synthesized endogenously by a two-step mechanism involving the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine (Cr) is taken up by cells through a specific transporter, CT1. While the major part of endogenous synthesis of Cr is thought to occur in kidney, pancreas and liver, the brain widely expresses AGAT, GAMT and CT1, both during development and in adulthood. The adult central nervous system (CNS) has a limited capacity to take up Cr from periphery, and seems to rely more on its endogenous Cr synthesis. In contrast, the embryonic CNS might be more dependent on Cr supply from periphery than on endogenous synthesis. This review will focus on the expression and function of AGAT, GAMT and CT1 in the mammalian CNS, both during development and in adulthood. Emphasis will also be placed on their specific roles in the different cell types of the brain, to analyze which brain cells are responsible for the CNS capacity of (i) endogenous Cr synthesis and (ii) Cr uptake from the periphery, and which brain cells are the main Cr consumers. The potential role of CT1 as guanidinoacetate transporter between "AGAT-only" and "GAMT-only" expressing cells will also be explored.
Collapse
Affiliation(s)
- Olivier Braissant
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | | | |
Collapse
|
47
|
Zhou QY, Huang JN, Xiong YZ, Zhao SH. Imprinting analyses of the porcine GATM and PEG10 genes in placentas on days 75 and 90 of gestation. Genes Genet Syst 2007; 82:265-9. [PMID: 17660697 DOI: 10.1266/ggs.82.265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Imprinted genes are expressed monoallelically depending on their parental origin, and escape the Mendel's laws of heredity. They play important roles in the mammalian development, growth, and behavior. Placenta is a key tissue for the normal development and growth of fetus. It is also used to illuminate the evolution of genomic imprinting. In this study, we cloned the porcine GATM and PEG10 genes. Somatic cell hybrid panel (SCHP) and porcine radiation hybrid (IMpRH) panel were employed to locate GATM and PEG10 genes to SSC1q12-21 and SSC9p13-21, respectively. By sequencing PCR products, we detected several cSNPs in the two genes. The BseLI (GATM) and TaqI (PEG10) polymorphisms were used to investigate the allele frequencies in different pig breeds and the imprinting status in porcine placentas on days 75 and 90 of gestation. The results showed that for the GATM BseLI polymorphism, the Yorkshire and Duroc pigs had higher allele frequencies at the G allele, whereas the local pigs had higher allele frequencies at the A allele. Expression and sequencing analyses showed that both alleles were expressed for the GATM gene, indicating the GATM was not imprinted in the porcine placentas on days 75 and 90 of gestation. The allele frequencies of TaqI polymorphism for PEG10 gene were significantly different in native Chinese Erhualian breed comparing to Yorkshire. PEG10 was monoallelically expressed, showing the PEG10 gene may be imprinted in porcine placentas on days 75 and 90 of gestation.
Collapse
Affiliation(s)
- Quan-Yong Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | |
Collapse
|
48
|
Okamura K, Ito T. Lessons from comparative analysis of species-specific imprinted genes. Cytogenet Genome Res 2006; 113:159-64. [PMID: 16575176 DOI: 10.1159/000090828] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting is generally believed to be conserved in all mammals except for egg-laying monotremes, suggesting that it is closely related to placental and fetal growth. As expected, the imprinting status of most imprinted genes is conserved between mouse and human, and some are imprinted even in marsupials. On the other hand, a small number of genes were reported to exhibit species-specific imprinting that is not necessarily accounted for by either the placenta or conflict hypotheses. Since mouse and human represent a single, phylogenetically restricted clade in the mammalian class, a much broader comparison including mammals diverged earlier than rodents is necessary to fully understand the species-specificity and variation in evolution of genomic imprinting. Indeed, comparative analysis of a species-specific imprinted gene Impact using a broader range of mammals led us to propose an alternative dosage control hypothesis for the evolution of genomic imprinting.
Collapse
Affiliation(s)
- K Okamura
- Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
49
|
Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A 2006; 103:6623-8. [PMID: 16614068 PMCID: PMC1564202 DOI: 10.1073/pnas.0511031103] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The epigenetic phenomenon of genomic imprinting provides an additional level of gene regulation that is confined to a limited number of genes, frequently, but not exclusively, important for embryonic development. The evolution and maintenance of imprinting has been linked to the balance between the allocation of maternal resources to the developing fetus and the mother's well being. Genes that are imprinted in both the embryo and extraembryonic tissues show extensive conservation between a mouse and a human. Here we examine the human orthologues of mouse genes imprinted only in the placenta, assaying allele-specific expression and epigenetic modifications. The genes from the KCNQ1 domain and the isolated human orthologues of the imprinted genes Gatm and Dcn all are expressed biallelically in the human, from first-trimester trophoblast through to term. This lack of imprinting is independent of promoter CpG methylation and correlates with the absence of the allelic histone modifications dimethylation of lysine-9 residue of H3 (H3K9me2) and trimethylation of lysine-27 residue of H3 (H3K27me3). These specific histone modifications are thought to contribute toward regulation of imprinting in the mouse. Genes from the IGF2R domain show polymorphic concordant expression in the placenta, with imprinting demonstrated in only a minority of samples. Together these findings have important implications for understanding the evolution of mammalian genomic imprinting. Because most human pregnancies are singletons, this absence of competition might explain the comparatively relaxed need in the human for placental-specific imprinting.
Collapse
Affiliation(s)
- D Monk
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wagschal A, Feil R. Genomic imprinting in the placenta. Cytogenet Genome Res 2006; 113:90-8. [PMID: 16575167 DOI: 10.1159/000090819] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/21/2005] [Indexed: 12/22/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism that is important for the development and function of the extra-embryonic tissues in the mouse. Remarkably all the autosomal genes which were found to be imprinted in the trophoblast (placenta) only are active on the maternal and repressed on the paternal allele. It was shown for several of these genes that their paternal silencing is not dependent on DNA methylation, at least not in its somatic maintenance. Rather, recent studies in the mouse suggest that placenta-specific imprinting involves repressive histone modifications and non-coding RNAs. This mechanism of autosomal imprinting is similar to imprinted X chromosome inactivation in the placenta. Although the underlying reasons remain to be explored, this suggests that imprinting in the placenta and imprinted X inactivation are evolutionarily related.
Collapse
Affiliation(s)
- A Wagschal
- Institute of Molecular Genetics, CNRS and University of Montpellier II, Montpellier, France
| | | |
Collapse
|