1
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Abstract
Rhodopsins are photochemically reactive membrane proteins that covalently bind retinal chromophores. Type I rhodopsins are found in both prokaryotes and eukaryotic microbes, whereas type II rhodopsins function as photoactivated G-protein coupled receptors (GPCRs) in animal vision. Both rhodopsin families share the seven transmembrane α-helix GPCR fold and a Schiff base linkage from a conserved lysine to retinal in helix G. Nevertheless, rhodopsins are widely cited as a striking example of evolutionary convergence, largely because the two families lack detectable sequence similarity and differ in many structural and mechanistic details. Convergence entails that the shared rhodopsin fold is so especially suited to photosensitive function that proteins from separate origins were selected for this architecture twice. Here we show, however, that the rhodopsin fold is not required for photosensitive activity. We engineered functional bacteriorhodopsin variants with novel folds, including radical noncircular permutations of the α-helices, circular permutations of an eight-helix construct, and retinal linkages relocated to other helices. These results contradict a key prediction of convergence and thereby provide an experimental attack on one of the most intractable problems in molecular evolution: how to establish structural homology for proteins devoid of discernible sequence similarity.
Collapse
|
4
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Gabor E, Göhler AK, Kosfeld A, Staab A, Kremling A, Jahreis K. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol 2011; 90:711-20. [PMID: 21621292 DOI: 10.1016/j.ejcb.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The phosphoenolpyruvate-(PEP)-dependent-carbohydrate:phosphotransferase systems (PTSs) of enteric bacteria constitute a complex transport and sensory system. Such a PTS usually consists of two cytoplasmic energy-coupling proteins, Enzyme I (EI) and HPr, and one of more than 20 different carbohydrate-specific membrane proteins named Enzyme II (EII), which catalyze the uptake and concomitant phosphorylation of numerous carbohydrates. The most prominent representative is the glucose-PTS, which uses a PTS-typical phosphorylation cascade to transport and phosphorylate glucose. All components of the glucose-PTS interact with a large number of non-PTS proteins to regulate the carbohydrate flux in the bacterial cell. Several aspects of the glucose-PTS have been intensively investigated in various research projects of many groups. In this article we will review our recent findings on a Glc-PTS-dependent metalloprotease, on the interaction of EIICB(Glc) with the regulatory peptide SgrT, on the structure of the membrane spanning C-domain of the glucose transporter and on the modeling approaches of ptsG regulation, respectively, and discuss them in context of general PTS research.
Collapse
Affiliation(s)
- Elisabeth Gabor
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Genetics, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
7
|
Zurbriggen A, Schneider P, Bähler P, Baumann U, Erni B. Expression, purification, crystallization and preliminary X-ray analysis of the EIICGlc domain of the Escherichia coli glucose transporter. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:684-8. [PMID: 20516600 DOI: 10.1107/s1744309110013102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/08/2010] [Indexed: 11/11/2022]
Abstract
The glucose-import system of Escherichia coli consists of a hydrophilic EIIA(Glc) subunit and a transmembrane EIICB(Glc) subunit. EIICB(Glc) (UniProt P69786) contains two domains: the transmembrane EIIC(Glc) domain (40.6 kDa) and the cytoplasmic EIIB(Glc) domain (8.0 kDa), which are fused by a linker that is strongly conserved among its orthologues. The EIICB(Glc) subunit can be split within this motif by trypsin. Here, the crystallization of the tryptic EIIC(Glc) domain is described. A complete data set was collected to 4.5 A resolution at 100 K.
Collapse
Affiliation(s)
- Andreas Zurbriggen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
9
|
Adler J, Bibi E. Membrane topology of the multidrug transporter MdfA: complementary gene fusion studies reveal a nonessential C-terminal domain. J Bacteriol 2002; 184:3313-20. [PMID: 12029048 PMCID: PMC135086 DOI: 10.1128/jb.184.12.3313-3320.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrophobicity profile and sequence alignment of the Escherichia coli multidrug transporter MdfA indicate that it belongs to the 12-transmembrane-domain family of transporters. According to this prediction, MdfA contains a single membrane-embedded charged residue (Glu26), which was shown to play an important role in substrate recognition. To test the predicted secondary structure of MdfA, we analyzed complementary pairs of hybrids of MdfA-PhoA (alkaline phosphatase, functional in the periplasm) and MdfA-Cat (chloramphenicol acetyltransferase, functional in the cytoplasm), generated in all the putative cytoplasmic and periplasmic loops of MdfA. Our results support the 12-transmembrane topology model and the suggestion that except for Glu26, no other charged residues are present in the membrane domain of MdfA. Surprisingly, by testing the ability of the truncated MdfA-Cat and MdfA-PhoA hybrids to confer multidrug resistance, we demonstrate that the entire C-terminal transmembrane domain and the cytoplasmic C terminus are not essential for MdfA-mediated drug resistance and transport.
Collapse
Affiliation(s)
- Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
10
|
Siebold C, Erni B. Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability. Biophys Chem 2002; 96:163-71. [PMID: 12034438 DOI: 10.1016/s0301-4622(02)00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclized subunits of the E. coli glucose transporter were produced in vivo by intein mediated trans-splicing. IIA(Glc) is a beta-sandwich protein, IICB(Glc) spans the membrane eight times. Genes encoding the circularly permuted precursors U(Cdelta)-IIA(Glc)-U(Ndelta) and U(Cdelta)-IICB(Glc)-U(Ndelta) were assembled from DNA fragments encoding the 3' and 5' segments of the recA intein of M. tuberculosis and crr and ptsG of E. coli, respectively. A 20-residues long, Ala-Pro rich linker peptide and/or a histidine tag were used to join the native N- and C-termini in the cyclized proteins. The cyclized proteins complemented growth of glucose auxotrophic strains. Purified, cyclized IIA(Glc) and IICB(Glc) had 100 and 25%, respectively, of wild-type glucose phosphotransferase activity. They had an increased electrophoretic mobility, which decreased upon linearization of the proteins with chymotrypsin. Cyclized IIA(Glc) displayed increased stability against temperature and GuHCl-induced unfolding (75 vs. 70 degrees C; 1.52 vs. 1.05 M).
Collapse
Affiliation(s)
- Christian Siebold
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | | |
Collapse
|
11
|
Siebold C, Flükiger K, Beutler R, Erni B. Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett 2001; 504:104-11. [PMID: 11532441 DOI: 10.1016/s0014-5793(01)02705-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The glucose transporter of Escherichia coli couples translocation with phosphorylation of glucose. The IICB(Glc) subunit spans the membrane eight times. Split, circularly permuted and cyclized forms of IICB(Glc) are described. The split variant was 30 times more active when the two proteins were encoded by a dicistronic mRNA than by two genes. The stability and activity of circularly permuted forms was improved when they were expressed as fusion proteins with alkaline phosphatase. Cyclized IICB(Glc) and IIA(Glc) were produced in vivo by RecA intein-mediated trans-splicing. Purified, cyclized IIA(Glc) and IICB(Glc) had 100% and 30% of wild-type glucose phosphotransferase activity, respectively. Cyclized IIA(Glc) displayed increased stability against temperature and GuHCl-induced unfolding.
Collapse
Affiliation(s)
- C Siebold
- Departement für Chemie und Biochemie, Universität Bern, CH-3012, Bern, Switzerland
| | | | | | | |
Collapse
|
12
|
Gutknecht R, Beutler R, Garcia-Alles LF, Baumann U, Erni B. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J 2001; 20:2480-6. [PMID: 11350937 PMCID: PMC125457 DOI: 10.1093/emboj/20.10.2480] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dihydroxyacetone kinase (DhaK) of Escherichia coli consists of three soluble protein subunits. DhaK (YcgT; 39.5 kDa) and DhaL (YcgS; 22.6 kDa) are similar to the N- and C-terminal halves of the ATP-dependent DhaK ubiquitous in bacteria, animals and plants. The homodimeric DhaM (YcgC; 51.6 kDa) consists of three domains. The N-terminal dimerization domain has the same fold as the IIA domain (PDB code 1PDO) of the mannose transporter of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS). The middle domain is similar to HPr and the C-terminus is similar to the N-terminal domain of enzyme I (EI) of the PTS. DhaM is phosphorylated three times by phosphoenolpyruvate in an EI- and HPr-dependent reaction. DhaK and DhaL are not phosphorylated. The IIA domain of DhaM, instead of ATP, is the phosphoryl donor to dihydroxyacetone (Dha). Unlike the carbohydrate-specific transporters of the PTS, DhaK, DhaL and DhaM have no transport activity.
Collapse
Affiliation(s)
| | | | | | | | - Bernhard Erni
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Corresponding author e-mail:
| |
Collapse
|