1
|
Tan L, Xie XS, Lomvardas S. Genomic snowflakes: how the uniqueness of DNA folding allows us to smell the chemical universe. Curr Opin Genet Dev 2025; 92:102329. [PMID: 40107115 PMCID: PMC12068986 DOI: 10.1016/j.gde.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Olfactory receptor (OR) gene choice, the stable expression of one out of >2000 OR alleles by olfactory sensory neurons, constitutes a gene regulatory process that is driven by three-dimensional nuclear architecture. Moreover, the differentiation-dependent process that culminates in monogenic and monoallelic OR transcription represents a powerful demonstration of the rich mechanistic insight that single-cell genomics and multiomics can provide toward the understanding of a biological process. At this review, we describe the latest advances in the understanding of OR gene regulation and highlight important standing questions regarding the emerging specificity of ultra-long-range genomic interaction and the contribution of transcription and noncoding RNAs.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Neurobiology, Stanford University, Stanford, CA, USA. https://twitter.com/@tanlongzhi
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. https://twitter.com/@XieSunney
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Rufenacht KE, Asson AJ, Hossain K, Santoro SW. The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities. Genesis 2024; 62:e23611. [PMID: 38888221 PMCID: PMC11189617 DOI: 10.1002/dvg.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Olfactory sensory neurons (OSNs) are one of a few neuron types that are generated continuously throughout life in mammals. The persistence of olfactory sensory neurogenesis beyond early development has long been thought to function simply to replace neurons that are lost or damaged through exposure to environmental insults. The possibility that olfactory sensory neurogenesis may also serve an adaptive function has received relatively little consideration, largely due to the assumption that the generation of new OSNs is stochastic with respect to OSN subtype, as defined by the single odorant receptor gene that each neural precursor stochastically chooses for expression out of hundreds of possibilities. Accordingly, the relative birthrates of different OSN subtypes are predicted to be constant and impervious to olfactory experience. This assumption has been called into question, however, by evidence that the birthrates of specific OSN subtypes can be selectively altered by manipulating olfactory experience through olfactory deprivation, enrichment, and conditioning paradigms. Moreover, studies of recovery of the OSN population following injury provide further evidence that olfactory sensory neurogenesis may not be strictly stochastic with respect to subtype. Here we review this evidence and consider mechanistic and functional implications of the prospect that specific olfactory experiences can regulate olfactory sensory neurogenesis rates in a subtype-selective manner.
Collapse
Affiliation(s)
- Karlin E Rufenacht
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexa J Asson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stephen W Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
4
|
Ordway AJ, Helt RN, Johnston RJ. Transcriptional priming and chromatin regulation during stochastic cell fate specification. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230046. [PMID: 38432315 PMCID: PMC10909510 DOI: 10.1098/rstb.2023.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Stochastic cell fate specification, in which a cell chooses between two or more fates with a set probability, diversifies cell subtypes in development. Although this is a vital process across species, a common mechanism for these cell fate decisions remains elusive. This review examines two well-characterized stochastic cell fate decisions to identify commonalities between their developmental programmes. In the fly eye, two subtypes of R7 photoreceptors are specified by the stochastic ON/OFF expression of a transcription factor, spineless. In the mouse olfactory system, olfactory sensory neurons (OSNs) randomly select to express one copy of an olfactory receptor (OR) gene out of a pool of 2800 alleles. Despite the differences in these sensory systems, both stochastic fate choices rely on the dynamic interplay between transcriptional priming, chromatin regulation and terminal gene expression. The coupling of transcription and chromatin modifications primes gene loci in undifferentiated neurons, enabling later expression during terminal differentiation. Here, we compare these mechanisms, examine broader implications for gene regulation during development and posit key challenges moving forward. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Alison J. Ordway
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Rina N. Helt
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski J, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind BM, Marlin BJ, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. eLife 2023; 12:RP87445. [PMID: 38108811 PMCID: PMC10727497 DOI: 10.7554/elife.87445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers UniversityNewarkUnited States
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Jason Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Longzhi Tan
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Xiaoliang Sunney Xie
- Beijing Innovation Center for Genomics, Peking UniversityBeijingChina
- Biomedical Pioneering Innovation Center, Peking UniversityBeijingChina
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Benjamin M Shykind
- Prevail Therapeutics- a wholly-owned subsidiary of Eli Lilly and CompanyNew YorkUnited States
| | - Bianca J Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
| |
Collapse
|
8
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski JM, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind B, Jones-Marlin B, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532726. [PMID: 36993168 PMCID: PMC10055043 DOI: 10.1101/2023.03.15.532726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers University, NJ, USA
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jason M Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Longzhi Tan
- Department of Bioengineering, Stanford University, CA, USA
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - X Sunnie Xie
- Beijing Innovation Center for Genomics, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Benjamin Shykind
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bianca Jones-Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
9
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Hussainy M, Korsching SI, Tresch A. Pseudotime analysis reveals novel regulatory factors for multigenic onset and monogenic transition of odorant receptor expression. Sci Rep 2022; 12:16183. [PMID: 36171231 PMCID: PMC9519747 DOI: 10.1038/s41598-022-20106-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
During their maturation from horizontal basal stem cells, olfactory sensory neurons (OSNs) are known to select exactly one out of hundreds of olfactory receptors (ORs) and express it on their surface, a process called monogenic selection. Monogenic expression is preceded by a multigenic phase during which several OR genes are expressed in a single OSN. Here, we perform pseudotime analysis of a single cell RNA-Seq dataset of murine olfactory epithelium to precisely align the multigenic and monogenic expression phases with the cell types occurring during OSN differentiation. In combination with motif analysis of OR gene cluster-associated enhancer regions, we identify known and novel transcription (co-)factors (Ebf1, Lhx2, Ldb1, Fos and Ssbp2) and chromatin remodelers (Kdm1a, Eed and Zmynd8) associated with OR expression. The inferred temporal order of their activity suggests novel mechanisms contributing to multigenic OR expression and monogenic selection.
Collapse
Affiliation(s)
- Mohammad Hussainy
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Achim Tresch
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Copy number changes in co-expressed odorant receptor genes enable selection for sensory differences in drosophilid species. Nat Ecol Evol 2022; 6:1343-1353. [PMID: 35864227 DOI: 10.1038/s41559-022-01830-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous examples of chemoreceptor gene family expansions and contractions, how these relate to modifications in the sensory neuron populations in which they are expressed remains unclear. Drosophila melanogaster's odorant receptor (Or) family is ideal for addressing this question because most Ors are expressed in distinct olfactory sensory neuron (OSN) types. Between-species changes in Or copy number may therefore indicate increases or reductions in the number of OSN populations. Here we investigated the Or67a subfamily, which exhibits copy number variation in D. melanogaster and its closest relatives: D. simulans, D. sechellia and D. mauritiana. These species' common ancestor had three Or67a paralogues that had already diverged adaptively. Following speciation, two Or67a paralogues were lost independently in D. melanogaster and D. sechellia, with ongoing positive selection shaping the intact genes. Unexpectedly, the functionally diverged Or67a paralogues in D. simulans are co-expressed in a single neuron population, which projects to a glomerulus homologous to that innervated by Or67a neurons in D. melanogaster. Thus, while sensory pathway neuroanatomy is conserved, independent selection on co-expressed receptors has contributed to species-specific peripheral coding. This work reveals a type of adaptive change largely overlooked for olfactory evolution, raising the possibility that similar processes influence other cases of insect Or co-expression.
Collapse
|
13
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
14
|
Odorant-receptor-mediated regulation of chemosensory gene expression in the malaria mosquito Anopheles gambiae. Cell Rep 2022; 38:110494. [PMID: 35263579 PMCID: PMC8957105 DOI: 10.1016/j.celrep.2022.110494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Mosquitoes locate and approach humans based on the activity of odorant receptors (ORs) expressed on olfactory receptor neurons (ORNs). Olfactogenetic experiments in Anopheles gambiae mosquitoes revealed that the ectopic expression of an AgOR (AgOR2) in ORNs dampened the activity of the expressing neuron. This contrasts with studies in Drosophila melanogaster in which the ectopic expression of non-native ORs in ORNs confers ectopic neuronal responses without interfering with native olfactory physiology. RNA-seq analyses comparing wild-type antennae to those ectopically expressing AgOR2 in ORNs indicated that nearly all AgOR transcripts were significantly downregulated (except for AgOR2). Additional experiments suggest that AgOR2 protein rather than mRNA mediates this downregulation. Using in situ hybridization, we find that AgOR gene choice is active into adulthood and that AgOR2 expression inhibits AgORs from turning on at this late stage. Our study shows that the ORNs of Anopheles mosquitoes (in contrast to Drosophila) are sensitive to a currently unexplored mechanism of AgOR regulation. Maguire et al. discover that the ectopic expression of an olfactory receptor can downregulate the transcription of endogenous odorant receptors in mosquito olfactory neurons. The onset of mosquito odorant-receptor expression by an olfactory neuron continues into adult stages, and is particularly sensitive to exogenous olfactory reception expression.
Collapse
|
15
|
Williams DL, Sikora VM, Hammer MA, Amin S, Brinjikji T, Brumley EK, Burrows CJ, Carrillo PM, Cromer K, Edwards SJ, Emri O, Fergle D, Jenkins MJ, Kaushik K, Maydan DD, Woodard W, Clowney EJ. May the Odds Be Ever in Your Favor: Non-deterministic Mechanisms Diversifying Cell Surface Molecule Expression. Front Cell Dev Biol 2022; 9:720798. [PMID: 35087825 PMCID: PMC8787164 DOI: 10.3389/fcell.2021.720798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
How does the information in the genome program the functions of the wide variety of cells in the body? While the development of biological organisms appears to follow an explicit set of genomic instructions to generate the same outcome each time, many biological mechanisms harness molecular noise to produce variable outcomes. Non-deterministic variation is frequently observed in the diversification of cell surface molecules that give cells their functional properties, and is observed across eukaryotic clades, from single-celled protozoans to mammals. This is particularly evident in immune systems, where random recombination produces millions of antibodies from only a few genes; in nervous systems, where stochastic mechanisms vary the sensory receptors and synaptic matching molecules produced by different neurons; and in microbial antigenic variation. These systems employ overlapping molecular strategies including allelic exclusion, gene silencing by constitutive heterochromatin, targeted double-strand breaks, and competition for limiting enhancers. Here, we describe and compare five stochastic molecular mechanisms that produce variety in pathogen coat proteins and in the cell surface receptors of animal immune and neuronal cells, with an emphasis on the utility of non-deterministic variation.
Collapse
Affiliation(s)
- Donnell L. Williams
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Veronica Maria Sikora
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Max A. Hammer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Sayali Amin
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Taema Brinjikji
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Emily K. Brumley
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Connor J. Burrows
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Paola Michelle Carrillo
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Kirin Cromer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Summer J. Edwards
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Olivia Emri
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Fergle
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - M. Jamal Jenkins
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Krishangi Kaushik
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniella D. Maydan
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Wrenn Woodard
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - E. Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Lv M, Chen X, Huang X, Liu N, Wang W, Liu H. Transcriptome Analysis Reveals Sexual Disparities between Olfactory and Immune Gene Expression in the Olfactory Epithelium of Megalobrama amblycephala. Int J Mol Sci 2021; 22:13017. [PMID: 34884822 PMCID: PMC8658043 DOI: 10.3390/ijms222313017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The olfactory organ is an important chemoreceptor in vertebrates. However, the sexual disparities in gene expression patterns in the olfactory organ in fish remain unstudied. Here, we conducted a transcriptome analysis of the olfactory epithelium (OE) of male and female blunt snout bream (Megalobrama amblycephala) to identify the differences. The histological analysis showed that there were 22 leaf-like olfactory lamellaes on one side of the OE of the adult blunt snout bream. The sensory area of OE is enriched with ciliated receptor cells and microvilli receptor cells. The transcriptome analysis showed that only 10 out of 336 olfactory receptor genes (224 ORs, 5 V1Rs, 55 V2Rs, and 52 TAARs) exhibited significant expression differences between males and females, and most of the differentially expressed genes were related to the immune system. We also validated these results using qPCR: 10 OR genes and 6 immunity-related genes significantly differed between males and females. The FISH analysis results indicated that the ORs were mainly expressed at the edge of the olfactory lamellae. Collectively, our study reveals that gender is not an important factor influencing the expression of olfactory receptors, but the expression of immune genes varies greatly between the genders in blunt snout bream.
Collapse
Affiliation(s)
- Maolin Lv
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Xin Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
| | - Ning Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Weimin Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
| | - Han Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
17
|
Abbas G, Tang S, Noble J, Lane RP. Olfactory receptor coding sequences cause silencing of episomal constructs in multiple cell lines. Mol Cell Neurosci 2021; 117:103681. [PMID: 34742908 PMCID: PMC8669572 DOI: 10.1016/j.mcn.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The mammalian olfactory system consists of sensory neurons with specialized odorant-binding capability accomplished by mutually exclusive odorant receptor (OR) expression. Mutually exclusive OR expression is a complex multi-step process regulated by a number of cis and trans factors, including pan-silencing of all OR genes preceding the robust and stable expression of the one OR selected in each sensory neuron. We transfected two olfactory-placode-derived cell lines modeling immature odorant sensory neurons, as well as the GD25 fibroblast cell line, with episomes containing CMV-driven GFP and TK-driven hygromycin reporter genes. We inserted various coding sequences, along with an IRES, immediately upstream of the GFP gene to produce bicistronic mRNAs driven from the local CMV promoter. We found that the presence of several OR coding sequences resulted in significantly diminished episomal expression of GFP in all three cell lines. These findings suggest that OR coding sequences have intrinsic self-silencing capability that might facilitate mutually exclusive OR expression in olfactory sensory neurons by making it less likely that multiple ORs acquire an above-threshold level of expression at once.
Collapse
Affiliation(s)
- Ghazia Abbas
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Spencer Tang
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Joyce Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
18
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
19
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Shah A, Ratkowski M, Rosa A, Feinstein P, Bozza T. Olfactory expression of trace amine-associated receptors requires cooperative cis-acting enhancers. Nat Commun 2021; 12:3797. [PMID: 34145232 PMCID: PMC8213819 DOI: 10.1038/s41467-021-23824-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.
Collapse
Affiliation(s)
- Ami Shah
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Madison Ratkowski
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Alessandro Rosa
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Paul Feinstein
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
21
|
Fei A, Wu W, Tan L, Tang C, Xu Z, Huo X, Bao H, Kong Y, Johnson M, Hartmann G, Talay M, Yang C, Riegler C, Herrera KJ, Engert F, Xie XS, Barnea G, Liberles SD, Yang H, Li Q. Coordination of two enhancers drives expression of olfactory trace amine-associated receptors. Nat Commun 2021; 12:3798. [PMID: 34145235 PMCID: PMC8213717 DOI: 10.1038/s41467-021-23823-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Olfactory sensory neurons (OSNs) are functionally defined by their expression of a unique odorant receptor (OR). Mechanisms underlying singular OR expression are well studied, and involve a massive cross-chromosomal enhancer interaction network. Trace amine-associated receptors (TAARs) form a distinct family of olfactory receptors, and here we find that mechanisms regulating Taar gene choice display many unique features. The epigenetic signature of Taar genes in TAAR OSNs is different from that in OR OSNs. We further identify that two TAAR enhancers conserved across placental mammals are absolutely required for expression of the entire Taar gene repertoire. Deletion of either enhancer dramatically decreases the expression probabilities of different Taar genes, while deletion of both enhancers completely eliminates the TAAR OSN populations. In addition, both of the enhancers are sufficient to drive transgene expression in the partially overlapped TAAR OSNs. We also show that the TAAR enhancers operate in cis to regulate Taar gene expression. Our findings reveal a coordinated control of Taar gene choice in OSNs by two remote enhancers, and provide an excellent model to study molecular mechanisms underlying formation of an olfactory subsystem.
Collapse
Affiliation(s)
- Aimei Fei
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqing Wu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhi Tan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengrong Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Huo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongqiang Bao
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yalei Kong
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Johnson
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Griffin Hartmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Cheng Yang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clemens Riegler
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kristian J Herrera
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| |
Collapse
|
22
|
Zapiec B, Mombaerts P. The Zonal Organization of Odorant Receptor Gene Choice in the Main Olfactory Epithelium of the Mouse. Cell Rep 2021; 30:4220-4234.e5. [PMID: 32209480 DOI: 10.1016/j.celrep.2020.02.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
A mature olfactory sensory neuron (OSN) of the main olfactory epithelium (MOE) typically expresses one allele of one odorant receptor (OR) gene. It is widely thought that the great majority of the 1,141 intact mouse OR genes are expressed in one of four MOE zones (or bands or stripes), which are largely non-overlapping. Here, we develop a multiplex method to map, in 3D and MOE-wide, the expression areas of multiple OR genes in individual, non-genetically modified mice by three-color fluorescence in situ hybridization, semi-automated image segmentation, and 3D reconstruction. We classify the expression areas of 68 OR genes into 9 zones. These zones are highly overlapping and strikingly complex when viewed in 3D reconstructions. There could well be more zones. We propose that zones reflect distinct OSN types that are each restricted in their choice to a subset of the OR gene repertoire.
Collapse
Affiliation(s)
- Bolek Zapiec
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
23
|
Ali MA, Wang Y, Qin Z, Yuan X, Zhang Y, Zeng C. Odorant and Taste Receptors in Sperm Chemotaxis and Cryopreservation: Roles and Implications in Sperm Capacitation, Motility and Fertility. Genes (Basel) 2021; 12:genes12040488. [PMID: 33801624 PMCID: PMC8065900 DOI: 10.3390/genes12040488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Sperm chemotaxis, which guide sperm toward oocyte, is tightly associated with sperm capacitation, motility, and fertility. However, the molecular mechanism of sperm chemotaxis is not known. Reproductive odorant and taste receptors, belong to G-protein-coupled receptors (GPCR) super-family, cause an increase in intracellular Ca2+ concentration which is pre-requisite for sperm capacitation and acrosomal reaction, and result in sperm hyperpolarization and increase motility through activation of Ca2+-dependent Cl¯ channels. Recently, odorant receptors (ORs) in olfactory transduction pathway were thought to be associated with post-thaw sperm motility, freeze tolerance or freezability and cryo-capacitation-like change during cryopreservation. Investigation of the roles of odorant and taste receptors (TRs) is important for our understanding of the freeze tolerance or freezability mechanism and improve the motility and fertility of post-thaw sperm. Here, we reviewed the roles, mode of action, impact of odorant and taste receptors on sperm chemotaxis and post-thaw sperm quality.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore 54000, Punjab, Pakistan;
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Yihan Wang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Ziyue Qin
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Xiang Yuan
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Yan Zhang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Changjun Zeng
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Correspondence: ; Tel./Fax: +86-28-86291010
| |
Collapse
|
24
|
Duchamp-Viret P, Boyer J, La Villa F, Coureaud G. Brief olfactory learning drives perceptive sensitivity in newborn rabbits: New insights in peripheral processing of odor mixtures and induction. Physiol Behav 2021; 229:113217. [PMID: 33098882 DOI: 10.1016/j.physbeh.2020.113217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Perception of the wide, complex and moving odor world requires that the olfactory system engages processing mechanisms ensuring detection, discrimination and environment adaptation, as early as the peripheral stages. Odor items are mainly elicited by odorant mixtures which give rise to either elemental or configural perceptions. Here, we first explored the contribution of the peripheral olfactory system to configural and elemental perception through odorant interactions at the olfactory receptor (OR) level. This was done in newborn rabbits, which offer the opportunity to pair peripheral electrophysiology and well characterized behavioral responses to two binary mixtures, AB and A'B', which differ in their component ratio (A: ethyl isobutyrate, B: ethyl maltol), and that rabbit pups respectively perceived configurally and elementally. Second, we studied the influence on peripheral reactivity of the brief but powerful learning of one mixture component (odorant B), conditioned by association with the mammary pheromone (MP), which allowed us to assess the possible implication of the phenomenon called induction in neonatal odor learning. Induction is a plasticity mechanism expected to alter both the peripheral electrophysiological responses to, and perceptual detection threshold of, the conditioned stimulus. The results reveal that perceptual modes are partly rooted in differential peripheral processes, the AB configurally perceived mixture mirroring odorant antagonist interactions at OR level to a lesser extent than the A'B' elementally perceived mixture. Further, the results highlight that a single and brief MP-induced odor learning episode is sufficient to alter peripheral responses to the conditioned stimulus and mixtures including it, and shifts the conditioned stimulus detection threshold towards lower concentrations. Thus, MP-induced odor learning relies on induction phenomenon in newborn rabbits.
Collapse
Affiliation(s)
- Patricia Duchamp-Viret
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE.
| | - Jiasmine Boyer
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE
| | - Florian La Villa
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE
| | - Gérard Coureaud
- Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 Boulevard Pinel, 69675 Bron Cedex, FRANCE.
| |
Collapse
|
25
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
26
|
Chandradoss KR, Chawla B, Dhuppar S, Nayak R, Ramachandran R, Kurukuti S, Mazumder A, Sandhu KS. CTCF-Mediated Genome Architecture Regulates the Dosage of Mitotically Stable Mono-allelic Expression of Autosomal Genes. Cell Rep 2020; 33:108302. [PMID: 33113374 DOI: 10.1016/j.celrep.2020.108302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops. We propose that CTCF functions as a typical insulator on inactive alleles, but facilitates transcription through enhancer-linking on active allele of MAE genes, indicating widespread allele-specific regulatory roles of CTCF.
Collapse
Affiliation(s)
- Keerthivasan Raanin Chandradoss
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Bindia Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Shivnarayan Dhuppar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Rakhee Nayak
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India.
| |
Collapse
|
27
|
Tan K, Jones SH, Lake BB, Chousal JN, Shum EY, Zhang L, Chen S, Sohni A, Pandya S, Gallo RL, Zhang K, Cook-Andersen H, Wilkinson MF. The role of the NMD factor UPF3B in olfactory sensory neurons. eLife 2020; 9:e57525. [PMID: 32773035 PMCID: PMC7452722 DOI: 10.7554/elife.57525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Samantha H Jones
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Blue B Lake
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Eleen Y Shum
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Lingjuan Zhang
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Song Chen
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Shivam Pandya
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Richard L Gallo
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Kun Zhang
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Institute of Genomic Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
28
|
Barnes IHA, Ibarra-Soria X, Fitzgerald S, Gonzalez JM, Davidson C, Hardy MP, Manthravadi D, Van Gerven L, Jorissen M, Zeng Z, Khan M, Mombaerts P, Harrow J, Logan DW, Frankish A. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding regions split across two exons. BMC Genomics 2020; 21:196. [PMID: 32126975 PMCID: PMC7055050 DOI: 10.1186/s12864-020-6583-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Olfactory receptor (OR) genes are the largest multi-gene family in the mammalian genome, with 874 in human and 1483 loci in mouse (including pseudogenes). The expansion of the OR gene repertoire has occurred through numerous duplication events followed by diversification, resulting in a large number of highly similar paralogous genes. These characteristics have made the annotation of the complete OR gene repertoire a complex task. Most OR genes have been predicted in silico and are typically annotated as intronless coding sequences. RESULTS Here we have developed an expert curation pipeline to analyse and annotate every OR gene in the human and mouse reference genomes. By combining evidence from structural features, evolutionary conservation and experimental data, we have unified the annotation of these gene families, and have systematically determined the protein-coding potential of each locus. We have defined the non-coding regions of many OR genes, enabling us to generate full-length transcript models. We found that 13 human and 41 mouse OR loci have coding sequences that are split across two exons. These split OR genes are conserved across mammals, and are expressed at the same level as protein-coding OR genes with an intronless coding region. Our findings challenge the long-standing and widespread notion that the coding region of a vertebrate OR gene is contained within a single exon. CONCLUSIONS This work provides the most comprehensive curation effort of the human and mouse OR gene repertoires to date. The complete annotation has been integrated into the GENCODE reference gene set, for immediate availability to the research community.
Collapse
Affiliation(s)
- If H A Barnes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Stephen Fitzgerald
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jose M Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Matthew P Hardy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Laura Van Gerven
- Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mark Jorissen
- Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zhen Zeng
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Jennifer Harrow
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Waltham Petcare Science Institute, Leicestershire, LE14 4RT, UK
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
29
|
A Group of Olfactory Receptor Alleles that Encode Full Length Proteins are Down-Regulated as Olfactory Sensory Neurons Mature. Sci Rep 2020; 10:1781. [PMID: 32020011 PMCID: PMC7000733 DOI: 10.1038/s41598-020-58779-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/21/2020] [Indexed: 11/08/2022] Open
Abstract
The family of olfactory receptors (ORs) subserves the sense of smell and includes both functional alleles and pseudogenes, the latter identified by mutations resulting in frame shift or premature truncation. During neuronal differentiation, nonfunctional ORs are expressed initially but then are switched out, and/or the olfactory sensory neurons (OSNs) expressing them die. We carried out a transcriptomic analysis of FACS-isolated cells from ΔSox2-eGFP, Neurog1-eGFP BAC and ΔOMP-eGFP strains of uninjured and olfactory bulbectomized transgenic mice that correspond to distinct stages in the progression from globose basal cell stem cells to fully mature OSNs. We analyzed the expression pattern of 1094 unique receptors across this progression and found that the vast majority were characterized by a typical and expected pattern of expression; i.e., levels of OR mRNA peaking in mature OSNs. However, 43 ORs, including several known pseudogenes, were different, such that mRNA expression declined in the mature OSNs relative to earlier stages. Protein and promoter sequence analysis of the atypical group did not uncover any obvious differences between them and more typical ORs. Nonetheless, the pattern of expression suggests that atypical ORs may be non-functional despite the lack of any obvious abnormality in the sequence analyses.
Collapse
|
30
|
Farber JE, Lane RP. Bioinformatics Discovery of Putative Enhancers within Mouse Odorant Receptor Gene Clusters. Chem Senses 2019; 44:705-720. [PMID: 31529021 DOI: 10.1093/chemse/bjz043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory neuronal function depends on the expression and proper regulation of odorant receptor (OR) genes. Previous studies have identified 54 putative intergenic enhancers within or flanking 40 mouse OR clusters. At least 2 of these putative enhancers have been shown to regulate the expression of a small subset of proximal OR genes. In recognition of the large size of the mouse OR gene family (~1400 OR genes distributed across multiple chromosomal loci), it is likely that there remain many additional not-as-yet discovered OR enhancers. We utilized 23 of the previously identified enhancers as a training set (TS) and designed an algorithm that combines a broad range of epigenetic criteria (histone-3-lysine-4 monomethylation, histone-3-lysine-79 trimethylation, histone-3-lysine-27 acetylation, and DNase hypersensitivity) and genetic criteria (cross-species sequence conservation and transcription-factor binding site enrichment) to more broadly search OR gene clusters for additional candidates. We identified 181 new candidate enhancers located at 58 (of 68) mouse OR loci, including 25 new candidates identified by stringent search criteria whose signal strengths are not significantly different from the 23 previously characterized OR enhancers used as the TS. Additionally, we compared OR enhancer versus generic enhancer features in order to evaluate likelihoods that new enhancer candidates specifically function in OR regulation. We found that features distinguishing OR-specific function are significantly more evident for enhancer candidates located within OR clusters as compared with those in flanking regions.
Collapse
Affiliation(s)
- James E Farber
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
31
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
32
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
33
|
Spatial Determination of Neuronal Diversification in the Olfactory Epithelium. J Neurosci 2018; 39:814-832. [PMID: 30530861 DOI: 10.1523/jneurosci.3594-17.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/31/2023] Open
Abstract
Neurons in the murine olfactory epithelium (OE) differ by the olfactory receptor they express as well as other molecular phenotypes that are regionally restricted. These patterns can be precisely regenerated following epithelial injury, suggesting that spatial cues within the tissue can direct neuronal diversification. Nonetheless, the permanency and mechanism of this spatial patterning remain subject to debate. Via transplantation of stem and progenitor cells from dorsal OE into ventral OE, we demonstrate that, in mice of both sexes, nonautonomous spatial cues can direct the spatially circumscribed differentiation of olfactory sensory neurons. The vast majority of dorsal transplant-derived neurons express the ventral marker OCAM (NCAM2) and lose expression of NQO1 to match their new location. Single-cell analysis also demonstrates that OSNs adopt a fate defined by their new position following progenitor cell transplant, such that a ventral olfactory receptor is expressed after stem and progenitor cell engraftment. Thus, spatially constrained differentiation of olfactory sensory neurons is plastic, and any bias toward an epigenetic memory of place can be overcome.SIGNIFICANCE STATEMENT Spatially restricted differentiation of olfactory sensory neurons is both key to normal olfactory function and a challenging example of biological specificity. That the stem cells of the olfactory epithelium reproduce the organization of the olfactory periphery to a very close approximation during lesion-induced regeneration begs the question of whether stem cell-autonomous genomic architecture or environmental cues are responsible. The plasticity demonstrated after transfer to a novel location suggests that cues external to the transplanted stem and progenitor cells confer neuronal identity. Thus, a necessary prerequisite is satisfied for using engraftment of olfactory stem and progenitor cells as a cellular therapeutic intervention to reinvigorate neurogenesis whose exhaustion contributes to the waning of olfaction with age.
Collapse
|
34
|
Noble JC, Meredith D, Lane RP. Frequent and biased odorant receptor (OR) re-selection in an olfactory placode-derived cell line. PLoS One 2018; 13:e0204604. [PMID: 30256852 PMCID: PMC6157871 DOI: 10.1371/journal.pone.0204604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
We previously characterized a clonal olfactory placode-derived cell line (OP6) as a model system for studying odorant receptor (OR) choice, where individual OP6 cells, similar to olfactory sensory neurons in vivo, transcribe one allele ("monoallelic") of one OR gene ("monogenic"). The OP6 cell line provides a unique opportunity to investigate intrinsic properties of OR regulation that cannot easily be investigated in vivo. First, whereas OR-expressing cells in vivo are post-mitotic, OP6 cells are immortalized, raising interesting questions about the stability of epigenetic states associated with OR selection/silencing as OP6 cells progress through the cell cycle. Second, OP6 cells have been isolated away from extrinsic developmental cues, and therefore, any long-term OR selection biases are likely to arise from intrinsic epigenetic states that persist in the absence of developmental context. In this study, we investigated OR re-selection frequency and selection biases within clonal OP6 cell populations. We found no evidence of OR stability through the cell cycle: our results were most consistent with OR re-selection events transpiring at least once per cell division, suggesting that chromatin states associated with OR selection in this system might not be maintained in the subsequent generation. In contrast, we found strong evidence for OR selection biases maintained over prolonged culturing across a diverse set of OP6 cell lineages, suggesting the persistence of intrinsic epigenetic states that advantage some OR loci over others. Together, our data suggest that in the absence of instructive cues, intrinsic epigenetic states influencing OR eligibility, but not those determining OR choice, might persist through the cell cycle.
Collapse
Affiliation(s)
- J. C. Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Diane Meredith
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Robert P. Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
35
|
Implications for human odor sensing revealed from the statistics of odorant-receptor interactions. PLoS Comput Biol 2018; 14:e1006175. [PMID: 29782484 PMCID: PMC5983876 DOI: 10.1371/journal.pcbi.1006175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 05/04/2018] [Indexed: 11/26/2022] Open
Abstract
Binding of odorants to olfactory receptors (ORs) elicits downstream chemical and neural signals, which are further processed to odor perception in the brain. Recently, Mainland and colleagues have measured more than 500 pairs of odorant-OR interaction by a high-throughput screening assay method, opening a new avenue to understanding the principles of human odor coding. Here, using a recently developed minimal model for OR activation kinetics, we characterize the statistics of OR activation by odorants in terms of three empirical parameters: the half-maximum effective concentration EC50, the efficacy, and the basal activity. While the data size of odorants is still limited, the statistics offer meaningful information on the breadth and optimality of the tuning of human ORs to odorants, and allow us to relate the three parameters with the microscopic rate constants and binding affinities that define the OR activation kinetics. Despite the stochastic nature of the response expected at individual OR-odorant level, we assess that the confluence of signals in a neuron released from the multitude of ORs is effectively free of noise and deterministic with respect to changes in odorant concentration. Thus, setting a threshold to the fraction of activated OR copy number for neural spiking binarizes the electrophysiological signal of olfactory sensory neuron, thereby making an information theoretic approach a viable tool in studying the principles of odor perception. Despite the decades of research, quantitative details of human olfaction have remained largely unexplored. However, a high-throughput measurement has recently been carried out to produce dose-response data between a set of odorants and a repertoire of human olfactory receptors. We characterized each pair of odorant-receptor interaction in terms of EC50, efficacy, and basal level, a strategy often adopted in biochemical, pharmacological sciences to describe the response of receptors to cognate ligands. The distributions of EC50 values and efficacies acquired from the analysis provide glimpses into how human olfactory receptors are tuned to odorants. Specifically, the response of human ORs is optimized around ∼ 100μM of odorant. Next, the efficacies of OR responses to odorants are bi-exponentially distributed, which indicates that the strength of odorant-OR interaction is classified into strong and weak subgroups. By showing that the stochastic response of individual receptor to odorant can effectively be binarized at cellular level through olfactory processes, we also provide a theoretical basis for an information theoretical approach in studying the principles of odor perception.
Collapse
|
36
|
Rearrangement of Actin Microfilaments in the Development of Olfactory Receptor Cells in Fish. Sci Rep 2018; 8:3692. [PMID: 29487380 PMCID: PMC5829147 DOI: 10.1038/s41598-018-22049-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/15/2018] [Indexed: 01/26/2023] Open
Abstract
At present, it remains poorly understood how the olfactory neuron migrates through the thick neuroepithelium during its maturation from a stem cell and how it develops a specific sensitivity to environmental odorants after maturation. We investigated the cytochemical features associated with the development of olfactory cells before and after the incorporation of dendrites into the surface of the olfactory epithelium. Using cytochemical staining for the actin cytoskeleton and other cell components, we found that immature neurons acquire a streamlined shape that resembles a «hot-dog» during their migration: a dense layer of actin microfilaments forms beneath the surface membrane of the growing dendrite, and the bulk of the nuclear material moves inside this layer. We have found that when the cell makes contact with its environment, the dendritic terminal develops a wide actin layer, inside which a pore is formed. It is assumed that the functional receptors of odorants generate across this pore the first intracellular signal from environmental water-soluble odorants. These data illustrate the important role of the cytoskeleton in the differentiation of olfactory cells.
Collapse
|
37
|
Movahedi K, Grosmaitre X, Feinstein P. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms. Open Biol 2017; 6:rsob.160018. [PMID: 27466441 PMCID: PMC4967819 DOI: 10.1098/rsob.160018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 01/24/2023] Open
Abstract
Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production.
Collapse
Affiliation(s)
- Kiavash Movahedi
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany Myeloid Cell Immunology Laboratory, VIB Inflammation Research Center, Ghent, Belgium Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, CUNY, New York, NY, USA
| |
Collapse
|
38
|
Monahan K, Schieren I, Cheung J, Mumbey-Wafula A, Monuki ES, Lomvardas S. Cooperative interactions enable singular olfactory receptor expression in mouse olfactory neurons. eLife 2017; 6. [PMID: 28933695 PMCID: PMC5608512 DOI: 10.7554/elife.28620] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
The monogenic and monoallelic expression of only one out of >1000 mouse olfactory receptor (ORs) genes requires the formation of large heterochromatic chromatin domains that sequester the OR gene clusters. Within these domains, intergenic transcriptional enhancers evade heterochromatic silencing and converge into interchromosomal hubs that assemble over the transcriptionally active OR. The significance of this nuclear organization in OR choice remains elusive. Here, we show that transcription factors Lhx2 and Ebf specify OR enhancers by binding in a functionally cooperative fashion to stereotypically spaced motifs that defy heterochromatin. Specific displacement of Lhx2 and Ebf from OR enhancers resulted in pervasive, long-range, and trans downregulation of OR transcription, whereas pre-assembly of a multi-enhancer hub increased the frequency of OR choice in cis. Our data provide genetic support for the requirement and sufficiency of interchromosomal interactions in singular OR choice and generate general regulatory principles for stochastic, mutually exclusive gene expression programs.
Collapse
Affiliation(s)
- Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Ira Schieren
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Jonah Cheung
- New York Structural Biology Center, New York, United States
| | - Alice Mumbey-Wafula
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, United States
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Neuroscience, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
39
|
Coleman JH, Lin B, Schwob JE. Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium. J Comp Neurol 2017; 525:3391-3413. [PMID: 28597915 DOI: 10.1002/cne.24259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
Neurons in the olfactory epithelium (OE) each express a single dominant olfactory receptor (OR) allele from among roughly 1,000 different OR genes. While monogenic and monoallelic OR expression has been appreciated for over two decades, regulators of this process are still being described; most recently, epigenetic modifiers have been of high interest as silent OR genes are decorated with transcriptionally repressive trimethylated histone 3 lysine 9 (H3K9me3) whereas active OR genes are decorated with transcriptionally activating trimethylated histone 3 lysine 4 (H3K4me3). The lysine specific demethylase 1 (LSD1) demethylates at both of these lysine residues and has been shown to disrupt neuronal maturation and OR expression in the developing embryonic OE. Despite the growing literature on LSD1 expression in the OE, a complete characterization of the timing of LSD1 expression relative to neuronal maturation and of the function of LSD1 in the adult OE have yet to be reported. To fill this gap, the present study determined that LSD1 (1) is expressed in early dividing cells before OR expression and neuronal maturation and decreases at the time of OR stabilization; (2) colocalizes with the repressor CoREST (also known as RCOR1) and histone deacetylase 2 in these early dividing cells; and (3) is required for neuronal maturation during a distinct time window between activating reserve stem cells (horizontal basal cells) and Neurogenin1 (+) immediate neuronal precursors. Thus, this study clarifies the role of LSD1 in olfactory neuronal maturation.
Collapse
Affiliation(s)
- Julie H Coleman
- Department of Developmental, Molecular & Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts.,Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Brian Lin
- Department of Developmental, Molecular & Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts.,Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - James E Schwob
- Department of Developmental, Molecular & Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts
| |
Collapse
|
40
|
Gigante CM, Dibattista M, Dong FN, Zheng X, Yue S, Young SG, Reisert J, Zheng Y, Zhao H. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat Commun 2017; 8:15098. [PMID: 28425486 PMCID: PMC5411488 DOI: 10.1038/ncomms15098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
B-type lamins are major constituents of the nuclear lamina in all metazoan cells, yet have specific roles in the development of certain cell types. Although they are speculated to regulate gene expression in developmental contexts, a direct link between B-type lamins and developmental gene expression in an in vivo system is currently lacking. Here, we identify lamin B1 as a key regulator of gene expression required for the formation of functional olfactory sensory neurons. By using targeted knockout in olfactory epithelial stem cells in adult mice, we show that lamin B1 deficient neurons exhibit attenuated response to odour stimulation. This deficit can be explained by decreased expression of genes involved in mature neuron function, along with increased expression of genes atypical of the olfactory lineage. These results support that the broadly expressed lamin B1 regulates expression of a subset of genes involved in the differentiation of a specific cell type.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Michele Dibattista
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari ‘A. Moro', Bari 70121, Italy
| | - Frederick N. Dong
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Stephen G. Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
41
|
Lysine-specific demethylase-1 (LSD1) depletion disrupts monogenic and monoallelic odorant receptor (OR) expression in an olfactory neuronal cell line. Mol Cell Neurosci 2017; 82:1-11. [PMID: 28414096 DOI: 10.1016/j.mcn.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022] Open
Abstract
Function of the mammalian olfactory system depends on specialized olfactory sensory neurons (OSNs) that each express only one allele ("monoallelic") of one odorant receptor (OR) gene ("monogenic"). The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks in a variety of developmental contexts, and is thought to be important for proper OR regulation. Most of the focus in the field has been on a potential "activating" function for LSD1; e.g., in the demethylation of H3K9 associated with the expressed OR allele. Here we show that depletion of LSD1 in an immortalized olfactory-placode-derived cell line (OP6) results in multigenic and multiallelic OR transcription per cell, while not seemingly disrupting the ability of these cells to activate new OR genes during clonal expansion. These results are consistent with LSD1 having a role in silencing additional OR alleles, as opposed to being required for the activation of OR alleles, within the OP6 cellular context.
Collapse
|
42
|
Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien MS, You H, Chi Q, Kubota M, Yohda M, Ehlers M, Matsunami H. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. eLife 2017; 6. [PMID: 28262096 PMCID: PMC5362263 DOI: 10.7554/elife.21895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Yoshiro Ishimaru
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ian Davison
- Department of Biology, Boston University, Boston, United States
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Helena You
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Quiyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Momoka Kubota
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Masafumi Yohda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Biogen Inc, Cambridge, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Durham, United States
| |
Collapse
|
43
|
Degl'Innocenti A, D'Errico A. Regulatory Features for Odorant Receptor Genes in the Mouse Genome. Front Genet 2017; 8:19. [PMID: 28270833 PMCID: PMC5318403 DOI: 10.3389/fgene.2017.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.
Collapse
Affiliation(s)
- Andrea Degl'Innocenti
- Max Planck Institute of BiophysicsFrankfurt am Main, Germany; Cell and Developmental Biology Unit, Department of Biology, University of PisaPisa, Italy; Center for Micro-BioRobotics, Italian Institute of Technology, Sant'Anna School of Advanced StudiesPisa, Italy
| | - Anna D'Errico
- Max Planck Institute of Biophysics Frankfurt am Main, Germany
| |
Collapse
|
44
|
Nagai MH, Armelin-Correa LM, Malnic B. Monogenic and Monoallelic Expression of Odorant Receptors. Mol Pharmacol 2016; 90:633-639. [PMID: 27587538 DOI: 10.1124/mol.116.104745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Odorant receptors (ORs) belong to a large gene family of rhodopsin-like G protein-coupled receptors (GPCRs). The mouse OR gene family is composed of ∼1000 OR genes, and the human OR gene family is composed of ∼400 OR genes. The OR genes are spread throughout the genome, and can be found in clusters or as solitary genes in almost all chromosomes. These chemosensory GPCRs are expressed in highly specialized cells, the olfactory sensory neurons of the nose. Each one of these neurons expresses a single OR gene out of the complete repertoire of genes. In addition, only one of the two homologous alleles of the chosen OR gene, the maternal or the paternal, is expressed per neuron. Here we review recent findings that help to elucidate the mechanisms underlying monogenic and monoallelic expression of OR genes.
Collapse
Affiliation(s)
- Maíra H Nagai
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Lomvardas S, Maniatis T. Histone and DNA Modifications as Regulators of Neuronal Development and Function. Cold Spring Harb Perspect Biol 2016; 8:8/7/a024208. [PMID: 27371659 DOI: 10.1101/cshperspect.a024208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA and histone modifications, together with constraints imposed by nuclear architecture, contribute to the transcriptional regulatory landscape of the nervous system. Here, we provide select examples showing how these regulatory layers, often referred to as epigenetic, contribute to neuronal differentiation and function. We describe the interplay between DNA methylation and Polycomb-mediated repression during neuronal differentiation, the role of DNA methylation and long-range enhancer-promoter interactions in Protocadherin promoter choice, and the contribution of heterochromatic silencing and nuclear organization in singular olfactory receptor expression. Finally, we explain how the activity-dependent expression of a histone variant determines the longevity of olfactory sensory neurons.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
46
|
Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol 2016; 287:395-408. [PMID: 27264358 DOI: 10.1016/j.expneurol.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models.
Collapse
|
47
|
Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design. Proc Natl Acad Sci U S A 2016; 113:E2889-98. [PMID: 27162367 DOI: 10.1073/pnas.1601722113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology.
Collapse
|
48
|
Abdus-Saboor I, Al Nufal MJ, Agha MV, Ruinart de Brimont M, Fleischmann A, Shykind BM. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice. Curr Biol 2016; 26:1083-90. [PMID: 27040780 DOI: 10.1016/j.cub.2016.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/25/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar
| | - Mohammed J Al Nufal
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar
| | - Maha V Agha
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar
| | - Marion Ruinart de Brimont
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, and INSERM U1050, Paris 75005, France
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, and INSERM U1050, Paris 75005, France
| | - Benjamin M Shykind
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar.
| |
Collapse
|
49
|
Kilinc S, Savarino A, Coleman JH, Schwob JE, Lane RP. Lysine-specific demethylase-1 (LSD1) is compartmentalized at nuclear chromocenters in early post-mitotic cells of the olfactory sensory neuronal lineage. Mol Cell Neurosci 2016; 74:58-70. [PMID: 26947098 DOI: 10.1016/j.mcn.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Mammalian olfaction depends on the development of specialized olfactory sensory neurons (OSNs) that each express one odorant receptor (OR) protein from a large family of OR genes encoded in the genome. The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks at gene promoters and is required for proper OR regulation. We show that LSD1 protein exhibits variable organization within nuclei of developing OSNs, and tends to consolidate into a single dominant compartment at the edges of chromocenters within nuclei of early post-mitotic cells of the mouse olfactory epithelium (MOE). Using an immortalized cell line derived from developing olfactory placode, we show that consolidation of LSD1 appears to be cell-cycle regulated, with a peak occurrence in early G1. LSD1 co-compartmentalizes with CoREST, a protein known to collaborate with LSD1 to carry out a variety of chromatin-modifying functions. We show that LSD1 compartments co-localize with 1-3 OR loci at the exclusion of most OR genes, and commonly associate with Lhx2, a transcription factor involved in OR regulation. Together, our data suggests that LSD1 is sequestered into a distinct nuclear space that might restrict a histone-modifying function to a narrow developmental time window and/or range of OR gene targets.
Collapse
Affiliation(s)
- Seda Kilinc
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| | - Alyssa Savarino
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Julie H Coleman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
50
|
Hanchate NK, Kondoh K, Lu Z, Kuang D, Ye X, Qiu X, Pachter L, Trapnell C, Buck LB. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 2015; 350:1251-5. [PMID: 26541607 DOI: 10.1126/science.aad2456] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
Abstract
The sense of smell allows chemicals to be perceived as diverse scents. We used single-neuron RNA sequencing to explore the developmental mechanisms that shape this ability as nasal olfactory neurons mature in mice. Most mature neurons expressed only one of the ~1000 odorant receptor genes (Olfrs) available, and at a high level. However, many immature neurons expressed low levels of multiple Olfrs. Coexpressed Olfrs localized to overlapping zones of the nasal epithelium, suggesting regional biases, but not to single genomic loci. A single immature neuron could express Olfrs from up to seven different chromosomes. The mature state in which expression of Olfr genes is restricted to one per neuron emerges over a developmental progression that appears to be independent of neuronal activity involving sensory transduction molecules.
Collapse
Affiliation(s)
- Naresh K Hanchate
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Kunio Kondoh
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Zhonghua Lu
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Donghui Kuang
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Xiaolan Ye
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98115, USA. Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98115, USA
| | - Lior Pachter
- Departments of Mathematics, Molecular and Cell Biology, and Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98115, USA.
| | - Linda B Buck
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|