1
|
Krueger RR, Chen AYS, Zhou JS, Liu S, Xu HK, Ng JCK. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties. PHYTOPATHOLOGY 2024; 114:2453-2462. [PMID: 39115802 DOI: 10.1094/phyto-05-24-0167-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A protein-expressing citrus tristeza virus-based vector construct, pT36CA-V1.3, obtained from a California isolate of the T36 strain (T36CA), was retooled into a virus-induced gene silencing system intended for use with studies of California citrus. Virus-induced gene silencing constructs engineered with a truncated Citrus macrophylla PHYTOENE DESATURASE (CmPDS) gene sequence in the sense or antisense orientation worked equally well to silence the endogenous CmPDS gene. In a parallel effort to optimize vector performance, two nonsynonymous nucleotides in open reading frame 1a of pT36CA-V1.3 were replaced with those conserved in the reference sequences from the T36CA cDNA library. The resulting viruses, T36CA-V1.4 (with one amino acid modification: D760N) and T36CA-V1.5 (with two amino acid modifications: D760N and P1174L), along with T36CA-V1.3, were individually propagated in Nicotiana benthamiana and C. macrophylla plants. Enzyme-linked immunosorbent assay (ELISA) measurements of extracts of the newly emerged leaves suggested that all three viruses accumulated to similar levels in N. benthamiana plants at 5 weeks postinoculation. ELISA values of T36CA-V1.4- and -V1.5-infected C. macrophylla samples were significantly higher than that of T36CA-V1.3-infected samples within an 8- to 12-month postinoculation window, suggesting a higher accumulation of T36CA-V1.4 and -V1.5 than T36CA-V1.3. However, at 36 months postinoculation, the ELISA values suggested that all three viruses accumulated to similar levels. When C. macrophylla plants infected with each of the three viruses were grafted to commercial citrus varieties, a limited number of receptor plants became infected, demonstrating a weak but nonetheless (the first) successful delivery of T36CA to California-grown commercial citrus.
Collapse
Affiliation(s)
- Robert R Krueger
- National Clonal Germplasm Repository for Citrus and Dates, U.S. Department of Agriculture-Agricultural Research Service, Riverside, CA 92507-5437, U.S.A
| | - Angel Y S Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Jaclyn S Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Si Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Huaying Karen Xu
- Department of Statistics, University of California, Riverside, CA 92521, U.S.A
| | - James C K Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
2
|
Lameront P, Shabanian M, Currie LMJ, Fust C, Li C, Clews A, Meng B. Elucidating the Subcellular Localization of GLRaV-3 Proteins Encoded by the Unique Gene Block in N. benthamiana Suggests Implications on Plant Host Suppression. Biomolecules 2024; 14:977. [PMID: 39199365 PMCID: PMC11352578 DOI: 10.3390/biom14080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus Ampelovirus, Closteroviridae family. Viral genes within the 3' proximal unique gene blocks (UGB) remain highly variable and poorly understood. The UGBs of Closteroviridae viruses include diverse open reading frames (ORFs) that have been shown to contribute to viral functions such as the suppression of the host RNA silencing defense response and systemic viral spread. This study investigates the role of GLRaV-3 ORF8, ORF9, and ORF10, which encode the proteins p21, p20A, and p20B, respectively. These genes represent largely unexplored facets of the GLRaV-3 genome. Here, we visualize the subcellular localization of wildtype and mutagenized GLRaV-3 ORFs 8, 9, and 10, transiently expressed in Nicotiana benthamiana. Our results indicate that p21 localizes to the cytosol, p20A associates with microtubules, and p20B is trafficked into the nucleus to carry out the suppression of host RNA silencing. The findings presented herein provide a foundation for future research aimed at the characterization of the functions of these ORFs. In the long run, it would also facilitate the development of innovative strategies to understand GLRaV-3, mitigate its spread, and impacts on grapevines and the global wine industry.
Collapse
Affiliation(s)
- Patrick Lameront
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.S.); (L.M.J.C.); (C.F.); (C.L.); (A.C.); (B.M.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Kang YC, Yeh SD, Chen TC. Leucine 127 of Cucurbit Chlorotic Yellows Virus P22 Is Crucial for Its RNA Silencing Suppression Activity and Pathogenicity. PHYTOPATHOLOGY 2024; 114:813-822. [PMID: 37913633 DOI: 10.1094/phyto-07-23-0227-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Plant viruses produce particular suppressors to antagonize the host defense response of RNA silencing to establish infection. Cucurbit chlorotic yellows virus (CCYV), a member of the genus Crinivirus of the family Closteroviridae, severely damages the production of economically essential cucurbits worldwide. Here, we used the attenuated zucchini yellow mosaic virus (ZYMV) vector ZAC to express individual coding sequences, including CP, CPm, P25, and P22, of a Taiwan CCYV isolate (CCYV-TW) to identify their possible roles as pathogenicity determinants. ZAC is an HC-Pro function mutant that lacks the ability of local lesion induction on Chenopodium quinoa leaves and induces mild mottling followed by recovery on its natural host zucchini squash plants. Only the recombinant expressing CCYV-TW P22 complemented the effect of ZAC HC-Pro dysfunction, causing more severe symptoms on zucchini squash plants and restoring lesion formation on C. quinoa leaves, with lesions forming faster than those generated by the wild-type ZYMV. This suggests that CCYV-TW P22 is a virulence enhancer. Sequence analysis of criniviral P22s revealed the presence of four conserved leucine residues (L10, L17, L84, and L127) and one conserved lysine residue (K185). The five P22 residues conserved among the CCYV isolates and the P22 orthologs of two other criniviruses were each substituted with alanine in CCYV-TW P22 to investigate its ability to suppress RNA silencing and pathogenicity. The results provide new insights into CCYV-P22, showing that the L127 residue of P22 is indispensable for maintaining its stability in RNA silencing suppression and essential for virulence enhancement.
Collapse
Affiliation(s)
- Ya-Chi Kang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tsung-Chi Chen
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
4
|
Zhang S, Yang C, Qiu Y, Liao R, Xuan Z, Ren F, Dong Y, Xie X, Han Y, Wu D, Ramos-González PL, Freitas-Astúa J, Yang H, Zhou C, Cao M. Conserved untranslated regions of multipartite viruses: Natural markers of novel viral genomic components and tags of viral evolution. Virus Evol 2024; 10:veae004. [PMID: 38361819 PMCID: PMC10868557 DOI: 10.1093/ve/veae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Viruses with split genomes are classified as being either segmented or multipartite based on whether their genomic segments occur within a single virion or across different virions. Despite variations in number and sequence during evolution, the genomic segments of many viruses are conserved within the untranslated regions (UTRs). In this study, we present a methodology that combines RNA sequencing with iterative BLASTn of UTRs (https://github.com/qq371260/Iterative-blast-v.1.0) to identify new viral genomic segments. Some novel multipartite-like viruses related to the phylum Kitrinoviricota were annotated using sequencing data from field plant samples and public databases. We identified potentially plant-infecting jingmen-related viruses (order Amarillovirales) and jivi-related viruses (order Martellivirales) with at least six genomic components. The number of RNA molecules associated with a genome of the novel viruses in the families Closteroviridae, Kitaviridae, and Virgaviridae within the order Martellivirales reached five. Several of these viruses seem to represent new taxa at the subgenus, genus, and family levels. The diversity of novel genomic components and the multiple duplication of proteins or protein domains within single or multiple genomic components emphasize the evolutionary roles of genetic recombination (horizontal gene transfer), reassortment, and deletion. The relatively conserved UTRs at the genome level might explain the relationships between monopartite and multipartite viruses, as well as how subviral agents such as defective RNAs and satellite viruses can coexist with their helper viruses.
Collapse
Affiliation(s)
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 21 Huanan Street, Shenyang, Liaoning 110044, China
| | - Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Ruiling Liao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Fang Ren
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Yafeng Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Xiaoying Xie
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Di Wu
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Pedro Luis Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, CEP, Cruz das Almas BA, 44380-000, Brazil
| | - Huadong Yang
- Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410125, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| |
Collapse
|
5
|
Kondo H, Sugahara H, Fujita M, Hyodo K, Andika IB, Hisano H, Suzuki N. Discovery and Genome Characterization of a Closterovirus from Wheat Plants with Yellowing Leaf Symptoms in Japan. Pathogens 2023; 12:358. [PMID: 36986280 PMCID: PMC10053543 DOI: 10.3390/pathogens12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3'-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Hitomi Sugahara
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
6
|
Mostert I, Bester R, Burger JT, Maree HJ. Identification of Interactions between Proteins Encoded by Grapevine Leafroll-Associated Virus 3. Viruses 2023; 15:208. [PMID: 36680248 PMCID: PMC9865355 DOI: 10.3390/v15010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between proteins of grapevine leafroll-associated virus 3 (GLRaV-3). The p5 movement protein, HSP70 homolog, coat protein, and p20B of GLRaV-3 were all found to self-interact, however, the mechanism by which p5 interacts remains unknown due to the absence of a cysteine residue crucial for the dimerisation of the closterovirus homolog of this protein. Although HSP70h forms part of the virion head of closteroviruses, in GLRaV-3, it interacts with the coat protein that makes up the body of the virion. Silencing suppressor p20B has been shown to interact with HSP70h, as well as the major coat protein and the minor coat protein. The results of this study suggest that the virion assembly of a member of the genus Ampelovirus occurs in a similar but not identical manner to those of other genera in the family Closteroviridae. Identification of interactions of p20B with virus structural proteins provides an avenue for future research to explore the mechanisms behind the suppression of host silencing and suggests possible involvement in other aspects of the viral replication cycle.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| |
Collapse
|
7
|
Yu W, Bosquée E, Fan J, Liu Y, Bragard C, Francis F, Chen J. Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion miscanthi. PLANTS (BASEL, SWITZERLAND) 2022; 11:3352. [PMID: 36501390 PMCID: PMC9735544 DOI: 10.3390/plants11233352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids' geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by -44.2% with ampicillin and -25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide-associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid-virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission.
Collapse
Affiliation(s)
- Wenjuan Yu
- MOA Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Emilie Bosquée
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Jia Fan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Claude Bragard
- Applied Microbiologye-Phytopathology, Earth and Life Institute, UCLouvain, Croix du Sud L7.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Julian Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Folimonova SY, Sun YD. Citrus Tristeza Virus: From Pathogen to Panacea. Annu Rev Virol 2022; 9:417-435. [DOI: 10.1146/annurev-virology-100520-114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Citrus tristeza virus (CTV) is the most destructive viral pathogen of citrus. During the past century, CTV induced grave epidemics in citrus-growing areas worldwide that have resulted in a loss of more than 100 million trees. At present, the virus continues to threaten citrus production in many different countries. Research on CTV is accompanied by distinctive challenges stemming from the large size of its RNA genome, the narrow host range limited to slow-growing Citrus species and relatives, and the complexity of CTV populations. Despite these hurdles, remarkable progress has been made in understanding the CTV-host interactions and in converting the virus into a tool for crop protection and improvement. This review focuses on recent advances that have shed light on the mechanisms underlying CTV infection. Understanding these mechanisms is pivotal for the development of means to control CTV diseases and, ultimately, turn this virus into an ally. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida, USA
| | - Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Ng JCK, Peng JHC, Chen AYS, Tian T, Zhou JS, Smith TJ. Plasticity of the lettuce infectious yellows virus minor coat protein (CPm) in mediating the foregut retention and transmission of a chimeric CPm mutant by whitefly vectors. J Gen Virol 2021; 102:001652. [PMID: 34494949 PMCID: PMC8567426 DOI: 10.1099/jgv.0.001652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Transmission of the crinivirus, lettuce infectious yellows virus (LIYV), is determined by a minor coat protein (CPm)-mediated virion retention mechanism located in the foregut of its whitefly vector. To better understand the functions of LIYV CPm, chimeric CPm mutants engineered with different lengths of the LIYV CPm amino acid sequence and that of the crinivirus, lettuce chlorosis virus (LCV), were constructed based on bioinformatics and sequence alignment data. The 485 amino acid-long chimeric CPm of LIYV mutant, CPmP-1, contains 60 % (from position 3 to 294) of LCV CPm amino acids. The chimeric CPm of mutants CPmP-2, CPmP-3 and CPmP-4 contains 46 (position 3 to 208), 51 (position 3 to 238) and 41 % (position 261 to 442) of LCV CPm amino acids, respectively. All four mutants moved systemically, expressed the chimeric CPm and formed virus particles. However, following acquisition feeding of the virus preparations, only CPmP-1 was retained in the foreguts of a significant number of vectors and transmitted. In immuno-gold labelling transmission electron microscopy (IGL-TEM) analysis, CPmP-1 particles were distinctly labelled by antibodies directed against the LCV but not LIYV CPm. In contrast, CPmP-4 particles were not labelled by antibodies directed against the LCV or LIYV CPm, while CPmP-2 and -3 particles were weakly labelled by anti-LIYV CPm but not anti-LCV CPm antibodies. The unique antibody recognition and binding pattern of CPmP-1 was also displayed in the foreguts of whitefly vectors that fed on CPmP-1 virions. These results are consistent with the hypothesis that the chimeric CPm of CPmP-1 is incorporated into functional virions, with the LCV CPm region being potentially exposed on the surface and accessible to anti-LCV CPm antibodies.
Collapse
Affiliation(s)
- James C. K. Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
- Center for Infectious Disease and Vector Research, University of California, Riverside, CA 92521, USA
| | - James H. C. Peng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Angel Y. S. Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Tongyan Tian
- California Department of Food and Agriculture, Sacramento, CA 95832, USA
| | - Jaclyn S. Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Thomas J. Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, TX, 77555, USA
| |
Collapse
|
10
|
Yang Z, Zhang Y, Wang G, Wen S, Wang Y, Li L, Xiao F, Hong N. The p23 of Citrus Tristeza Virus Interacts with Host FKBP-Type Peptidyl-Prolylcis-Trans Isomerase 17-2 and Is Involved in the Intracellular Movement of the Viral Coat Protein. Cells 2021; 10:934. [PMID: 33920690 PMCID: PMC8073322 DOI: 10.3390/cells10040934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Citrus tristeza virus is a member of the genus Closterovirus in the family Closteroviridae. The p23 of citrus tristeza virus (CTV) is a multifunctional protein and RNA silencing suppressor. In this study, we identified a p23 interacting partner, FK506-binding protein (FKBP) 17-2, from Citrus aurantifolia (CaFKBP17-2), a susceptible host, and Nicotiana benthamiana (NbFKBP17-2), an experimental host for CTV. The interaction of p23 with CaFKBP17-2 and NbFKBP17-2 were individually confirmed by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Subcellular localization tests showed that the viral p23 translocated FKBP17-2 from chloroplasts to the plasmodesmata of epidermal cells of N. benthamiana leaves. The knocked-down expression level of NbFKBP17-2 mRNA resulted in a decreased CTV titer in N. benthamiana plants. Further, BiFC and Y2H assays showed that NbFKBP17-2 also interacted with the coat protein (CP) of CTV, and the complexes of CP/NbFKBP17-2 rapidly moved in the cytoplasm. Moreover, p23 guided the CP/NbFKBP17-2 complexes to move along the cell wall. To the best of our knowledge, this is the first report of viral proteins interacting with FKBP17-2 encoded by plants. Our results provide insights for further revealing the mechanism of the CTV CP protein movement.
Collapse
Affiliation(s)
- Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Yongle Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Liu Li
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Feng Xiao
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
11
|
Chen AYS, Peng JHC, Polek M, Tian T, Ludman M, Fátyol K, Ng JCK. Comparative analysis identifies amino acids critical for citrus tristeza virus (T36CA) encoded proteins involved in suppression of RNA silencing and differential systemic infection in two plant species. MOLECULAR PLANT PATHOLOGY 2021; 22:64-76. [PMID: 33118689 PMCID: PMC7749750 DOI: 10.1111/mpp.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 05/06/2023]
Abstract
Complementary (c)DNA clones corresponding to the full-length genome of T36CA (a Californian isolate of Citrus tristeza virus with the T36 genotype), which shares 99.1% identity with that of T36FL (a T36 isolate from Florida), were made into a vector system to express the green fluorescent protein (GFP). Agroinfiltration of two prototype T36CA-based vectors (pT36CA) to Nicotiana benthamiana plants resulted in local but not systemic GFP expression/viral infection. This contrasted with agroinfiltration of the T36FL-based vector (pT36FL), which resulted in both local and systemic GFP expression/viral infection. A prototype T36CA systemically infected RNA silencing-defective N. benthamiana lines, demonstrating that a genetic basis for its defective systemic infection was RNA silencing. We evaluated the in planta bioactivity of chimeric pT36CA-pT36FL constructs and the results suggested that nucleotide variants in several open reading frames of the prototype T36CA could be responsible for its defective systemic infection. A single amino acid substitution in each of two silencing suppressors, p20 (S107G) and p25 (G36D), of prototype T36CA facilitated its systemic infectivity in N. benthamiana (albeit with reduced titre relative to that of T36FL) but not in Citrus macrophylla plants. Enhanced virus accumulation and, remarkably, robust systemic infection of T36CA in N. benthamiana and C. macrophylla plants, respectively, required two additional amino acid substitutions engineered in p65 (N118S and S158L), a putative closterovirus movement protein. The availability of pT36CA provides a unique opportunity for comparative analysis to identify viral coding and noncoding nucleotides or sequences involved in functions that are vital for in planta infection.
Collapse
Affiliation(s)
- Angel Y. S. Chen
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - James H. C. Peng
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - MaryLou Polek
- National Clonal Germplasm Repository for Citrus & DatesUSDA ARSRiversideCaliforniaUSA
| | - Tongyan Tian
- California Department of Food and AgricultureSacramentoCaliforniaUSA
| | - Márta Ludman
- Agricultural Biotechnology InstituteNational Research and Innovation CenterHungary
| | - Károly Fátyol
- Agricultural Biotechnology InstituteNational Research and Innovation CenterHungary
| | - James C. K. Ng
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
12
|
Dao TNM, Kang SH, Bak A, Folimonova SY. A Non-Conserved p33 Protein of Citrus Tristeza Virus Interacts with Multiple Viral Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:859-870. [PMID: 32141354 DOI: 10.1094/mpmi-11-19-0328-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The RNA genome of citrus tristeza virus (CTV), one of the most damaging viral pathogens of citrus, contains 12 open reading frames resulting in production of at least 19 proteins. Previous studies on the intraviral interactome of CTV revealed self-interaction of the viral RNA-dependent RNA polymerase, the major coat protein (CP), p20, p23, and p33 proteins, while heterologous interactions between the CTV proteins have not been characterized. In this work, we examined interactions between the p33 protein, a nonconserved protein of CTV, which performs multiple functions in the virus infection cycle and is needed for virus ability to infect the extended host range, with other CTV proteins shown to mediate virus interactions with its plant hosts. Using yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays, we demonstrated that p33 interacts with three viral proteins, i.e., CP, p20, and p23, in vivo and in planta. Coexpression of p33, which is an integral membrane protein, resulted in a shift in the localization of the p20 and p23 proteins toward the subcellular crude-membrane fraction. Upon CTV infection, the four proteins colocalized in the CTV replication factories. In addition, three of them, CP, p20, and p23, were found in the p33-formed membranous structures. Using bioinformatic analyses and mutagenesis, we found that the N-terminus of p33 is involved in the interactions with all three protein partners. A potential role of these interactions in virus ability to infect the extended host range is discussed.
Collapse
Affiliation(s)
- Thi Nguyet Minh Dao
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | - Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | - Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | | |
Collapse
|
13
|
Martínez-Turiño S, García JA. Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more. Adv Virus Res 2020; 108:165-211. [PMID: 33837716 DOI: 10.1016/bs.aivir.2020.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Potyvirus genus clusters a significant and expanding number of widely distributed plant viruses, responsible for large losses impacting most crops of economic interest. The potyviral genome is a single-stranded, linear, positive-sense RNA of around 10kb that is encapsidated in flexuous rod-shaped filaments, mostly made up of a helically arranged coat protein (CP). Beyond its structural role of protecting the viral genome, the potyviral CP is a multitasking protein intervening in practically all steps of the virus life cycle. In particular, interactions between the CP and the viral RNA must be tightly controlled to allow the correct assignment of the RNA to each of its functions through the infection process. This review attempts to bring together the most relevant available information regarding the architecture and modus operandi of potyviral CP and virus particles, highlighting significant discoveries, but also substantial gaps in the existing knowledge on mechanisms orchestrating virion assembly and disassembly. Biotechnological applications based on potyvirus nanoparticles is another important topic addressed here.
Collapse
|
14
|
Liu J, Li L, Zhao H, Zhou Y, Wang H, Li Z, Zhou C. Titer Variation of Citrus Tristeza Virus in Aphids at Different Acquisition Access Periods and Its Association with Transmission Efficiency. PLANT DISEASE 2019; 103:874-879. [PMID: 30893011 DOI: 10.1094/pdis-05-18-0811-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tristeza, caused by citrus tristeza virus (CTV; Closterovirus, Closteroviridae), is of significant economic importance. Tristeza epidemics have caused severe declines in productivity, and even death, of millions of citrus trees on sour orange rootstock in many regions all over the world. In the field, CTV is most efficiently vectored by the brown citrus aphid (Toxoptera citricida (Kirkaldy)) in a semipersistent manner. The transmission efficiency of the vector is influenced by its acquisition access period (AAP) for CTV. A real-time RT-PCR assay using SYBR Green fluorescent dye was used to estimate the CTV titers in groups of 15 aphids under AAPs after 0.5 to 48 h for three CTV isolates (CT11A, CT16-2, and CTLJ). Similar trends for CTV titer in viruliferous aphids were displayed for the three isolates. The maximum CTV titer was at AAP 6 h for isolates CT11A and CT16-2, and at 4 h for isolate CTLJ. During the AAPs from 0.5 to 6 h, the mean CTV titer of CT16-2 increased from 7.8 × 104 to 1.71 × 107 copies per 15 aphids, and was correlated with an increase in transmission rate from 20 to 90.9%. This suggests that the transmission efficiency is positively correlated with viral titer in the insect from 0.5 h until 6 h AAPs. While a downward trend in CTV titer was observed after a 6-h AAP, the transmission rate remained higher than 90% up to 48 h. These results indicate that factors other than the virus titer in the vector contribute to successful transmission under long acquisition conditions. This is the first detailed quantitative analysis of CTV in its main vector species following different AAPs and its association with transmission efficiency, and should enhance our understanding of T. citricida-CTV interactions.
Collapse
Affiliation(s)
- Jinxiang Liu
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| | - Lingdi Li
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| | - Hengyan Zhao
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| | - Yan Zhou
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| | - Hongsu Wang
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| | - Zhongan Li
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| | - Changyong Zhou
- Citrus Research Institute, Southwest University / Chinese Academy of Agricultural Sciences, Chongqing 400712, PRC
| |
Collapse
|
15
|
Ruiz-Ruiz S, Navarro B, Peña L, Navarro L, Moreno P, Di Serio F, Flores R. Citrus tristeza virus: Host RNA Silencing and Virus Counteraction. Methods Mol Biol 2019; 2015:195-207. [PMID: 31222705 DOI: 10.1007/978-1-4939-9558-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To dissect the host RNA silencing response incited by citrus tristeza virus (CTV, genus Closterovirus), a (+) ssRNA of ~19300 nt, and the counter reaction deployed by the virus via its three RNA silencing suppressors (RSS), the small RNAs (sRNAs) of three virus-host combinations were deep sequenced. The subsequent analysis indicated that CTV sRNAs (1) constitute more than half of the total sRNAs in the susceptible Mexican lime and sweet orange, while only 3.5% in the restrictive sour orange; (2) are mostly of 21-22 nt, with those of (+) sense predominating slightly; and (3) derive from all the CTV genome, as evidenced by its entire recomposition from viral sRNA contigs but adopt an asymmetric pattern with a hotspot mapping at the 3'-terminal ~2500 nt. The citrus homologues of Arabidopsis Dicer-like (DCL) 4 and 2 most likely generate the 21 and 22 nt CTV sRNAs, respectively, by dicing the gRNA and the 3' co-terminal sgRNAs and, particularly, their double-stranded forms accumulating in infected cells. The plant sRNA profile, very similar and dominated by the 24 nt sRNAs in the three mock-inoculated controls, displayed a major reduction of the 24 nt sRNAs in Mexican lime and sweet orange, but not in sour orange. CTV infection also influences the levels of certain microRNAs.The high accumulation of CTV sRNAs in two of the citrus hosts examined suggests that it is not their synthesis, but their function, the target of the RSS encoded by CTV: p25 (intercellular), p23 (intracellular) and p20 (both). The two latter might block the loading of CTV sRNAs into the RNA silencing complex or interfere with it through alternative mechanisms. Of the three CTV RSS, p23 is the one that has been more thoroughly studied. It is a multifunctional RNA-binding protein with a putative Zn finger domain and basic motifs that (1) has no homologues in other closteroviruses, (2) accumulates in the nucleolus and plasmodesmata, (3) regulates the asymmetric balance of CTV (+) and (-) RNA strands, and (4) induces CTV syndromes and stimulates systemic infection in certain citrus species when expressed as a transgene ectopically or in phloem-associated cells.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Leandro Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Pedro Moreno
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
16
|
Acanda Y, Wang C, Levy A. Gene Expression in Citrus Plant Cells Using Helios ® Gene Gun System for Particle Bombardment. Methods Mol Biol 2019; 2015:219-228. [PMID: 31222707 DOI: 10.1007/978-1-4939-9558-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To understand how Citrus tristeza virus (CTV) replicates and moves inside the plant, it is critical to study the cellular interactions and localization of its encoded proteins. However, due to technical limitations, so far these studies have been limited to the nonnatural host Nicotiana benthamiana.Particle bombardment is a physical method to deliver nucleic acid and other biomolecules into the cells directly. The Helios® gene gun (Bio-Rad, Hercules, CA) is a handheld device that uses a low-pressure helium pulse to accelerate high-density, subcellular-sized particles into a wide variety of targets for in vivo and in vitro applications. Here, we describe a detail protocol for either transient or stable gene expression in citrus leaf cells using this gene gun. This protocol can be used to study protein-protein interactions and subcellular localization in different kinds of plant cells.
Collapse
Affiliation(s)
- Yosvanis Acanda
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
17
|
Jarugula S, Gowda S, Dawson WO, Naidu RA. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5' non-translated region for replication and virion formation. Virology 2018; 523:89-99. [PMID: 30103103 DOI: 10.1016/j.virol.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
Infectious cDNA clones were developed for Grapevine leafroll-associated virus 3 (GLRaV-3, genus Ampelovirus, family Closteroviridae). In vitro RNA transcripts generated from cDNA clones showed replication via the production of 3'-coterminal subgenomic (sg) mRNAs in Nicotiana benthamiana protoplasts. The detection of sgRNAs and the recovery of progeny recombinant virions from N. benthamiana leaves agroinfiltrated with full-length cDNA clones confirmed RNA replication and virion formation. The 5' non-translated region (5' NTR) of GLRaV-3 was exchangeable between genetic variants and complement the corresponding cognate RNA functions in trans. Mutational analysis of the 5' NTR in minireplicon cDNA clones showed that the conserved 40 nucleotides at the 5'-terminus were indispensable for replication, compared to downstream variable portion of the 5' NTR. Some of the functional mutations in the 5' NTR were tolerated in full-length cDNA clones and produced sgRNAs and virions in N. benthamiana leaves, whereas other mutations affected replication and virion formation.
Collapse
Affiliation(s)
- Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States.
| |
Collapse
|
18
|
Chen AYS, Watanabe S, Yokomi R, Ng JCK. Nucleotide heterogeneity at the terminal ends of the genomes of two California Citrus tristeza virus strains and their complete genome sequence analysis. Virol J 2018; 15:141. [PMID: 30219073 PMCID: PMC6139129 DOI: 10.1186/s12985-018-1041-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background The non-translated regions at the genome ends of RNA viruses serve diverse functions and can exhibit various levels of nucleotide (nt) heterogeneity. However, the extent of nt heterogeneity at the extreme termini of Citrus tristeza virus (CTV) genomes has not been comprehensively documented. This study aimed to characterize two widely prevalent CTV genotypes, T36-CA and T30-CA, from California that have not been sequenced or analyzed substantially. The information obtained will be used in our ongoing effort to construct the infectious complementary (c) DNA clones of these viruses. Methods The terminal nts of the viral genomes were identified by sequencing cDNA clones of the plus- and/or minus-strand of the viral double-stranded (ds) RNAs generated using 5′ and 3′ rapid amplification of cDNA ends. Cloned cDNAs corresponding to the complete genome sequences of both viruses were generated using reverse transcription-polymerase chain reactions, sequenced, and subjected to phylogenetic analysis. Results Among the predominant terminal nts identified, some were identical to the consensus sequences in GenBank, while others were different or unique. Remarkably, one of the predominant 5′ nt variants of T36-CA contained the consensus nts “AATTTCAAA” in which a highly conserved cytidylate, seen in all other full-length T36 sequences, was absent. As expected, but never systematically verified before, unique variants with additional nt (s) incorporated upstream of the 5′ terminal consensus nts of T36-CA and T30-CA were also identified. In contrast to the extreme 5′ terminal nts, those at the extreme 3′ termini of T36-CA and T30-CA were more conserved compared to the reference sequences, although nt variants were also found. Notably, an additional thymidylate at the extreme 3′ end was identified in many T36-CA sequences. Finally, based on pairwise comparisons and phylogenetic analysis with multiple reference sequences, the complete sequences of both viruses were found to be highly conserved with those of the respective genotypes. Conclusions The extreme terminal nts in the T36-CA and T30-CA genomes were identified, revealing new insights on the heterogeneity of these CTV genomic regions. T36-CA and T30-CA were the first and the second genotypes, respectively, of CTV originating from California to be completely sequenced and analyzed. Electronic supplementary material The online version of this article (10.1186/s12985-018-1041-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angel Y S Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Shizu Watanabe
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Raymond Yokomi
- United States Department of Agriculture, Agricultural Research Service, Parlier, CA, 93648, USA
| | - James C K Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA. .,Center for Infectious Diseases and Vector Research, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
19
|
Zheng L, Wu L, Postman J, Liu H, Li R. Molecular characterization and detection of a new closterovirus identified from blackcurrant by high-throughput sequencing. Virus Genes 2018; 54:828-832. [PMID: 30206806 DOI: 10.1007/s11262-018-1598-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
Two large contigs with high sequence similarities to several closteroviruses were identified by high-throughput sequencing from a blackcurrant plant. The complete genome of this new virus was determined to be 17,320 nucleotides. Its genome contains ten open reading frames (ORF) that include, in the 5'-3' direction, a large ORF encoding a putative viral polyprotein (ORF 1a) and nine ORFs that encode RNA-dependent RNA polymerase (RdRp, ORF 1b), p6 (ORF 2), heat shock protein 70-like protein (Hsp70h, ORF 3), Hsp-90-like protein (p61, ORF 4), CP minor (ORF 5), CP (ORF 6), p17 (ORF 7), p11 (ORF 8), and p26 (ORF 9), respectively. BCCV-1 shares nucleotide sequence identities of 43-45% with other 9 closteroviruses at genome sequences. The amino acid sequence identities between BCCV-1 and the closteroviruses were 49-55% (RdRp), 37-41% (Hsp70h), 19-33% (p61), 26-38% (CPm), and 19-28% (CP), respectively. Phylogenetic analysis of Hsp70h sequences placed the new virus with members of genus Closterovirus in the same group. The results indicate that this new virus, which is provisionally named as Blackcurrant closterovirus 1, should represent a new species of the genus Closterovirus. A RT-PCR was developed and used to detect BCCV-1 in more germplasm accessions of Ribes spp.
Collapse
Affiliation(s)
- Luping Zheng
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Wu
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.,Key Laboratory of Poyang Lake Environment and Resource, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Joseph Postman
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Huawei Liu
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Ruhui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
20
|
Kang SH, Atallah OO, Sun YD, Folimonova SY. Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins. Virology 2017; 514:192-202. [PMID: 29197719 DOI: 10.1016/j.virol.2017.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/14/2023]
Abstract
Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Osama O Atallah
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Yong-Duo Sun
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
21
|
Donda BP, Jarugula S, Naidu RA. An Analysis of the Complete Genome Sequence and Subgenomic RNAs Reveals Unique Features of the Ampelovirus, Grapevine leafroll-associated virus 1. PHYTOPATHOLOGY 2017; 107:1069-1079. [PMID: 28686140 DOI: 10.1094/phyto-02-17-0061-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite being the first closterovirus documented in grapevines (Vitis sp.), the molecular biology of Grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus, family Closteroviridae) is still in its infancy. In this study, the complete genome sequence of two GLRaV-1 isolates was determined to be 18,731 (isolate WA-CH) and 18,946 (isolate WA-PN) nucleotides (nt). The genome of WA-CH and WA-PN isolates encodes nine putative open reading frames (ORFs) and the arrangement of these ORFs in both isolates was similar to that of Australian and Canadian isolates. In addition to two divergent copies of the coat protein (CP), the genome of GLRaV-1 isolates contain CP-homologous domain in four genes, making the virus unique among Closteroviridae members. The 5' and 3' nontranslated regions (NTRs) of WA-CH and WA-PN isolates showed differences in size and sequence composition, with 5' NTR having variable number of ∼65-nt-long repeats. Using the 5' NTR sequences, a reverse transcription-polymerase chain reaction and restriction fragment length polymorphism method was developed to distinguish GLRaV-1 variants in vineyards. Northern analysis of total RNA from GLRaV-1-infected grapevine samples revealed three subgenomic RNAs (sgRNAs), corresponding tentatively to CP, p21, and p24 ORFs, present at higher levels, with p24 sgRNA observed at relatively higher abundance than the other two sgRNAs. The 5' terminus of sgRNAs corresponding to CP, CPd1, CPd2, p21, and p24 were mapped to the virus genome and the leader sequence for these five sgRNAs determined to be 68, 27, 15, 49, and 18 nt, respectively. Taken together, this study provided a foundation for further elucidation of the comparative molecular biology of closteroviruses infecting grapevines.
Collapse
Affiliation(s)
- Bhanu Priya Donda
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Sridhar Jarugula
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Rayapati A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| |
Collapse
|
22
|
Kaur N, Chen W, Zheng Y, Hasegawa DK, Ling KS, Fei Z, Wintermantel WM. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes. BMC Genomics 2017; 18:370. [PMID: 28494755 PMCID: PMC5426028 DOI: 10.1186/s12864-017-3751-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little is known how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) is transmitted by the whitefly (Bemisia tabaci) in a semipersistent manner and infects several globally important agricultural and ornamental crops, including tomato. RESULTS To determine changes in global gene regulation in whiteflies after feeding on tomato plants infected with a crinivirus (ToCV), comparative transcriptomic analysis was performed using RNA-Seq on whitefly (Bemisia tabaci MEAM1) populations after 24, 48, and 72 h acquisition access periods on either ToCV-infected or uninfected tomatoes. Significant differences in gene expression were detected between whiteflies fed on ToCV-infected tomato and those fed on uninfected tomato among the three feeding time periods: 447 up-regulated and 542 down-regulated at 24 h, 4 up-regulated and 7 down-regulated at 48 h, and 50 up-regulated and 160 down-regulated at 72 h. Analysis revealed differential regulation of genes associated with metabolic pathways, signal transduction, transport and catabolism, receptors, glucose transporters, α-glucosidases, and the uric acid pathway in whiteflies fed on ToCV-infected tomatoes, as well as an abundance of differentially regulated novel orphan genes. Results demonstrate for the first time, a specific and temporally regulated response by the whitefly to feeding on a host plant infected with a semipersistently transmitted virus, and advance the understanding of the whitefly vector-virus interactions that facilitate virus transmission. CONCLUSION Whitefly transmission of semipersistent viruses is believed to require specific interactions between the virus and its vector that allow binding of virus particles to factors within whitefly mouthparts. Results provide a broader understanding of the potential mechanism of crinivirus transmission by whitefly, aid in discerning genes or loci in whitefly that influence virus interactions or transmission, and subsequently facilitate development of novel, genetics-based control methods against whitefly and whitefly-transmitted viruses.
Collapse
Affiliation(s)
- Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA 93905 USA
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - Yi Zheng
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - Daniel K. Hasegawa
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Kai-Shu Ling
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - William M. Wintermantel
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA 93905 USA
| |
Collapse
|
23
|
Kang SH, Dao TNM, Kim OK, Folimonova SY. Self-interaction of Citrus tristeza virus p33 protein via N-terminal helix. Virus Res 2017; 233:29-34. [PMID: 28279804 DOI: 10.1016/j.virusres.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 11/28/2022]
Abstract
Citrus tristeza virus (CTV), the most economically important viral pathogen of citrus, encodes a unique protein, p33. CTV p33 shows no similarity with other known proteins, yet plays an important role in viral pathogenesis: it extends the virus host range and mediates virus ability to exclude superinfection by other variants of the virus. Previously we demonstrated that p33 is an integral membrane protein and appears to share characteristics of viral movement proteins. In this study, we show that the p33 protein self-interacts in vitro and in vivo using co-immunoprecipitation, yeast two hybrid, and bimolecular fluorescence complementation assays. Furthermore, a helix located at the N-terminus of the protein is required and sufficient for the protein self-interaction.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Thi Nguyet Minh Dao
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Ok-Kyung Kim
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
24
|
Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida. Appl Environ Microbiol 2016; 82:6294-6302. [PMID: 27520823 DOI: 10.1128/aem.01914-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. IMPORTANCE Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere with the CTV binding to its insect vector to block the transmission.
Collapse
|
25
|
Harper SJ, Killiny N, Tatineni S, Gowda S, Cowell SJ, Shilts T, Dawson WO. Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid. Arch Virol 2016; 161:3555-3559. [PMID: 27644950 DOI: 10.1007/s00705-016-3070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
Abstract
Vector transmission is an important part of the viral infection cycle, yet for many viruses little is known about this process, or how viral sequence variation affects transmission efficacy. Here we examined the effect of substituting genes from the highly transmissible FS577 isolate of citrus tristeza virus (CTV) in to the poorly transmissible T36-based infectious clone. We found that introducing p65 or p61 sequences from FS577 significantly increased transmission efficacy. Interestingly, replacement of both genes produced a greater increase than either gene alone, suggesting that CTV transmission requires the concerted action of co-evolved p65 and p61 proteins.
Collapse
Affiliation(s)
- S J Harper
- Department of Plant Pathology, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA.
| | - N Killiny
- Department of Plant Pathology, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| | - S Tatineni
- U.S. Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - S Gowda
- Department of Plant Pathology, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| | - S J Cowell
- Department of Plant Pathology, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| | - T Shilts
- Department of Plant Pathology, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| | - W O Dawson
- Department of Plant Pathology, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| |
Collapse
|
26
|
Solovyev AG, Makarov VV. Helical capsids of plant viruses: architecture with structural lability. J Gen Virol 2016; 97:1739-1754. [DOI: 10.1099/jgv.0.000524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A. G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - V. V. Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Wang F, Qi S, Gao Z, Akinyemi IA, Xu D, Zhou B. Complete genome sequence of tobacco virus 1, a closterovirus from Nicotiana tabacum. Arch Virol 2016; 161:1087-90. [PMID: 26795159 DOI: 10.1007/s00705-015-2739-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/19/2015] [Indexed: 11/30/2022]
Abstract
The complete genome sequence of a novel virus, provisionally named tobacco virus 1 (TV1), was determined, and this virus was identified in leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic and yellowing symptoms in Anhui Province, China. The genome sequence of TV1 consists of 15,395 nucleotides with 61.6 % nucleotide sequence identity to mint virus 1 (MV1). Its genome organization is similar to that of MV1, containing nine open reading frames (ORFs) that potentially encode proteins with putative functions in virion assembly, cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the heat shock protein 70 homolog (HSP70h) placed TV1 alongside members of the genus Closterovirus in the family Closteroviridae. To our knowledge, this study is the first report of the complete genome sequence of a closterovirus identified in tobacco.
Collapse
Affiliation(s)
- Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Shuishui Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhengliang Gao
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Ibukun A Akinyemi
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Dafeng Xu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Benguo Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
28
|
Bak A, Folimonova SY. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 2015; 485:86-95. [PMID: 26210077 DOI: 10.1016/j.virol.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.
Collapse
Affiliation(s)
- Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
29
|
Benítez-Galeano MJ, Rubio L, Bertalmío A, Maeso D, Rivas F, Colina R. Phylogenetic Studies of the Three RNA Silencing Suppressor Genes of South American CTV Isolates Reveal the Circulation of a Novel Genetic Lineage. Viruses 2015; 7:4152-68. [PMID: 26205407 PMCID: PMC4517143 DOI: 10.3390/v7072814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Citrus Tristeza Virus (CTV) is the most economically important virus of citrus worldwide. Genetic diversity and population structure of CTV isolates from all citrus growing areas from Uruguay were analyzed by RT-PCR and cloning of the three RNA silencing suppressor genes (p25, p20 and p23). Bayesian phylogenetic analysis revealed the circulation of three known genotypes (VT, T3, T36) in the country, and the presence of a new genetic lineage composed by isolates from around the world, mainly from South America. Nucleotide and amino acid identity values for this new genetic lineage were both higher than 97% for the three analyzed regions. Due to incongruent phylogenetic relationships, recombination analysis was performed using Genetic Algorithms for Recombination Detection (GARD) and SimPlot software. Recombination events between previously described CTV isolates were detected. High intra-sample variation was found, confirming the co-existence of different genotypes into the same plant. This is the first report describing: (1) the genetic diversity of Uruguayan CTV isolates circulating in the country and (2) the circulation of a novel CTV genetic lineage, highly present in the South American region. This information may provide assistance to develop an effective cross-protection program.
Collapse
Affiliation(s)
- María José Benítez-Galeano
- Laboratorio de Virología Molecular, Centro Universitario Regional Noroeste (CENUR Noroeste), Universidad de la Republica (UdelaR), Rivera 1350, 50000 Salto, Uruguay.
| | - Leticia Rubio
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Ana Bertalmío
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Diego Maeso
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Fernando Rivas
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional Noroeste (CENUR Noroeste), Universidad de la Republica (UdelaR), Rivera 1350, 50000 Salto, Uruguay.
| |
Collapse
|
30
|
Yu H, Qi S, Chang Z, Rong Q, Akinyemi IA, Wu Q. Complete genome sequence of a novel velarivirus infecting areca palm in China. Arch Virol 2015; 160:2367-70. [PMID: 26088445 DOI: 10.1007/s00705-015-2489-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
The complete genome of a novel virus, provisionally named areca palm velarivirus 1 (APV1), was identified in areca palm exhibiting leaf yellowing symptoms in Hainan province, China. The genome of APV1 consists of 16,080 nucleotides and possesses 11 open reading frames (ORFs), sharing 56.4% nucleotide sequence identity with little cherry virus 1 (NC_001836.1). The genome organization of APV1 is highly similar to that of members of the genus Velarivirus (family Closteroviridae). Phylogenetic analysis placed APV1 together with members of the genus Velarivirus.
Collapse
Affiliation(s)
- Hongmei Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | | | | | | | | | | |
Collapse
|
31
|
He Y, Yang Z, Hong N, Wang G, Ning G, Xu W. Deep sequencing reveals a novel closterovirus associated with wild rose leaf rosette disease. MOLECULAR PLANT PATHOLOGY 2015; 16:449-58. [PMID: 25187347 PMCID: PMC6638334 DOI: 10.1111/mpp.12202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A bizarre virus-like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as 'wild rose leaf rosette disease' (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named 'rose leaf rosette-associated virus' (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17,653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus.
Collapse
Affiliation(s)
- Yan He
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Indoor Conservation Center of Virus-free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, China
| | | | | | | | | | | |
Collapse
|
32
|
Soler N, Fagoaga C, López C, Moreno P, Navarro L, Flores R, Peña L. Symptoms induced by transgenic expression of p23 from Citrus tristeza virus in phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. MOLECULAR PLANT PATHOLOGY 2015; 16:388-99. [PMID: 25171669 PMCID: PMC6638416 DOI: 10.1111/mpp.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) is phloem restricted in natural citrus hosts. The 23-kDa protein (p23) encoded by the virus is an RNA silencing suppressor and a pathogenicity determinant. The expression of p23, or its N-terminal 157-amino-acid fragment comprising the zinc finger and flanking basic motifs, driven by the constitutive 35S promoter of cauliflower mosaic virus, induces CTV-like symptoms and other aberrations in transgenic citrus. To better define the role of p23 in CTV pathogenesis, we compared the phenotypes of Mexican lime transformed with p23-derived transgenes from the severe T36 and mild T317 CTV isolates under the control of the phloem-specific promoter from Commelina yellow mottle virus (CoYMV) or the 35S promoter. Expression of the constructs restricted to the phloem induced a phenotype resembling CTV-specific symptoms (vein clearing and necrosis, and stem pitting), but not the non-specific aberrations (such as mature leaf epinasty and yellow pinpoints, growth cessation and apical necrosis) observed when p23 was ectopically expressed. Furthermore, vein necrosis and stem pitting in Mexican lime appeared to be specifically associated with p23 from T36. Phloem-specific accumulation of the p23Δ158-209(T36) fragment was sufficient to induce the same anomalies, indicating that the region comprising the N-terminal 157 amino acids of p23 is responsible (at least in part) for the vein clearing, stem pitting and, possibly, vein corking in this host.
Collapse
Affiliation(s)
- Nuria Soler
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apdo. Oficial, Moncada, Valencia, 46113, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Kang SH, Bak A, Kim OK, Folimonova SY. Membrane association of a nonconserved viral protein confers virus ability to extend its host range. Virology 2015; 482:208-17. [PMID: 25880112 DOI: 10.1016/j.virol.2015.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022]
Abstract
Citrus tristeza virus (CTV), the largest and most complex member of the family Closteroviridae, encodes a unique protein, p33, which shows no homology with other known proteins, however, plays an important role in virus pathogenesis. In this study, we examined some of the characteristics of p33. We show that p33 is a membrane-associated protein that is inserted into the membrane via a transmembrane helix formed by hydrophobic amino acid residues at the C-terminal end of the protein. Removal of this transmembrane domain (TMD) dramatically altered the intracellular localization of p33. Moreover, the TMD alone was sufficient to confer membrane localization of an unrelated protein. Finally, a CTV variant that produced a truncated p33 lacking the TMD was unable to infect sour orange, one of the selected virus hosts, which infection requires p33, suggesting that membrane association of p33 is important for the ability of CTV to extend its host range.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Ok-Kyung Kim
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
34
|
Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P. Citrus tristeza virus: making an ally from an enemy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:137-55. [PMID: 25973695 DOI: 10.1146/annurev-phyto-080614-120012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Virus diseases of perennial trees and vines have characteristics not amenable to study using small model annual plants. Unique disease symptoms such as graft incompatibilities and stem pitting cause considerable crop losses. Also, viruses in these long-living plants tend to accumulate complex populations of viruses and strains. Considerable progress has been made in understanding the biology and genetics of Citrus tristeza virus (CTV) and in developing it into a tool for crop protection and improvement. The diseases in tree and vine crops have commonalities for which CTV can be used to develop a baseline. The purpose of this review is to provide a necessary background of systems and reagents developed for CTV that can be used for continued progress in this area and to point out the value of the CTV-citrus system in answering important questions on plant-virus interactions and developing new methods for controlling plant diseases.
Collapse
Affiliation(s)
- William O Dawson
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850; ,
| | | | | | | |
Collapse
|
35
|
Naidu RA, Maree HJ, Burger JT. Grapevine leafroll disease and associated viruses: a unique pathosystem. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:613-34. [PMID: 26243729 DOI: 10.1146/annurev-phyto-102313-045946] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine leafroll is the most complex and intriguing viral disease of grapevine (Vitis spp.). Several monopartite closteroviruses (family Closteroviridae) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll-associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.
Collapse
Affiliation(s)
- Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350;
| | | | | |
Collapse
|
36
|
Wu GW, Tang M, Wang GP, Jin FY, Yang ZK, Cheng LJ, Hong N. Genetic diversity and evolution of two capsid protein genes of citrus tristeza virus isolates from China. Arch Virol 2014; 160:787-94. [PMID: 25387862 DOI: 10.1007/s00705-014-2281-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
The genetic diversity and population structure of citrus tristeza virus (CTV) isolates from China were investigated based on partial sequences spanning the C-terminal end of p61 and the complete sequences of the CPm and CP genes. Phylogenetic analysis revealed five known groups (RB, T30, T36, HA and VT) and one new group (VI) consisting of only Chinese CTV isolates. Incongruent phylogenetic trees coupled with recombination analysis suggested several recombination events in the CPm gene. Positive selection was detected at codon 9 of CPm and codons 31, 41 and 68 of CP. The widespread CTV subpopulation AT-1 found in China has a unique amino acid insertion at the C-terminus of p61, which could increase CTV population complexity with implications for the evolutionary history of the virus. Our results suggest relevant roles for gene flow, purifying selection and recombination in shaping the CTV population in China.
Collapse
Affiliation(s)
- Guan-Wei Wu
- National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Folimonova SY, Harper SJ, Leonard MT, Triplett EW, Shilts T. Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs. Virology 2014; 468-470:462-471. [PMID: 25248160 DOI: 10.1016/j.virol.2014.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/17/2014] [Accepted: 08/30/2014] [Indexed: 01/08/2023]
Abstract
Superinfection exclusion (SIE), a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or closely related virus, has been described for different viruses, including important pathogens of humans, animals, and plants. Several mechanisms acting at various stages of the viral life cycle have been proposed to explain SIE. Most cases of SIE in plant virus systems were attributed to induction of RNA silencing, a host defense mechanism that is mediated by small RNAs. Here we show that SIE by Citrus tristeza virus (CTV) does not correlate with the production of viral small interfering RNAs (siRNAs). CTV variants, which differed in the SIE ability, had similar siRNAs profiles. Along with our previous observations that the exclusion phenomenon requires a specific viral protein, p33, the new data suggest that SIE by CTV is highly complex and appears to use different mechanisms than those proposed for other viruses.
Collapse
Affiliation(s)
- Svetlana Y Folimonova
- University of Florida, Department of Plant Pathology, 2550 Hull Road, Gainesville, FL 32611, USA.
| | - Scott J Harper
- University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Michael T Leonard
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
| | - Eric W Triplett
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
| | - Turksen Shilts
- University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| |
Collapse
|
38
|
Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP. Grapevine Leafroll: A Complex Viral Disease Affecting a High-Value Fruit Crop. PLANT DISEASE 2014; 98:1172-1185. [PMID: 30699617 DOI: 10.1094/pdis-08-13-0880-fe] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine (Vitis spp.) is one of the most widely grown fruit crops in the world. It is a deciduous woody perennial vine for which the cultivation of domesticated species began approximately 6,000 to 8,000 years ago in the Near East. Grapevines are broadly classified into red- and white-berried cultivars based on their fruit skin color, although yellow, pink, crimson, dark blue, and black-berried cultivars also exist. Grapevines can be subject to attacks by many different pests and pathogens, including graft-transmissible agents such as viruses, viroids, and phytoplasmas. Among the virus and virus-like diseases, grapevine leafroll disease (GLD) is by far the most widespread and economically damaging viral disease of grapevines in many regions around the world. The global expansion of the grape and wine industry has seen a parallel increase in the incidence and economic impact of GLD. Despite the fact that GLD was recognized as a potential threat to grape production for several decades, our knowledge of the nature of the disease is still quite limited due to a variety of challenges related to the complexity of this virus disease, the association of several distinct GLD-associated viruses, and contrasting symptoms in red- and white-berried cultivars. In view of the growing significance of GLD to wine grape production worldwide, this feature article provides an overview of the state of knowledge on the biology and epidemiology of the disease and describes management strategies currently deployed in vineyards.
Collapse
Affiliation(s)
| | | | - Marc Fuchs
- Cornell University, New York State Agricultural Experiment Station, Geneva
| | | | - Giovanni P Martelli
- Università degli Studi di Bari "Aldo Moro" and Istituto di Virologia Vegetale del CNR, UOS Bari, Bari, Italy
| |
Collapse
|
39
|
Valli A, Gallo A, Calvo M, de Jesús Pérez J, García JA. A novel role of the potyviral helper component proteinase contributes to enhance the yield of viral particles. J Virol 2014; 88:9808-18. [PMID: 24942578 PMCID: PMC4136352 DOI: 10.1128/jvi.01010-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/09/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The helper component proteinase (HCPro) is an indispensable, multifunctional protein of members of the genus Potyvirus and other viruses of the family Potyviridae. This viral factor is directly involved in diverse steps of viral infection, such as aphid transmission, polyprotein processing, and suppression of host antiviral RNA silencing. In this paper, we show that although a chimeric virus based on the potyvirus Plum pox virus lacking HCPro, which was replaced by a heterologous silencing suppressor, caused an efficient infection in Nicotiana benthamiana plants, its viral progeny had very reduced infectivity. Making use of different approaches, here, we provide direct evidence of a previously unknown function of HCPro in which the viral factor enhances the stability of its cognate capsid protein (CP), positively affecting the yield of virions and consequently improving the infectivity of the viral progeny. Site-directed mutagenesis revealed that the ability of HCPro to stabilize CP and enhance the yield of infectious viral particles is not linked to any of its previously known activities and helped us to delimit the region of HCPro involved in this function in the central region of the protein. Moreover, the function is highly specific and cannot be fulfilled by the HCPro of a heterologous potyvirus. The importance of this novel requirement in regulating the sorting of the viral genome to be subjected to replication, translation, and encapsidation, thus contributing to the synchronization of these viral processes, is discussed. IMPORTANCE Potyviruses form one of the most numerous groups of plant viruses and are a major cause of crop loss worldwide. It is well known that these pathogens make use of virus-derived multitasking proteins, as well as dedicated host factors, to successfully infect their hosts. Here, we describe a novel requirement for the proper yield and infectivity of potyviral progeny. In this case, such a function is performed by the extensively studied viral factor HCPro, which seems to use an unknown mechanism that is not linked to its previously described activities. To our knowledge, this is the first time that a factor different from capsid protein (CP) has been shown to be directly involved in the yield of potyviral particles. Based on the data presented here, we hypothesize that this capacity of HCPro might be involved in the coordination of mutually exclusive activities of the viral genome by controlling correct assembly of CP in stable virions.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - José de Jesús Pérez
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Nchongboh CG, Wu GW, Hong N, Wang GP. Protein–protein interactions between proteins of Citrus tristeza virus isolates. Virus Genes 2014; 49:456-65. [DOI: 10.1007/s11262-014-1100-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
|
41
|
Wu GW, Tang M, Wang GP, Wang CX, Liu Y, Yang F, Hong N. The epitope structure of Citrus tristeza virus coat protein mapped by recombinant proteins and monoclonal antibodies. Virology 2013; 448:238-46. [PMID: 24314654 DOI: 10.1016/j.virol.2013.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 11/24/2022]
Abstract
It has been known that there exists serological differentiation among Citrus tristeza virus (CTV) isolates. The present study reports three linear epitopes (aa 48-63, 97-104, and 114-125) identified by using bacterially expressed truncated coat proteins and ten monoclonal antibodies against the native virions of CTV-S4. Site-directed mutagenesis analysis demonstrated that the mutation D98G within the newly identified epitope (97)DDDSTGIT(104) abolished its reaction to MAbs 1, 4, and 10, and the presence of G98 in HB1-CP also resulted in its failure to recognize the three MAbs. Our results suggest that the conformational differences in the epitope I (48)LGTQQNAALNRDLFLT(63) between the CPs of isolates S4 and HB1 might contribute to the different reactions of two isolates to MAbs 5 and 6. This study provides new information for the antigenic structures of CTV, and will extend the understanding of the processes required for antibody binding and aid the development of epitope-based diagnostic tools.
Collapse
Affiliation(s)
- Guan-Wei Wu
- National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Thekke-Veetil T, Aboughanem-Sabanadzovic N, Keller KE, Martin RR, Sabanadzovic S, Tzanetakis IE. Molecular characterization and population structure of blackberry vein banding associated virus, new Ampelovirus associated with yellow vein disease. Virus Res 2013; 178:234-40. [PMID: 24126200 DOI: 10.1016/j.virusres.2013.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Blackberry yellow vein disease is the most important viral disease of blackberry in the United States. Experiments were conducted to characterize a new virus identified in symptomatic plants. Molecular analysis revealed a genome organization resembling Grapevine leafroll-associated virus 3, the type species of the genus Ampelovirus in the family Closteroviridae. The genome of the virus, provisionally named blackberry vein banding associated virus (BVBaV), consists of 18,643 nucleotides and contains 10 open reading frames (ORFs). These ORFs encode closterovirid signature replication-associated and quintuple gene block proteins, as well as four additional proteins of unknown function. Phylogenetic analyses of taxonomically relevant products consistently placed BVBaV in the same cluster with GLRaV-3 and other members of the subgroup I of the genus Ampelovirus. The virus population structure in the U.S. was studied using the replication associated polyprotein 1a, heat shock 70 homolog and minor coat proteins of 25 isolates. This study revealed significant intra-species variation without any clustering among isolates based on their geographic origin. Further analyses indicated that these proteins are under stringent purifying selections. High genetic variability and incongruent clustering of isolates suggested the possible involvement of recombination in the evolution of BVBaV.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | | | | | | | | | | |
Collapse
|
43
|
Roy A, Choudhary N, Hartung JS, Brlansky RH. The Prevalence of the Citrus tristeza virus Trifoliate Resistance Breaking Genotype Among Puerto Rican Isolates. PLANT DISEASE 2013; 97:1227-1234. [PMID: 30722435 DOI: 10.1094/pdis-01-12-0012-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus tristeza virus (CTV) isolates have been grouped into six genotypes: T3, T30, T36, VT, B165, and resistance breaking (RB) based on symptoms, host range, and genomic sequence data. The RB genotype has recently been identified with the novel property of replicating in trifoliate orange trees, a resistant host for the other five genotypes. Puerto Rican CTV isolate B301 caused mild vein clearing symptoms in Mexican lime but did not induce seedling yellows or stem pitting reactions in appropriate indicator Citrus spp., which are typical host reactions of the isolate T30. The isolate B301 was not detected by the genotype specific primer (GSP), which identifies the CTV-T3, -T30, -T36, -VT, and B165 genotypes. A primer pair for reverse transcription polymerase chain reaction (RT-PCR) amplification of the CTV-RB genotype was designed from the heat shock protein (p65) region based on the complete genomic sequences of trifoliate RB isolates from New Zealand available in the GenBank databases. The amplicon sequence from isolate B301 was 98% identical to that of the other trifoliate RB isolates. In addition, B301 was successfully inoculated into 'Carrizo citrange' (a trifoliate hybrid) but did not induce any symptoms. Furthermore, the complete genome sequence of B301 followed by the phylogenetic analysis revealed that the isolate is part of the RB clade with other CTV-RB isolates from New Zealand and Hawaii. Additional CTV isolates obtained from Puerto Rico were tested with the RB-GSP and confirmed the presence of trifoliate RB isolates in mixed infection with known CTV genotypes. Although this is the first report of a CTV trifoliate RB genotype from Puerto Rico, this genotype was present there prior to 1992.
Collapse
Affiliation(s)
- Avijit Roy
- University of Florida, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred 33850
| | - Nandlal Choudhary
- University of Florida, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred 33850
| | - John S Hartung
- USDA-ARS, MPPL, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - R H Brlansky
- University of Florida, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred 33850
| |
Collapse
|
44
|
Ambrós S, Ruiz-Ruiz S, Peña L, Moreno P. A genetic system for Citrus Tristeza Virus using the non-natural host Nicotiana benthamiana: an update. Front Microbiol 2013; 4:165. [PMID: 23847598 PMCID: PMC3698417 DOI: 10.3389/fmicb.2013.00165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/03/2013] [Indexed: 11/13/2022] Open
Abstract
In nature Citrus tristeza virus (CTV), genus Closterovirus, infects only the phloem cells of species of Citrus and related genera. Finding that the CTV T36 strain replicated in Nicotiana benthamiana (NB) protoplasts and produced normal virions allowed development of the first genetic system based on protoplast transfection with RNA transcribed from a full-genome cDNA clone, a laborious and uncertain system requiring several months for each experiment. We developed a more efficient system based on agroinfiltration of NB leaves with CTV-T36-based binary plasmids, which caused systemic infection in this non-natural host within a few weeks yielding in the upper leaves enough CTV virions to readily infect citrus by slash inoculation. Stem agroinoculation of citrus and NB plants with oncogenic strains of Agrobacterium tumefaciens carrying a CTV-T36 binary vector with a GUS marker, induced GUS positive galls in both species. However, while most NB tumors were CTV positive and many plants became systemically infected, no coat protein or viral RNA was detected in citrus tumors, even though CTV cDNA was readily detected by PCR in the same galls. This finding suggests (1) strong silencing or CTV RNA processing in transformed cells impairing infection progress, and (2) the need for using NB as an intermediate host in the genetic system. To maintain CTV-T36 in NB or assay other CTV genotypes in this host, we also tried to graft-transmit the virus from infected to healthy NB, or to mechanically inoculate NB leaves with virion extracts. While these trials were mostly unsuccessful on non-treated NB plants, agroinfiltration with silencing suppressors enabled for the first time infecting NB plants by side-grafting and by mechanical inoculation with virions, indicating that previous failure to infect NB was likely due to virus silencing in early infection steps. Using NB as a CTV host provides new possibilities to study virus-host interactions with a simple and reliable system.
Collapse
Affiliation(s)
- Silvia Ambrós
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias Moncada, Valencia, Spain
| | | | | | | |
Collapse
|
45
|
Kiss ZA, Medina V, Falk BW. Crinivirus replication and host interactions. Front Microbiol 2013; 4:99. [PMID: 23730299 PMCID: PMC3657685 DOI: 10.3389/fmicb.2013.00099] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/06/2013] [Indexed: 01/01/2023] Open
Abstract
Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense single-stranded RNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV) is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was developed. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as Beet yellows virus (BYV)-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA 1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA-binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP (major coat protein), CPm (minor coat protein), Hsp70h, and P59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5' end of RNA 2 as ORF 1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the endoplasmic reticulum as a Type III integral membrane protein. The other small protein, P9, is encoded by ORF 4 overlaps with ORF 3 that encodes the structural protein, P59. P9 seems to be unique to viruses in the genus Crinivirus, as no similar protein has been detected in viruses of the other two genera of the Closteroviridae.
Collapse
Affiliation(s)
- Zsofia A. Kiss
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | - Vicente Medina
- Department of Crop and Forest Sciences, University of LleidaLleida, Spain
| | - Bryce W. Falk
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| |
Collapse
|
46
|
Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. Citrus tristeza virus-host interactions. Front Microbiol 2013; 4:88. [PMID: 23717303 PMCID: PMC3653117 DOI: 10.3389/fmicb.2013.00088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022] Open
Abstract
Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases.
Collapse
Affiliation(s)
- W. O. Dawson
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. M. Garnsey
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Tatineni
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Y. Folimonova
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | - S. J. Harper
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Gowda
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| |
Collapse
|
47
|
Maree HJ, Almeida RPP, Bester R, Chooi KM, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AEC, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger JT. Grapevine leafroll-associated virus 3. Front Microbiol 2013; 4:82. [PMID: 23596440 PMCID: PMC3627144 DOI: 10.3389/fmicb.2013.00082] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/22/2013] [Indexed: 11/17/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most important grapevine viral diseases affecting grapevines worldwide. The impact on vine health, crop yield, and quality is difficult to assess due to a high number of variables, but significant economic losses are consistently reported over the lifespan of a vineyard if intervention strategies are not implemented. Several viruses from the family Closteroviridae are associated with GLD. However, Grapevine leafroll-associated virus 3 (GLRaV-3), the type species for the genus Ampelovirus, is regarded as the most important causative agent. Here we provide a general overview on various aspects of GLRaV-3, with an emphasis on the latest advances in the characterization of the genome. The full genome of several isolates have recently been sequenced and annotated, revealing the existence of several genetic variants. The classification of these variants, based on their genome sequence, will be discussed and a guideline is presented to facilitate future comparative studies. The characterization of sgRNAs produced during the infection cycle of GLRaV-3 has given some insight into the replication strategy and the putative functionality of the ORFs. The latest nucleotide sequence based molecular diagnostic techniques were shown to be more sensitive than conventional serological assays and although ELISA is not as sensitive it remains valuable for high-throughput screening and complementary to molecular diagnostics. The application of next-generation sequencing is proving to be a valuable tool to study the complexity of viral infection as well as plant pathogen interaction. Next-generation sequencing data can provide information regarding disease complexes, variants of viral species, and abundance of particular viruses. This information can be used to develop more accurate diagnostic assays. Reliable virus screening in support of robust grapevine certification programs remains the cornerstone of GLD management.
Collapse
Affiliation(s)
- Hans J. Maree
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Biotechnology Platform, Agricultural Research CouncilStellenbosch, South Africa
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Rachelle Bester
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Kar Mun Chooi
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Daniel Cohen
- The New Zealand Institute for Plant and Food ResearchAuckland, New Zealand
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Marc F. Fuchs
- Department of Plant Pathology and Plant-Microbe Biology, Cornell UniversityGeneva, NY, USA
| | - Deborah A. Golino
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | - Anna E. C. Jooste
- Plant Protection Research Institute, Agricultural Research CouncilPretoria, South Africa
| | - Giovanni P. Martelli
- Department of Soil, Plant and Food Sciences, University Aldo Moro of BariBari, Italy
| | - Rayapati A. Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State UniversityProsser, WA, USA
| | - Adib Rowhani
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | | | - Johan T. Burger
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| |
Collapse
|
48
|
Dolja VV, Koonin EV. The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology. Front Microbiol 2013; 4:83. [PMID: 23596441 PMCID: PMC3622897 DOI: 10.3389/fmicb.2013.00083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/22/2013] [Indexed: 12/24/2022] Open
Abstract
Important progress in understanding replication, interactions with host plants, and evolution of closteroviruses enabled engineering of several vectors for gene expression and virus-induced gene silencing. Due to the broad host range of closteroviruses, these vectors expanded vector applicability to include important woody plants such as citrus and grapevine. Furthermore, large closterovirus genomes offer genetic capacity and stability unrivaled by other plant viral vectors. These features provided immense opportunities for using closterovirus vectors for the functional genomics studies and pathogen control in economically valuable crops. This review briefly summarizes advances in closterovirus research during the last decade, explores the relationships between virus biology and vector design, and outlines the most promising directions for future application of closterovirus vectors.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA ; Center for Genome Research and Biocomputing, Oregon State University Corvallis, OR, USA
| | | |
Collapse
|
49
|
Abstract
RNA viruses face dynamic environments and are masters at adaptation. During their short 'lifespans', they must surmount multiple physical, anatomical and immunological challenges. Central to their adaptative capacity is the enormous genetic diversity that characterizes RNA virus populations. Although genetic diversity increases the rate of adaptive evolution, low replication fidelity can present a risk because excess mutations can lead to population extinction. In this Review, we discuss the strategies used by RNA viruses to deal with the increased mutational load and consider how this mutational robustness might influence viral evolution and pathogenesis.
Collapse
|
50
|
Verchot J. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. FRONTIERS IN PLANT SCIENCE 2012; 3:275. [PMID: 23230447 DOI: 10.3389/fpls.2012.00275/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/21/2012] [Indexed: 05/24/2023]
Abstract
Cellular chaperones and folding enzymes play central roles in the formation of positive-strand and negative-strand RNA virus infection. This article examines the key cellular chaperones and discusses evidence that these factors are diverted from their cellular functions to play alternative roles in virus infection. For most chaperones discussed, their primary role in the cell is to ensure protein quality control. They are system components that drive substrate protein folding, complex assembly or disaggregation. Their activities often depend upon co-chaperones and ATP hydrolysis. During plant virus infection, Hsp70 and Hsp90 proteins play central roles in the formation of membrane-bound replication complexes for certain members of the tombusvirus, tobamovirus, potyvirus, dianthovirus, potexvirus, and carmovirus genus. There are several co-chaperones, including Yjd1, RME-8, and Hsp40 that associate with the bromovirus replication complex, pomovirus TGB2, and tospovirus Nsm movement proteins. There are also examples of plant viruses that rely on chaperone systems in the endoplasmic reticulum (ER) to support cell-to-cell movement. TMV relies on calreticulin to promote virus intercellular transport. Calreticulin also resides in the plasmodesmata and plays a role in calcium sequestration as well as glycoprotein folding. The pomovirus TGB2 interacts with RME-8 in the endosome. The potexvirus TGB3 protein stimulates expression of ER resident chaperones via the bZIP60 transcription factor. Up-regulating factors involved in protein folding may be essential to handling the load of viral proteins translated along the ER. In addition, TGB3 stimulates SKP1 which is a co-factor in proteasomal degradation of cellular proteins. Such chaperones and co-factors are potential targets for antiviral defense.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|