1
|
Halder R, Chu ZT, Ti R, Zhu L, Warshel A. On the Control of Directionality of Myosin. J Am Chem Soc 2024. [PMID: 39367841 DOI: 10.1021/jacs.4c09528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The origin of the unique directionality of myosin has been a problem of fundamental and practical importance. This work establishes in a conclusive way that the directionality is controlled by tuning the barrier for the rate-determining step, namely, the ADP release step. This conclusion is based on exploring the molecular origin behind the reverse directionality of myosins V and VI and the determination of the origin of the change in the barriers of the ADP release for the forward and backward motions. Our investigation is performed by combining different simulation methods such as steer molecular dynamics (SMD), umbrella sampling, renormalization method, and automated path searching method. It is found that in the case of myosin V, the ADP release from the postrigor (trailing head) state overcomes a lower barrier than the prepowerstroke (leading head) state, which is also evident from experimental observation. In the case of myosin VI, we noticed a different trend when compared to myosin V. Since the directionality of myosins V and VI follows a reverse trend, we conclude that such differences in the directionality are controlled by the free energy barrier for the ADP release. Overall, the proof that the directionality of myosin is determined by the activation barrier of the rate-determining step in the cycle, rather than by some unspecified dynamical effects, has general importance.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Rujuan Ti
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
2
|
Matsuda K, Jung W, Sato Y, Kobayashi T, Yamagishi M, Kim T, Yajima J. Myosin-induced F-actin fragmentation facilitates contraction of actin networks. Cytoskeleton (Hoboken) 2024; 81:339-355. [PMID: 38456577 PMCID: PMC11333167 DOI: 10.1002/cm.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Mechanical forces play a crucial role in diverse physiological processes, such as cell migration, cytokinesis, and morphogenesis. The actin cytoskeleton generates a large fraction of the mechanical forces via molecular interactions between actin filaments (F-actins) and myosin motors. Recent studies have shown that the common tendency of actomyosin networks to contract into a smaller structure deeply involves F-actin buckling induced by motor activities, fragmentation of F-actins, and the force-dependent unbinding of cross-linkers that inter-connect F-actins. The fragmentation of F-actins was shown to originate from either buckling or tensile force from previous single-molecule experiments. While the role of buckling in network contraction has been studied extensively, to date, the role of tension-induced F-actin fragmentation in network contraction has not been investigated. In this study, we employed in vitro experiments and an agent-based computational model to illuminate when and how the tension-induced F-actin fragmentation facilitates network contraction. Our experiments demonstrated that F-actins can be fragmented due to tensile forces, immediately followed by catastrophic rupture and contraction of networks. Using the agent-based model, we showed that F-actin fragmentation by tension results in distinct rupture dynamics different from that observed in networks only with cross-linker unbinding. Moreover, we found that tension-induced F-actin fragmentation is particularly important for the contraction of networks with high connectivity. Results from our study shed light on an important regulator of the contraction of actomyosin networks which has been neglected. In addition, our results provide insights into the rupture mechanisms of polymeric network structures and bio-inspired materials.
Collapse
Affiliation(s)
- Kyohei Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Yusei Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takuya Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Faculty of Science and Technology, Keio University, Kohoku Ward, Yokohama 223-0061, Japan
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Fineberg A, Takagi Y, Thirumurugan K, Andrecka J, Billington N, Young G, Cole D, Burgess SA, Curd AP, Hammer JA, Sellers JR, Kukura P, Knight PJ. Myosin-5 varies its step length to carry cargo straight along the irregular F-actin track. Proc Natl Acad Sci U S A 2024; 121:e2401625121. [PMID: 38507449 PMCID: PMC10990141 DOI: 10.1073/pnas.2401625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Molecular motors employ chemical energy to generate unidirectional mechanical output against a track while navigating a chaotic cellular environment, potential disorder on the track, and against Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.
Collapse
Affiliation(s)
- Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- Laboratory of Single Molecule Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Kavitha Thirumurugan
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Joanna Andrecka
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Neil Billington
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Stan A. Burgess
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Alistair P. Curd
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - James R. Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Peter J. Knight
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
4
|
Zhang X, Wang S, Zhang J, Wang H. Memory induced-mechanism of noise attenuator of myosin V molecular motors. Biosystems 2024; 237:105139. [PMID: 38336223 DOI: 10.1016/j.biosystems.2024.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Depending on the chemical energy from ATP hydrolysis, myosin V can drive the multistep and continuous coupled cycling process to transport cellular cargo to targeted regions. However, it is still obscure how the molecular memory induced by the multistep coupled transported process could regulate the dynamic behavior of the motor state of myosin V. Here, we propose a novel non-Markovian polymorphic mechanochemical model to investigate the effect of the molecular memory on the mechanic of noise attenuation of myosin V system. We first define an effective transition rate for a multistep coupled reaction process which is the function of memory and system states to transform equivalently the non-Markovian process into the classical Markov process. By noise decomposition technology, it is observed that both the intrinsic and extrinsic noises of the ADP-myosin V bound state (AM ⋅ ADP) exhibit a monotonically decreasing trend with lengthening the molecular memory. Molecular memory as a regulation factor can amplify the contribution of intrinsic noise to the overall noise while reducing the influence of extrinsic noise on the AM ⋅ ADP. Moreover, the modulation of molecular memory could induce stochastic focusing. These results indicate that the role of molecular memory in the myosin V state transition can not only offer a handle to maintain the robustness of the motion system but also serve as a paradigm for studying more complex molecular motors.
Collapse
Affiliation(s)
- Xin Zhang
- School of Mathematics and Statistics, Hainan University, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Haikou, 570228, Hainan, People's Republic of China
| | - Sizhe Wang
- The School of Mathematics, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jingwen Zhang
- School of Mathematics and Statistics, Hainan University, Haikou, 570228, Hainan, People's Republic of China; School of Cyberspace Security, Hainan University, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Haikou, 570228, Hainan, People's Republic of China
| | - Haohua Wang
- School of Mathematics and Statistics, Hainan University, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
5
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Parkes M, Landers NL, Gramlich MW. Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons. Front Cell Dev Biol 2023; 11:1286915. [PMID: 38020880 PMCID: PMC10657820 DOI: 10.3389/fcell.2023.1286915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.
Collapse
|
7
|
Fineberg A, Takagi Y, Thirumurugan K, Andrecka J, Billington N, Young G, Cole D, Burgess SA, Curd AP, Hammer JA, Sellers JR, Kukura P, Knight PJ. Myosin-5 varies its steps along the irregular F-actin track. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549178. [PMID: 37503193 PMCID: PMC10370000 DOI: 10.1101/2023.07.16.549178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Molecular motors employ chemical energy to generate unidirectional mechanical output against a track. By contrast to the majority of macroscopic machines, they need to navigate a chaotic cellular environment, potential disorder in the track and Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering (iSCAT) microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably-spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.
Collapse
Affiliation(s)
- Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Kavitha Thirumurugan
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
- Present address: Structural Biology Lab, Pearl Research Park, SBST, Vellore Institute of Technology, Vellore-632 014, India
| | - Joanna Andrecka
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Present address: Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Neil Billington
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
- Present address: Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, U.S.A
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Present address: Refeyn Ltd., Unit 9, Trade City, Sandy Ln W, Littlemore, Oxford OX4 6FF, U.K
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Present address: Refeyn Ltd., Unit 9, Trade City, Sandy Ln W, Littlemore, Oxford OX4 6FF, U.K
| | - Stan A. Burgess
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Alistair P. Curd
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - John A. Hammer
- Cell and Developmental Biology Center, NHLBI, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - James R. Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford OX1 3QU, U.K
| | - Peter J. Knight
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
8
|
Izumi T. Multiple pathways and independent functional pools in insulin granule exocytosis. Genes Cells 2023; 28:471-481. [PMID: 37070774 PMCID: PMC11448364 DOI: 10.1111/gtc.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
In contrast to synaptic vesicle exocytosis, secretory granule exocytosis follows a much longer time course, and thus allows for different prefusion states prior to stimulation. Indeed, total internal reflection fluorescence microscopy in living pancreatic β cells reveals that, prior to stimulation, either visible or invisible granules fuse in parallel during both early (first) and late (second) phases after glucose stimulation. Therefore, fusion occurs not only from granules predocked to the plasma membrane but also from those translocated from the cell interior during ongoing stimulation. Recent findings suggest that such heterogeneous exocytosis is conducted by a specific set of multiple Rab27 effectors that appear to operate on the same granule; namely, exophilin-8, granuphilin, and melanophilin play differential roles in distinct secretory pathways to final fusion. Furthermore, the exocyst, which is known to tether secretory vesicles to the plasma membrane in constitutive exocytosis, cooperatively functions with these Rab27 effectors in regulated exocytosis. In this review, the basic nature of insulin granule exocytosis will be described as a representative example of secretory granule exocytosis, followed by a discussion of the means by which different Rab27 effectors and the exocyst coordinate to regulate the entire exocytic processes in β cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
9
|
Rizvi MS. Effect of detachment of motor protein from track on its transport. J Biol Phys 2022; 48:369-381. [PMID: 36190620 PMCID: PMC9727045 DOI: 10.1007/s10867-022-09613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023] Open
Abstract
The transportation of the cargoes in biological cells is primarily driven by the motor proteins on filamentous protein tracks. The stochastic nature of the motion of motor protein often leads to its spontaneous detachment from the track. We formulate a mathematical model to study the effect of the detachment of motor protein on its track bound transport. We calculate two quantities: the distance traveled by the motor protein in given time, and the average time taken by a single motor protein to reach a target distance. Expectedly, both of these quantities decrease with the increasing detachment rate if the motor velocity is kept fixed. However, the existing experimental data suggest that a change in the detachment rate also affects the velocity of the motor protein. This relation between motor protein speed and its detachment rate results in a non-monotonic dependence on the distance traveled in fixed time and transport rate to a fixed distance. Therefore, we demonstrate that optimal motor speeds can be identified for the time and distance controlled conditions.
Collapse
Affiliation(s)
- Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
10
|
Sakai T, Choo YY, Sato O, Ikebe R, Jeffers A, Idell S, Tucker T, Ikebe M. Myo5b Transports Fibronectin-Containing Vesicles and Facilitates FN1 Secretion from Human Pleural Mesothelial Cells. Int J Mol Sci 2022; 23:ijms23094823. [PMID: 35563212 PMCID: PMC9101030 DOI: 10.3390/ijms23094823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/13/2022] Open
Abstract
Pleural mesothelial cells (PMCs) play a central role in the progression of pleural fibrosis. As pleural injury progresses to fibrosis, PMCs transition to mesenchymal myofibroblast via mesothelial mesenchymal transition (MesoMT), and produce extracellular matrix (ECM) proteins including collagen and fibronectin (FN1). FN1 plays an important role in ECM maturation and facilitates ECM-myofibroblast interaction, thus facilitating fibrosis. However, the mechanism of FN1 secretion is poorly understood. We report here that myosin 5b (Myo5b) plays a critical role in the transportation and secretion of FN1 from human pleural mesothelial cells (HPMCs). TGF-β significantly increased the expression and secretion of FN1 from HPMCs and facilitates the close association of Myo5B with FN1 and Rab11b. Moreover, Myo5b directly binds to GTP bound Rab11b (Rab11b-GTP) but not GDP bound Rab11b. Myo5b or Rab11b knockdown via siRNA significantly attenuated the secretion of FN1 without changing FN1 expression. TGF-β also induced Rab11b-GTP formation, and Rab11b-GTP but not Rab11b-GDP significantly activated the actin-activated ATPase activity of Myo5B. Live cell imaging revealed that Myo5b- and FN1-containing vesicles continuously moved together in a single direction. These results support that Myo5b and Rab11b play an important role in FN1 transportation and secretion from HPMCs, and consequently may contribute to the development of pleural fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mitsuo Ikebe
- Correspondence: ; Tel.: +1-(903)-877-7785; Fax: +1-(903)-877-5438
| |
Collapse
|
11
|
Debold EP. Mini‐ review: Recent insights into the relative timing of myosin’s powerstroke and release of phosphate. Cytoskeleton (Hoboken) 2022; 78:448-458. [DOI: 10.1002/cm.21695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
12
|
Šarlah A. Oscillating external force as a tool to tune motility characteristics of molecular motors. Phys Rev E 2021; 104:064406. [PMID: 35030938 DOI: 10.1103/physreve.104.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Molecular motors move in a dynamic environment of the cytoskeleton which generates fluctuations exceeding the thermal agitation. Their efficient motility and force generation are generally achieved via complex gating and coupling mechanisms between chemical steps, conformational changes, and mechanical steps in the working cycle. However, the motors display various force-velocity relations seemingly related (also) to the asymmetry of their unbinding from the track depending on the direction of the applied force. Here we study theoretically how the motility of molecular motors changes when they operate under an oscillating external force. We explore the roles of the shape of the force-velocity relation and the asymmetry of the force-induced unbinding. We find that a motor speeds up under force oscillations if its unbinding has a strong load dependence and a moderate asymmetry with respect to the direction of load. Motors whose unbinding is slowed down under hindering forces withstand average loads higher than the usual stall force. The relation between the function, unbinding properties, and predicted responses to the oscillating force supports the idea that the asymmetry of the load induced unbinding could serve as an adaptation of motors to their different physiological functions.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Stewart TJ, Murthy V, Dugan SP, Baker JE. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate. J Biol Chem 2021; 297:101178. [PMID: 34508779 PMCID: PMC8560993 DOI: 10.1016/j.jbc.2021.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Molecular motors such as kinesin and myosin often work in groups to generate the directed movements and forces critical for many biological processes. Although much is known about how individual motors generate force and movement, surprisingly, little is known about the mechanisms underlying the macroscopic mechanics generated by multiple motors. For example, the observation that a saturating number, N, of myosin heads move an actin filament at a rate that is influenced by actin–myosin attachment and detachment kinetics is accounted for neither experimentally nor theoretically. To better understand the emergent mechanics of actin–myosin mechanochemistry, we use an in vitro motility assay to measure and correlate the N-dependence of actin sliding velocities, actin-activated ATPase activity, force generation against a mechanical load, and the calcium sensitivity of thin filament velocities. Our results show that both velocity and ATPase activity are strain dependent and that velocity becomes maximized with the saturation of myosin-binding sites on actin at a value that is 40% dependent on attachment kinetics and 60% dependent on detachment kinetics. These results support a chemical thermodynamic model for ensemble motor mechanochemistry and imply molecularly explicit mechanisms within this framework, challenging the assumption of independent force generation.
Collapse
Affiliation(s)
- Travis J Stewart
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Vidya Murthy
- Department of Biomedical Engineering, University of Nevada, Reno, Nevada, USA
| | - Sam P Dugan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Josh E Baker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
14
|
Scott B, Marang C, Woodward M, Debold EP. Myosin's powerstroke occurs prior to the release of phosphate from the active site. Cytoskeleton (Hoboken) 2021; 78:185-198. [PMID: 34331410 DOI: 10.1002/cm.21682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Myosins are a family of motor proteins responsible for various forms of cellular motility, including muscle contraction and vesicular transport. The most fundamental aspect of myosin is its ability to transduce the chemical energy from the hydrolysis of ATP into mechanical work, in the form of force and/or motion. A key unanswered question of the transduction process is the timing of the force-generating powerstroke relative to the release of phosphate (Pi ) from the active site. We examined the ability of single-headed myosin Va to generate a powerstroke in a single molecule laser trap assay while maintaining Pi in its active site, by either elevating Pi in solution or by introducing a mutation in myosin's active site (S217A) to slow Pi -release from the active site. Upon binding to the actin filament, WT myosin generated a powerstoke rapidly (≥500 s-1 ) and without a detectable delay, both in the absence and presence of 30 mM Pi . The elevated levels of Pi did, however, affect event lifetime, eliminating the longest 25% of binding events, confirming that Pi rebound to myosin's active site and accelerated detachment. The S217A construct also generated a powerstroke similar in size and rate upon binding to actin despite the slower Pi release rate. These findings provide direct evidence that myosin Va generates a powerstroke with Pi still in its active site. Therefore, the findings are most consistent with a model in which the powerstroke occurs prior to the release of Pi from the active site.
Collapse
Affiliation(s)
- Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Kodera N, Ando T. High-Speed Atomic Force Microscopy to Study Myosin Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:127-152. [PMID: 32451858 DOI: 10.1007/978-3-030-38062-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-speed atomic force microscopy (HS-AFM) is a unique tool that enables imaging of protein molecules during their functional activity at sub-100 ms temporal and submolecular spatial resolution. HS-AFM is suited for the study of highly dynamic proteins, including myosin motors. HS-AFM images of myosin V walking on actin filaments provide irrefutable evidence for the swinging lever arm motion propelling the molecule forward. Moreover, molecular behaviors that have not been noticed before are also displayed on the AFM movies. This chapter describes the principle, underlying techniques and performance of HS-AFM, filmed images of myosin V, and mechanistic insights into myosin motility provided from the filmed images.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
16
|
Hathcock D, Tehver R, Hinczewski M, Thirumalai D. Myosin V executes steps of variable length via structurally constrained diffusion. eLife 2020; 9:51569. [PMID: 31939739 PMCID: PMC7054003 DOI: 10.7554/elife.51569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
The molecular motor myosin V transports cargo by stepping on actin filaments, executing a random diffusive search for actin binding sites at each step. A recent experiment suggests that the joint between the myosin lever arms may not rotate freely, as assumed in earlier studies, but instead has a preferred angle giving rise to structurally constrained diffusion. We address this controversy through comprehensive analytical and numerical modeling of myosin V diffusion and stepping. When the joint is constrained, our model reproduces the experimentally observed diffusion, allowing us to estimate bounds on the constraint energy. We also test the consistency between the constrained diffusion model and previous measurements of step size distributions and the load dependence of various observable quantities. The theory lets us address the biological significance of the constrained joint and provides testable predictions of new myosin behaviors, including the stomp distribution and the run length under off-axis force.
Collapse
Affiliation(s)
- David Hathcock
- Department of Physics, Cornell University, Ithaca, United States
| | - Riina Tehver
- Department of Physics and Astronomy, Denison University, Granville, United States
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, United States
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin, United States
| |
Collapse
|
17
|
Sellers JR, Takagi Y. How Myosin 5 Walks Deduced from Single-Molecule Biophysical Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:153-181. [PMID: 32451859 DOI: 10.1007/978-3-030-38062-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myosin 5a is a two-headed myosin that functions as a cargo transporter in cells. To accomplish this task it has evolved several unique structural and kinetic features that allow it to move processively as a single molecule along actin filaments. A plethora of biophysical techniques have been used to elucidate the detailed mechanism of its movement along actin filaments in vitro. This chapter describes how this mechanism was deduced.
Collapse
Affiliation(s)
- James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Zhang JP, Liu Y, Sun W, Zhao XY, Ta L, Guo WS. Characteristics of Myosin V Processivity. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1302-1308. [PMID: 28212094 DOI: 10.1109/tcbb.2017.2669311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Myosin V is a processive doubled-headed biomolecular motor involved in many intracellular organelle and vesicle transport. The unidirectional movement is coupled with the adenosine triphosphate (ATP) hydrolysis and product release cycle. With the progress of experimental techniques and the enhancement of measuring directness, detailed knowledge of the motility of myosin V has been obtained. Following the ATPase cycle, the 4-state mechanochemical model of the myosin V's processive movement is used. The transitions between various states take place in a stochastic manner. We can use the master equation to analyze and calculate quantitatively. Meanwhile, the effect of the reverse reaction is taken fully into account. We fit the mean velocity, the mean dwell time, the mean run length, and the ratio of forward/backward steps as a functionof ATP, ADP, and Pi concertration. The theoretical curves are generally in line with the experimental data. This work provides a new insight for the characteristic of myosin V.
Collapse
|
19
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Mechanisms for achieving high speed and efficiency in biomolecular machines. Proc Natl Acad Sci U S A 2019; 116:5902-5907. [PMID: 30850521 DOI: 10.1073/pnas.1812149116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
How does a biomolecular machine achieve high speed at high efficiency? We explore optimization principles using a simple two-state dynamical model. With this model, we establish physical principles-such as the optimal way to distribute free-energy changes and barriers across the machine cycle-and connect them to biological mechanisms. We find that a machine can achieve high speed without sacrificing efficiency by varying its conformational free energy to directly link the downhill, chemical energy to the uphill, mechanical work and by splitting a large work step into more numerous, smaller substeps. Experimental evidence suggests that these mechanisms are commonly used by biomolecular machines. This model is useful for exploring questions of evolution and optimization in molecular machines.
Collapse
|
21
|
Sasaki K, Kaya M, Higuchi H. A Unified Walking Model for Dimeric Motor Proteins. Biophys J 2018; 115:1981-1992. [PMID: 30396511 DOI: 10.1016/j.bpj.2018.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023] Open
Abstract
Dimeric motor proteins, kinesin-1, cytoplasmic dynein-1, and myosin-V, move stepwise along microtubules and actin filaments with a regular step size. The motors take backward as well as forward steps. The step ratio r and dwell time τ, which are the ratio of the number of backward steps to the number of forward steps and the time between consecutive steps, respectively, were observed to change with the load. To understand the movement of motor proteins, we constructed a unified and simple mathematical model to explain the load dependencies of r and of τ measured for the above three types of motors quantitatively. Our model consists of three states, and the forward and backward steps are represented by the cycles of transitions visiting different pairs of states among the three, implying that a backward step is not the reversal of a forward step. Each of r and τ is given by a simple expression containing two exponential functions. The experimental data for r and τ for dynein available in the literature are not sufficient for a quantitative analysis, which is in contrast to those for kinesin and myosin-V. We reanalyze the data to obtain r and τ of native dynein to make up the insufficient data to fit them to the model. Our model successfully describes the behavior of r and τ for all of the motors in a wide range of loads from large assisting loads to superstall loads.
Collapse
Affiliation(s)
- Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Motoshi Kaya
- Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
| | - Hideo Higuchi
- Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan; Universal Biology Institute, Graduate School of Science, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
22
|
Sumi T. Myosin V: Chemomechanical-coupling ratchet with load-induced mechanical slip. Sci Rep 2017; 7:13489. [PMID: 29044145 PMCID: PMC5647391 DOI: 10.1038/s41598-017-13661-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022] Open
Abstract
A chemomechanical-network model for myosin V is presented on the basis of both the nucleotide-dependent binding affinity of the head to an actin filament (AF) and asymmetries and similarity relations among the chemical transitions due to an intramolecular strain of the leading and trailing heads. The model allows for branched chemomechanical cycles and takes into account not only two different force-generating mechanical transitions between states wherein the leading head is strongly bound and the trailing head is weakly bound to the AF but also load-induced mechanical-slip transitions between states in which both heads are strongly bound. The latter is supported by the fact that ATP-independent high-speed backward stepping has been observed for myosin V, although such motility has never been for kinesin. The network model appears as follows: (1) the high chemomechanical-coupling ratio between forward step and ATP hydrolysis is achieved even at low ATP concentrations by the dual mechanical transitions; (2) the forward stepping at high ATP concentrations is explained by the front head-gating mechanism wherein the power stroke is triggered by the inorganic-phosphate (Pi) release from the leading head; (3) the ATP-binding or hydrolyzed ADP.Pi-binding leading head produces a stable binding to the AF, especially against backward loading.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan. .,Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
23
|
Reexamining the origin of the directionality of myosin V. Proc Natl Acad Sci U S A 2017; 114:10426-10431. [PMID: 28894003 DOI: 10.1073/pnas.1711214114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nature of the conversion of chemical energy to directional motion in myosin V is examined by careful simulations that include two complementary methods: direct Langevin Dynamics (LD) simulations with a scaled-down potential that provided a detailed time-resolved mechanism, and kinetic equations solution for the ensemble long-time propagation (based on information collected for segments of the landscape using LD simulations and experimental information). It is found that the directionality is due to the rate-limiting ADP release step rather than the potential energy of the lever arm angle. We show that the energy of the power stroke and the barriers involved in it are of minor consequence to the selectivity of forward over backward steps and instead suggest that the selective release of ADP from a postrigor myosin motor head promotes highly selective and processive myosin V. Our model is supported by different computational methods-LD simulations, Monte Carlo simulations, and kinetic equations solution-as well as by structure-based binding energy calculations.
Collapse
|
24
|
Lombardo AT, Nelson SR, Ali MY, Kennedy GG, Trybus KM, Walcott S, Warshaw DM. Myosin Va molecular motors manoeuvre liposome cargo through suspended actin filament intersections in vitro. Nat Commun 2017; 8:15692. [PMID: 28569841 PMCID: PMC5461480 DOI: 10.1038/ncomms15692] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 04/13/2017] [Indexed: 01/15/2023] Open
Abstract
Intracellular cargo transport relies on myosin Va molecular motor ensembles to travel along the cell's three-dimensional (3D) highway of actin filaments. At actin filament intersections, the intersecting filament is a structural barrier to and an alternate track for directed cargo transport. Here we use 3D super-resolution fluorescence imaging to determine the directional outcome (that is, continues straight, turns or terminates) for an ∼10 motor ensemble transporting a 350 nm lipid-bound cargo that encounters a suspended 3D actin filament intersection in vitro. Motor–cargo complexes that interact with the intersecting filament go straight through the intersection 62% of the time, nearly twice that for turning. To explain this, we develop an in silico model, supported by optical trapping data, suggesting that the motors' diffusive movements on the vesicle surface and the extent of their engagement with the two intersecting actin tracks biases the motor–cargo complex on average to go straight through the intersection. Cellular cargo transported along actin filaments is faced with a directional choice at an intersection. Here the authors show that myosin Va-bound cargo prefers to go straight through the intersection, and propose a model to explain this by a tug-of-war between motors on the lipid cargo that engage the actin tracks.
Collapse
Affiliation(s)
- Andrew T Lombardo
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Guy G Kennedy
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Sam Walcott
- Department of Mathematics, University of California, Davis, California 95616, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
25
|
Simulating the dynamics of the mechanochemical cycle of myosin-V. Proc Natl Acad Sci U S A 2017; 114:2259-2264. [PMID: 28193897 DOI: 10.1073/pnas.1700318114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detailed dynamics of the cycle of myosin-V are explored by simulation approaches, examining the nature of the energy-driven motion. Our study started with Langevin dynamics (LD) simulations on a very coarse landscape with a single rate-limiting barrier and reproduced the stall force and the hand-over-hand dynamics. We then considered a more realistic landscape and used time-dependent Monte Carlo (MC) simulations that allowed trajectories long enough to reproduce the force/velocity characteristic sigmoidal correlation, while also reproducing the hand-over-hand motion. Overall, our study indicated that the notion of a downhill lever-up to lever-down process (popularly known as the powerstroke mechanism) is the result of the energetics of the complete myosin-V cycle and is not the source of directional motion or force generation on its own. The present work further emphasizes the need to use well-defined energy landscapes in studying molecular motors in general and myosin in particular.
Collapse
|
26
|
Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. Curr Opin Biotechnol 2017; 46:20-26. [PMID: 28088100 DOI: 10.1016/j.copbio.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Cytoskeletal molecular motors provide exciting proof that nanoscale transporters can be highly efficient, moving for microns along filamentous tracks by hydrolyzing ATP to fuel nanometer-size steps. For nanotechnology, such conversion of chemical energy into productive work serves as an enticing platform for re-purposing and re-engineering. It also provides a roadmap for successful molecular mechanisms that can be mimicked to create de novo molecular motors for nanotechnology applications. Here we focus specifically on how the mechanisms of molecular motors are being re-engineered for greater control over their transport parameters. We then discuss mechanistic work to create fully synthetic motors de novo and conclude with future directions in creating novel motor systems.
Collapse
|
27
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
28
|
Jana B, Onuchic JN. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity. PLoS Comput Biol 2016; 12:e1005035. [PMID: 27494025 PMCID: PMC4975490 DOI: 10.1371/journal.pcbi.1005035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. Molecular motors are perhaps the most important proteins present in the cell. The importance specifically lies with the fact that these proteins use the chemical energy source (such as ATP) of the cell to generate mechanical work and perform a wide range of functionalities. In this article, we generalize the idea of using structure-based models to explore the mechanochemistry of myosin molecular motors in structural terms. We find that a structural adaptation of the motor head domain in post-powerstroke state signals faster ADP release from the trailing head to maintain its processivity while directionality arises from a careful design of peripheral structural elements. These results along with our earlier results on other motors provide a general rule for motor activity.
Collapse
Affiliation(s)
- Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
- * E-mail: (BJ); (JNO)
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- * E-mail: (BJ); (JNO)
| |
Collapse
|
29
|
Batters C, Veigel C. Mechanics and Activation of Unconventional Myosins. Traffic 2016; 17:860-71. [PMID: 27061900 DOI: 10.1111/tra.12400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/01/2022]
Abstract
Many types of cellular motility are based on the myosin family of motor proteins ranging from muscle contraction to exo- and endocytosis, cytokinesis, cell locomotion or signal transduction in hearing. At the center of this wide range of motile processes lies the adaptation of the myosins for each specific mechanical task and the ability to coordinate the timing of motor protein mobilization and targeting. In recent years, great progress has been made in developing single molecule technology to characterize the diverse mechanical properties of the unconventional myosins. Here, we discuss the basic mechanisms and mechanical adaptations of unconventional myosins, and emerging principles regulating motor mobilization and targeting.
Collapse
Affiliation(s)
- Christopher Batters
- Department of Cellular Physiology, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336, Munich, Germany.,Center for Nanosciences (CeNS) München, 80799, Munich, Germany
| | - Claudia Veigel
- Department of Cellular Physiology, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336, Munich, Germany.,Center for Nanosciences (CeNS) München, 80799, Munich, Germany
| |
Collapse
|
30
|
Heissler SM, Sellers JR. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions. Traffic 2016; 17:839-59. [PMID: 26929436 DOI: 10.1111/tra.12388] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022]
Abstract
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| |
Collapse
|
31
|
Flexural Stiffness of Myosin Va Subdomains as Measured from Tethered Particle Motion. JOURNAL OF BIOPHYSICS 2015; 2015:465693. [PMID: 26770194 PMCID: PMC4685436 DOI: 10.1155/2015/465693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022]
Abstract
Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network.
Collapse
|
32
|
Boon NJ, Hoyle RB. Detachment, futile cycling, and nucleotide pocket collapse in myosin-V stepping. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022717. [PMID: 25768541 DOI: 10.1103/physreve.91.022717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 06/04/2023]
Abstract
Myosin-V is a highly processive dimeric protein that walks with 36-nm steps along actin tracks, powered by coordinated adenosine triphosphate (ATP) hydrolysis reactions in the two myosin heads. No previous theoretical models of the myosin-V walk reproduce all the observed trends of velocity and run length with adenosine diphosphate (ADP), ATP and external forcing. In particular, a result that has eluded all theoretical studies based upon rigorous physical chemistry is that run length decreases with both increasing [ADP] and [ATP]. We systematically analyze which mechanisms in existing models reproduce which experimental trends and use this information to guide the development of models that can reproduce them all. We formulate models as reaction networks between distinct mechanochemical states with energetically determined transition rates. For each network architecture, we compare predictions for velocity and run length to a subset of experimentally measured values, and fit unknown parameters using a bespoke Monte Carlo simulated annealing optimization routine. Finally we determine which experimental trends are replicated by the best-fit model for each architecture. Only two models capture them all: one involving [ADP]-dependent mechanical detachment, and another including [ADP]-dependent futile cycling and nucleotide pocket collapse. Comparing model-predicted and experimentally observed kinetic transition rates favors the latter.
Collapse
Affiliation(s)
- Neville J Boon
- Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rebecca B Hoyle
- Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
- Mathematical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
33
|
Cooperative protofilament switching emerges from inter-motor interference in multiple-motor transport. Sci Rep 2014; 4:7255. [PMID: 25434968 PMCID: PMC4248269 DOI: 10.1038/srep07255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/30/2014] [Indexed: 11/13/2022] Open
Abstract
Within living cells, the transport of cargo is accomplished by groups of molecular motors. Such collective transport could utilize mechanisms which emerge from inter-motor interactions in ways that are yet to be fully understood. Here we combined experimental measurements of two-kinesin transport with a theoretical framework to investigate the functional ramifications of inter-motor interactions on individual motor function and collective cargo transport. In contrast to kinesin's low sidestepping frequency when present as a single motor, with exactly two kinesins per cargo, we observed substantial motion perpendicular to the microtubule. Our model captures a surface-associated mode of kinesin, which is only accessible via inter-motor interference in groups, in which kinesin diffuses along the microtubule surface and rapidly “hops” between protofilaments without dissociating from the microtubule. Critically, each kinesin transitions dynamically between the active stepping mode and this weak surface-associated mode enhancing local exploration of the microtubule surface, possibly enabling cellular cargos to overcome macromolecular crowding and to navigate obstacles along microtubule tracks without sacrificing overall travel distance.
Collapse
|
34
|
Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va. Proc Natl Acad Sci U S A 2014; 111:E3986-95. [PMID: 25201964 DOI: 10.1073/pnas.1406535111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems--the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32-125 motors per μm(2)), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track.
Collapse
|
35
|
Mukherjea M, Ali MY, Kikuti C, Safer D, Yang Z, Sirkia H, Ropars V, Houdusse A, Warshaw DM, Sweeney HL. Myosin VI must dimerize and deploy its unusual lever arm in order to perform its cellular roles. Cell Rep 2014; 8:1522-32. [PMID: 25159143 DOI: 10.1016/j.celrep.2014.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022] Open
Abstract
It is unclear whether the reverse-direction myosin (myosin VI) functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single-α-helix (SAH) domain that has been proposed to function as part of a lever arm to amplify movements without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.
Collapse
Affiliation(s)
- Monalisa Mukherjea
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Carlos Kikuti
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Daniel Safer
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA
| | - Zhaohui Yang
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA
| | - Helena Sirkia
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Virginie Ropars
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Anne Houdusse
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
36
|
Kodera N, Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 2014; 6:237-260. [PMID: 25505494 PMCID: PMC4256461 DOI: 10.1007/s12551-014-0141-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 01/14/2023] Open
Abstract
The quest for understanding the mechanism of myosin-based motility started with studies on muscle contraction. From numerous studies, the basic frameworks for this mechanism were constructed and brilliant hypotheses were put forward. However, the argument about the most crucial issue of how the actin-myosin interaction generates contractile force and shortening has not been definitive. To increase the "directness of measurement", in vitro motility assays and single-molecule optical techniques were created and used. Consequently, detailed knowledge of the motility of muscle myosin evolved, which resulted in provoking more arguments to a higher level. In parallel with technical progress, advances in cell biology led to the discovery of many classes of myosins. Myosin V was discovered to be a processive motor, unlike myosin II. The processivity reduced experimental difficulties because it allowed continuous tracing of the motor action of single myosin V molecules. Extensive studies of myosin V were expected to resolve arguments and build a consensus but did not necessarily do so. The directness of measurement was further enhanced by the recent advent of high-speed atomic force microscopy capable of directly visualizing biological molecules in action at high spatiotemporal resolution. This microscopy clearly visualized myosin V molecules walking on actin filaments and at last provided irrefutable evidence for the swinging lever-arm motion propelling the molecules. However, a peculiar foot stomp behavior also appeared in the AFM movie, raising new questions of the chemo-mechanical coupling in this motor and myosin motors in general. This article reviews these changes in the research of myosin motility and proposes new ideas to resolve the newly raised questions.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- PREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| |
Collapse
|
37
|
Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments. Sci Rep 2014; 4:4907. [PMID: 24809456 PMCID: PMC4014986 DOI: 10.1038/srep04907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 11/09/2022] Open
Abstract
Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30-36 nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells.
Collapse
|
38
|
The kinetics of mechanically coupled myosins exhibit group size-dependent regimes. Biophys J 2014; 105:1466-74. [PMID: 24047998 DOI: 10.1016/j.bpj.2013.07.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022] Open
Abstract
Naturally occurring groups of muscle myosin behave differently from individual myosins or small groups commonly assayed in vitro. Here, we investigate the emergence of myosin group behavior with increasing myosin group size. Assuming the number of myosin binding sites (N) is proportional to actin length (L) (N = L/35.5 nm), we resolve in vitro motility of actin propelled by skeletal muscle myosin for L = 0.2-3 μm. Three distinct regimes were found: L < 0.3 μm, sliding arrest; 0.3 μm ≤ L ≤ 1 μm, alternation between arrest and continuous sliding; L > 1 μm, continuous sliding. We theoretically investigated the myosin group kinetics with mechanical coupling via actin. We find rapid actin sliding steps driven by power-stroke cascades supported by postpower-stroke myosins, and phases without actin sliding caused by prepower-stroke myosin buildup. The three regimes are explained: N = 8, rare cascades; N = 15, cascade bursts; N = 35, continuous cascading. Two saddle-node bifurcations occur for increasing N (mono → bi → mono-stability), with steady states corresponding to arrest and continuous cascading. The experimentally measured dependence of actin sliding statistics on L and myosin concentration is correctly predicted.
Collapse
|
39
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
40
|
Schumacher-Bass SM, Vesely ED, Zhang L, Ryland KE, McEwen DP, Chan PJ, Frasier CR, McIntyre JC, Shaw RM, Martens JR. Role for myosin-V motor proteins in the selective delivery of Kv channel isoforms to the membrane surface of cardiac myocytes. Circ Res 2014; 114:982-92. [PMID: 24508725 DOI: 10.1161/circresaha.114.302711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.
Collapse
Affiliation(s)
- Sarah M Schumacher-Bass
- From the Department of Pharmacology, University of Michigan, Ann Arbor (S.M.S.-B., E.D.V., L.Z., K.E.R., D.P.M., C.R.F., J.C.M., J.R.M.); Cardiovascular Research Institute Robin Shaw, Department of Medicine, University of California, San Francisco (P.J.C.); and Cedars-Sinai Medical Center, Los Angeles, CA (R.M.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ortega Arroyo J, Andrecka J, Spillane KM, Billington N, Takagi Y, Sellers JR, Kukura P. Label-free, all-optical detection, imaging, and tracking of a single protein. NANO LETTERS 2014; 14:2065-70. [PMID: 24597479 PMCID: PMC4186656 DOI: 10.1021/nl500234t] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/28/2014] [Indexed: 05/21/2023]
Abstract
Optical detection of individual proteins requires fluorescent labeling. Cavity and plasmonic methodologies enhance single molecule signatures in the absence of any labels but have struggled to demonstrate routine and quantitative single protein detection. Here, we used interferometric scattering microscopy not only to detect but also to image and nanometrically track the motion of single myosin 5a heavy meromyosin molecules without the use of labels or any nanoscopic amplification. Together with the simple experimental arrangement, an intrinsic independence from strong electronic transition dipoles and a detection limit of <60 kDa, our approach paves the way toward nonresonant, label-free sensing and imaging of nanoscopic objects down to the single protein level.
Collapse
Affiliation(s)
- J. Ortega Arroyo
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - J. Andrecka
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - K. M. Spillane
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - N. Billington
- Laboratory
of Molecular Physiology, National Heart,
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Y. Takagi
- Laboratory
of Molecular Physiology, National Heart,
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - J. R. Sellers
- Laboratory
of Molecular Physiology, National Heart,
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - P. Kukura
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
- E-mail:
| |
Collapse
|
42
|
Kolomeisky AB. Motor proteins and molecular motors: how to operate machines at the nanoscale. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:463101. [PMID: 24100357 PMCID: PMC3858839 DOI: 10.1088/0953-8984/25/46/463101] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors.
Collapse
Affiliation(s)
- Anatoly B. Kolomeisky
- Rice University, Department of Chemistry, 6100 Main Street, Houston, TX 77005-1892, USA
| |
Collapse
|
43
|
Abstract
The molecular motor myosin V (MyoV) exhibits a wide repertoire of pathways during the stepping process, which is intimately connected to its biological function. The best understood of these is the hand-over-hand stepping by a swinging lever arm movement toward the plus end of actin filaments. Single-molecule experiments have also shown that the motor "foot stomps," with one hand detaching and rebinding to the same site, and back-steps under sufficient load. The complete taxonomy of MyoV's load-dependent stepping pathways, and the extent to which these are constrained by motor structure and mechanochemistry, are not understood. Using a polymer model, we develop an analytical theory to describe the minimal physical properties that govern motor dynamics. We solve the first-passage problem of the head reaching the target-binding site, investigating the competing effects of backward load, strain in the leading head biasing the diffusion in the direction of the target, and the possibility of preferential binding to the forward site due to the recovery stroke. The theory reproduces a variety of experimental data, including the power stroke and slow diffusive search regimes in the mean trajectory of the detached head, and the force dependence of the forward-to-backward step ratio, run length, and velocity. We derive a stall force formula, determined by lever arm compliance and chemical cycle rates. By exploring the MyoV design space, we predict that it is a robust motor whose dynamical behavior is not compromised by reasonable perturbations to the reaction cycle and changes in the architecture of the lever arm.
Collapse
|
44
|
Bao J, Huck D, Gunther LK, Sellers JR, Sakamoto T. Actin structure-dependent stepping of myosin 5a and 10 during processive movement. PLoS One 2013; 8:e74936. [PMID: 24069366 PMCID: PMC3777900 DOI: 10.1371/journal.pone.0074936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022] Open
Abstract
How myosin 10, an unconventional myosin, walks processively along actin is still controversial. Here, we used single molecule fluorescence techniques, TIRF and FIONA, to study the motility and the stepping mechanism of dimerized myosin 10 heavy-meromyosin-like fragment on both single actin filaments and two-dimensional F-actin rafts cross-linked by fascin or α-actinin. As a control, we also tracked and analyzed the stepping behavior of the well characterized processive motor myosin 5a. We have shown that myosin 10 moves processively along both single actin filaments and F-actin rafts with a step size of 31 nm. Moreover, myosin 10 moves more processively on fascin-F-actin rafts than on α-actinin-F-actin rafts, whereas myosin 5a shows no such selectivity. Finally, on fascin-F-actin rafts, myosin 10 has more frequent side steps to adjacent actin filaments than myosin 5a in the F-actin rafts. Together, these results reveal further single molecule features of myosin 10 on various actin structures, which may help to understand its cellular functions.
Collapse
Affiliation(s)
- Jianjun Bao
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel Huck
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Laura K. Gunther
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - James R. Sellers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takeshi Sakamoto
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bierbaum V, Lipowsky R. Dwell time distributions of the molecular motor myosin V. PLoS One 2013; 8:e55366. [PMID: 23418440 PMCID: PMC3572133 DOI: 10.1371/journal.pone.0055366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022] Open
Abstract
The dwell times between two successive steps of the two-headed molecular motor myosin V are governed by non-exponential distributions. These distributions have been determined experimentally for various control parameters such as nucleotide concentrations and external load force. First, we use a simplified network representation to determine the dwell time distributions of myosin V, with the associated dynamics described by a Markov process on networks with absorbing boundaries. Our approach provides a direct relation between the motor’s chemical kinetics and its stepping properties. In the absence of an external load, the theoretical distributions quantitatively agree with experimental findings for various nucleotide concentrations. Second, using a more complex branched network, which includes ADP release from the leading head, we are able to elucidate the motor’s gating effect. This effect is caused by an asymmetry in the chemical properties of the leading and the trailing head of the motor molecule. In the case of an external load acting on the motor, the corresponding dwell time distributions reveal details about the motor’s backsteps.
Collapse
Affiliation(s)
- Veronika Bierbaum
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | |
Collapse
|
46
|
Zhang C, Ali MY, Warshaw DM, Kad NM. A branched kinetic scheme describes the mechanochemical coupling of Myosin Va processivity in response to substrate. Biophys J 2013; 103:728-37. [PMID: 22947934 DOI: 10.1016/j.bpj.2012.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022] Open
Abstract
Myosin Va is a double-headed cargo-carrying molecular motor that moves processively along cellular actin filaments. Long processive runs are achieved through mechanical coordination between the two heads of myosin Va, which keeps their ATPase cycles out of phase, preventing both heads detaching from actin simultaneously. The biochemical kinetics underlying processivity are still uncertain. Here we attempt to define the biochemical pathways populated by myosin Va by examining the velocity, processive run-length, and individual steps of a Qdot-labeled myosin Va in various substrate conditions (i.e., changes in ATP, ADP, and P(i)) under zero load in the single-molecule total internal reflection fluorescence microscopy assay. These data were used to globally constrain a branched kinetic scheme that was necessary to fit the dependences of velocity and run-length on substrate conditions. Based on this model, myosin Va can be biased along a given pathway by changes in substrate concentrations. This has uncovered states not normally sampled by the motor, and suggests that every transition involving substrate binding and release may be strain-dependent.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
47
|
Ali MY, Previs SB, Trybus KM, Sweeney HL, Warshaw DM. Myosin VI has a one track mind versus myosin Va when moving on actin bundles or at an intersection. Traffic 2012; 14:70-81. [PMID: 23046080 DOI: 10.1111/tra.12017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
Abstract
Myosin VI (myoVI) and myosin Va (myoVa) serve roles both as intracellular cargo transporters and tethers/anchors. In both capacities, these motors bind to and processively travel along the actin cytoskeleton, a network of intersecting actin filaments and bundles that present directional challenges to these motors. Are myoVI and myoVa inherently different in their abilities to interact and maneuver through the complexities of the actin cytoskeleton? Thus, we created an in vitro model system of intersecting actin filaments and individual unipolar (fascin-actin) or mixed polarity (α-actinin-actin) bundles. The stepping dynamics of individual Qdot-labeled myoVI and myoVa motors were determined on these actin tracks. Interestingly, myoVI prefers to stay on the actin filament it is traveling on, while myoVa switches filaments with higher probability at an intersection or between filaments in a bundle. The structural basis for this maneuverability difference was assessed by expressing a myoVI chimera in which the single myoVI IQ was replaced with the longer, six IQ myoVa lever. The mutant behaved more like myoVI at actin intersections and on bundles, suggesting that a structural element other than the lever arm dictates myoVI's preference to stay on track, which may be critical to its role as an intracellular anchor.
Collapse
Affiliation(s)
- M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Caporizzo MA, Sun Y, Goldman YE, Composto RJ. Nanoscale topography mediates the adhesion of F-actin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12216-12224. [PMID: 22839968 DOI: 10.1021/la302250x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
50
|
Xu J, Shu Z, King SJ, Gross SP. Tuning multiple motor travel via single motor velocity. Traffic 2012; 13:1198-205. [PMID: 22672518 DOI: 10.1111/j.1600-0854.2012.01385.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport.
Collapse
Affiliation(s)
- Jing Xu
- Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|