1
|
Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proc Natl Acad Sci U S A 2020; 117:14119-14126. [PMID: 32513720 DOI: 10.1073/pnas.1909683117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.
Collapse
|
2
|
αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell Tissue Res 2018; 374:165-175. [PMID: 29725768 PMCID: PMC6132645 DOI: 10.1007/s00441-018-2842-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Mechanosensing of fibroblasts plays a key role in the development of fibrosis. So far, no effective treatments are available to treat this devastating disorder. Spectrins regulate cell morphology and are potential mechanosensors in a variety of non-erythroid cells, but little is known about the role of spectrins in fibroblasts. We investigate whether αII- and βII-spectrin are required for the phenotypic properties of adult human dermal (myo)fibroblasts. Knockdown of αII- or βII-spectrin in fibroblasts did not affect cell adhesion, cell size and YAP nuclear/cytosolic localization. We further investigated whether αII- and βII-spectrin play a role in the phenotypical switch from fibroblasts to myofibroblasts under the influence of the pro-fibrotic cytokine TGFβ1. Knockdown of spectrins did not affect myofibroblast formation, nor did we observe changes in the organization of αSMA stress fibers. Focal adhesion assembly was unaffected by spectrin deficiency, as was collagen type I mRNA expression and protein deposition. Wound closure was unaffected as well, showing that important functional properties of myofibroblasts are unchanged without αII- or βII-spectrin. In fact, fibroblasts stimulated with TGFβ1 demonstrated significantly lower endogenous mRNA levels of αII- and βII-spectrin. Taken together, despite the diverse roles of spectrins in a variety of other cells, αII- and βII-spectrin do not regulate cell adhesion, cell size and YAP localization in human dermal fibroblasts and are not required for the dermal myofibroblast phenotypical switch.
Collapse
|
3
|
Gessner C, Steinchen W, Bédard S, J Skinner J, Woods VL, Walsh TJ, Bange G, Pantazatos DP. Computational method allowing Hydrogen-Deuterium Exchange Mass Spectrometry at single amide Resolution. Sci Rep 2017. [PMID: 28630467 PMCID: PMC5476592 DOI: 10.1038/s41598-017-03922-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (HDXMS) is a rapid and effective method for localizing and determining protein stability and dynamics. Localization is routinely limited to a peptide resolution of 5 to 20 amino acid residues. HDXMS data can contain information beyond that needed for defining protein stability at single amide resolution. Here we present a method for extracting this information from an HDX dataset to generate a HDXMS protein stability fingerprint. High resolution (HR)-HDXMS was applied to the analysis of a model protein of a spectrin tandem repeat that exemplified an intuitive stability profile based on the linkage of two triple helical repeats connected by a helical linker. The fingerprint recapitulated expected stability maximums and minimums with interesting structural features that corroborate proposed mechanisms of spectrin flexibility and elasticity. HR-HDXMS provides the unprecedented ability to accurately assess protein stability at the resolution of a single amino acid. The determination of HDX stability fingerprints may be broadly applicable in many applications for understanding protein structure and function as well as protein ligand interactions.
Collapse
Affiliation(s)
- Chris Gessner
- Indiana University, Department of Informatics and Computing, Bloomington, IN, USA
| | - Wieland Steinchen
- Philipps-University Marburg, Faculty of Chemistry & LOEWE Center for Synthetic Microbiology Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | - Sabrina Bédard
- GlaxoSmithKline, Platform Technology & Science, Collegeville Road, Collegeville, Pennsylvania, 19426, United States
| | - John J Skinner
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, China
| | - Virgil L Woods
- Indiana University, Department of Informatics and Computing, Bloomington, IN, USA
| | - Thomas J Walsh
- Weill Cornell Medicine, Transplantation-Oncology Infectious Disease Program, Division of Infectious Diseases, 1300 York Ave, New York, NY, 10065, USA
| | - Gert Bange
- Philipps-University Marburg, Faculty of Chemistry & LOEWE Center for Synthetic Microbiology Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | - Dionysios P Pantazatos
- Weill Cornell Medicine, Transplantation-Oncology Infectious Disease Program, Division of Infectious Diseases, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Patra M, Mukhopadhyay C, Chakrabarti A. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 2015; 10:e0116991. [PMID: 25617632 PMCID: PMC4305312 DOI: 10.1371/journal.pone.0116991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department, University of Calcutta, Kolkata, West Bengal, India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Autore F, Pfuhl M, Quan X, Williams A, Roberts RG, Shanahan CM, Fraternali F. Large-scale modelling of the divergent spectrin repeats in nesprins: giant modular proteins. PLoS One 2013; 8:e63633. [PMID: 23671687 PMCID: PMC3646009 DOI: 10.1371/journal.pone.0063633] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 04/09/2013] [Indexed: 11/29/2022] Open
Abstract
Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
Collapse
Affiliation(s)
- Flavia Autore
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Mark Pfuhl
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
| | - Xueping Quan
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
| | - Aisling Williams
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Roland G. Roberts
- Division of Medical and Molecular Genetics, Kings College London, Guy's Hospital, London, United Kingdom
| | - Catherine M. Shanahan
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, London, United Kingdom
| |
Collapse
|
6
|
Vishwanatha KS, Wang YP, Keutmann HT, Mains RE, Eipper BA. Structural organization of the nine spectrin repeats of Kalirin. Biochemistry 2012; 51:5663-73. [PMID: 22738176 DOI: 10.1021/bi300583s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequence analysis suggests that KALRN, a Rho GDP/GTP exchange factor genetically linked to schizophrenia, could contain as many as nine tandem spectrin repeats (SRs). We expressed and purified fragments of Kalirin containing from one to five putative SRs to determine whether they formed nested structures that could endow Kalirin with the flexible rodlike properties characteristic of spectrin and dystrophin. Far-UV circular dichroism studies indicated that Kalirin contains nine SRs. On the basis of thermal denaturation, sensitivity to chemical denaturants, and the solubility of pairs of repeats, the nine SRs of Kalirin form nested structures. Modeling studies confirmed this conclusion and identified an exposed loop in SR5; consistent with the modeling, this loop was extremely labile to proteolytic cleavage. Analysis of a direpeat fragment (SR4:5) encompassing the region of Kalirin known to interact with NOS2, DISC-1, PAM, and Arf6 identified this as the least stable region. Analytical ultracentrifugation indicated that SR1:3, SR4:6, and SR7:9 were monomers and adopted an extended conformation. Gel filtration suggested that ΔKal7, a natural isoform that includes SR5:9, was monomeric and was not more extended than SR5:9. Similarly, the nine SRs of Kal7, which was also monomeric, were not more extended than SR5:9. The rigidity and flexibility of the nine SRs of Kal7, which separate its essential N-terminal Sec14p domain from its catalytic domain, play an essential role in its contribution to the formation and function of dendritic spines.
Collapse
Affiliation(s)
- K S Vishwanatha
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
7
|
The Nonlinear Structure of the Desmoplakin Plakin Domain and the Effects of Cardiomyopathy-Linked Mutations. J Mol Biol 2011; 411:1049-61. [DOI: 10.1016/j.jmb.2011.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 11/15/2022]
|
8
|
Mirza A, Sagathevan M, Sahni N, Choi L, Menhart N. A biophysical map of the dystrophin rod. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1796-809. [DOI: 10.1016/j.bbapap.2010.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/16/2010] [Accepted: 03/24/2010] [Indexed: 11/26/2022]
|
9
|
Dystrophin: more than just the sum of its parts. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1713-22. [PMID: 20472103 DOI: 10.1016/j.bbapap.2010.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/05/2023]
Abstract
Dystrophin is one of a number of large cytoskeleton associated proteins that connect between various cytoskeletal elements and often are tethered to the membrane through other transmembrane protein complexes. These cytolinker proteins often provide structure and support to the cells where they are expressed, and mutations in genes encoding these proteins frequently gives rise to disease. Dystrophin is no exception in any of these respects, providing connections between a transmembrane complex known as the dystrophin-glycoprotein complex and the underlying cytoskeleton. The most established connection and possibly the most important is that to F-actin, but more recently evidence has been forthcoming of connections to membrane phospholipids, intermediate filaments and microtubules. Moreover it is becoming increasingly clear that the multiple spectrin-like repeats in the centre of the molecule, that had hitherto been thought to be largely redundant, harbour binding activities that have a significant impact on dystrophin functionality. This functionality is particularly apparent when assessed by the ability to rescue the dystrophic phenotype in mdx mice. This review will focus on the relatively neglected but functionally vital coiled-coil region of dystrophin, highlighting the structural relationships and interactions of the coiled-coil region and providing new insights into the functional role of this region.
Collapse
|
10
|
Zhong Z, Chang SA, Kalinowski A, Wilson KL, Dahl KN. Stabilization of the spectrin-like domains of nesprin-1α by the evolutionarily conserved "adaptive" domain. Cell Mol Bioeng 2010; 3:139-150. [PMID: 20563238 DOI: 10.1007/s12195-010-0121-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nesprins are located at the outer and inner membranes of the nuclear envelope and help link the cytoskeleton to the nucleoskeleton. Nesprin-1α, located at the inner nuclear membrane, binds to A-type lamins and emerin and has homology to spectrin-repeat proteins. However, the mechanical and thermodynamic properties of the spectrin-like repeats (SLRs) of nesprin-1α and the potential structural contributions of the unique central domain were untested. In other spectrin superfamily proteins, tandem spectrin-repeat domains undergo cooperatively coupled folding and unfolding. We hypothesized that the large central domain, which interrupts SLRs and is conserved in other nesprin isoforms, might confer unique structural properties. To test this model we measured the thermal unfolding of nesprin-1α fragments using circular dichroism and dynamic light scattering. The SLRs in nesprin-1α were found to have structural and thermodynamic properties typical of spectrins. The central domain had relatively little secondary structure as an isolated fragment, but significantly stabilized larger SLR-containing molecules by increasing their overall helicity, thermal stability and cooperativity of folding. We suggest this domain, now termed the 'adaptive' domain (AD), also strengthens dimerization and inhibits unfolding. Further engineering of the isolated AD, and AD-containing nesprin molecules, may yield new information about the higher-order association of cooperative protein motifs.
Collapse
Affiliation(s)
- Zhixia Zhong
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
11
|
Yamashita K, Suzuki A, Satoh Y, Ide M, Amano Y, Masuda-Hirata M, Hayashi YK, Hamada K, Ogata K, Ohno S. The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase PAR-1b. Biochem Biophys Res Commun 2010; 391:812-7. [DOI: 10.1016/j.bbrc.2009.11.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
12
|
Dubielecka PM, Trusz A, Diakowski W, Grzybek M, Chorzalska A, Jaźwiec B, Lisowski M, Jezierski A, Sikorski AF. Mitoxantrone changes spectrin-aminophospholipid interactions. Mol Membr Biol 2009; 23:235-43. [PMID: 16785207 DOI: 10.1080/09687860600601643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Understanding drug-membrane and drug-membrane protein interactions would be a crucial step towards understanding the action and biological properties of anthracyclines, as the cell membrane with its integral and peripheral proteins is the first barrier encountered by these drugs. In this paper, we briefly describe mitoxantrone-monolayer and mitoxantrone-bilayer interactions, focusing on the effect of mitoxantrone on the interactions between erythroid or nonerythroid spectrin with phosphatidylethanolamine-enriched mono- and bilayers. We found that mitoxantrone markedly modifies the interaction of erythroid and nonerythroid spectrins with phosphatidylethanolamine/phosphatidylcholine (PE/PC) monolayers. The change in delta pi induced by spectrins is several-fold larger in the presence of 72 nM mitoxantrone than in its absence: spectrin/mitoxantrone complexes induced a strong compression of the monolayer. Spin-labelling experiments showed that spectrin/mitoxantrone complexes caused significant changes in the order parameter measured using a 5'-doxyl stearate probe in the bilayer, but they practically did not affect the mobility of 16'-doxyl stearate. These results indicate close-to-surface interactions/penetrations without significant effect on the mid-region of the hydrophobic core of the bilayer. The obtained apparent equilibrium dissociation constants indicated relatively similar mitoxantrone-phospholipid and mitoxantrone-spectrin (erythroid and nonerythroid) binding affinities. These results might in part, explain the effect of mitoxantrone on spectrin distribution in the living cells.
Collapse
Affiliation(s)
- Patrycja M Dubielecka
- Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wensley BG, Gärtner M, Choo WX, Batey S, Clarke J. Different members of a simple three-helix bundle protein family have very different folding rate constants and fold by different mechanisms. J Mol Biol 2009; 390:1074-85. [PMID: 19445951 PMCID: PMC2852649 DOI: 10.1016/j.jmb.2009.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/24/2022]
Abstract
The 15th, 16th, and 17th repeats of chicken brain alpha-spectrin (R15, R16, and R17, respectively) are very similar in terms of structure and stability. However, R15 folds and unfolds 3 orders of magnitude faster than R16 and R17. This is unexpected. The rate-limiting transition state for R15 folding is investigated using protein engineering methods (Phi-value analysis) and compared with previously completed analyses of R16 and R17. Characterisation of many mutants suggests that all three proteins have similar complexity in the folding landscape. The early rate-limiting transition states of the three domains are similar in terms of overall structure, but there are significant differences in the patterns of Phi-values. R15 apparently folds via a nucleation-condensation mechanism, which involves concomitant folding and packing of the A- and C-helices, establishing the correct topology. R16 and R17 fold via a more framework-like mechanism, which may impede the search to find the correct packing of the helices, providing a possible explanation for the fast folding of R15.
Collapse
Affiliation(s)
- Beth G Wensley
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
14
|
Legardinier S, Raguénès-Nicol C, Tascon C, Rocher C, Hardy S, Hubert JF, Le Rumeur E. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J Mol Biol 2009; 389:546-58. [PMID: 19379759 DOI: 10.1016/j.jmb.2009.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/31/2009] [Accepted: 04/11/2009] [Indexed: 11/28/2022]
Abstract
Dystrophin is a cytoskeletal protein that confers resistance to the sarcolemma against the stress of contraction-relaxation cycles by interacting with cytoskeletal and membrane partners. Apart from several proteins, membrane phospholipids are a partner of the central rod domain made up of 24 spectrin-like repeats, separated into sub-domains by four hinges. We previously showed that repeats 1 to 3 bind to membrane anionic phospholipids, while repeats 20 to 24 are not able to do so. We focus here on the phospholipid-binding properties of the major part of the central rod domain, namely, the sub-domain delineated by hinges 2 and 3 comprising 16 repeats ranging from repeat 4 to 19 (R4-19). We designed and produced multirepeat proteins comprising three to five repeats and report their lipid-binding properties as well as their thermal stabilities. When these proteins are mixed with liposomes including the anionic lipid phosphatidylserine, they form stable protein-vesicle complexes as determined by gel-filtration chromatography. The absence of an anionic lipid precludes the formation of such complexes. Spectroscopic analyses by circular dichroism and tryptophan fluorescence show that, while the alpha-helical secondary structures are not modified by the binding, protein trans conformation leads to the movement of tryptophan residues into more hydrophobic environments. In addition, the decrease in the molar ellipticity ratio at 222/208 nm as observed by circular dichroism indicates that lipid binding reduces the inter-helical interactions of multirepeat proteins, thus suggesting partly "opened" coiled-coil structures. Combining these results with data from our previous studies, we propose a new model of the dystrophin molecule lying along the membrane bilayer, in which the two sub-domains R1-3 and R4-19 interact with lipids and F-actin, while the distal sub-domain R20-24 does not exhibit any interaction. These lipid-binding domains should thus maintain a structural link between cytoskeletal actin and sarcolemma via the membrane phospholipids.
Collapse
Affiliation(s)
- Sébastien Legardinier
- Université de Rennes 1, UMR CNRS 6026, Interactions cellulaires et moléculaires, IFR 140, Faculté de Médecine, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 2009; 113:5377-84. [PMID: 19168783 DOI: 10.1182/blood-2008-10-184291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrin and ankyrin participate in membrane organization, stability, signal transduction, and protein targeting; their interaction is critical for erythrocyte stability. Repeats 14 and 15 of betaI-spectrin are crucial for ankyrin recognition, yet the way spectrin binds ankyrin while preserving its repeat structure is unknown. We have solved the crystal structure of the betaI-spectrin 14,15 di-repeat unit to 2.1 A resolution and found 14 residues critical for ankyrin binding that map to the end of the helix C of repeat 14, the linker region, and the B-C loop of repeat 15. The tilt (64 degrees) across the 14,15 linker is greater than in any published di-repeat structure, suggesting that the relative positioning of the two repeats is important for ankyrin binding. We propose that a lack of structural constraints on linker and inter-helix loops allows proteins containing spectrin-like di-repeats to evolve diverse but specific ligand-recognition sites without compromising the structure of the repeat unit. The linker regions between repeats are thus critical determinants of both spectrin's flexibility and polyfunctionality. The putative coupling of flexibility and ligand binding suggests a mechanism by which spectrin might participate in mechanosensory regulation.
Collapse
|
16
|
Khairy K, Foo J, Howard J. Shapes of Red Blood Cells: Comparison of 3D Confocal Images with the Bilayer-Couple Model. Cell Mol Bioeng 2008; 1:173-181. [PMID: 21031149 DOI: 10.1007/s12195-008-0019-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells and organelles are shaped by the chemical and physical forces that bend cell membranes. The human red blood cell (RBC) is a model system for studying how such forces determine cell morphology. It is thought that RBCs, which are typically biconcave discoids, take the shape that minimizes their membrane-bending energies, subject to the constraints of fixed area and volume. However, recently it has been hypothesized that shear elasticity arising from the membrane-associated cytoskeleton (MS) is necessary to account for shapes of real RBCs, especially ones with highly curved features such as echinocytes. In this work we tested this hypothesis by following RBC shape changes using spherical harmonic series expansions of theoretical cell surfaces and those estimated from 3D confocal microscopy images of live cells. We found (i) quantitative agreement between shapes obtained from the theoretical model including the MS and real cells, (ii) that weakening the MS, by using urea (which denatures spectrin), leads to the theoretically predicted gradual decrease in spicule number of echinocytes, (iii) that the theory predicts that the MS is essential for stabilizing the discocyte morphology against changes in lipid composition, and that without it, the shape would default to the elliptocyte (a biconcave ellipsoid), (iv) that we were able to induce RBCs to adopt the predicted elliptocyte morphology by treating healthy discocytes with urea. The latter observation is consistent with the known connection between the blood disease hereditary elliptocytosis and spectrin mutations that weaken the cell cortex. We conclude that while the discocyte, in absence of shear, is indeed a minimum energy shape, its stabilization in healthy RBCs requires the MS, and that elliptocytosis can be explained based on purely mechanical considerations.
Collapse
Affiliation(s)
- Khaled Khairy
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | | | |
Collapse
|
17
|
Ipsaro JJ, Huang L, Gutierrez L, MacDonald RI. Molecular epitopes of the ankyrin-spectrin interaction. Biochemistry 2008; 47:7452-64. [PMID: 18563915 PMCID: PMC3280509 DOI: 10.1021/bi702525z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isoforms of ankyrin and its binding partner spectrin are responsible for a number of interactions in a variety of human cells. Conflicting evidence, however, had identified two different, non-overlapping human erythroid ankyrin subdomains, Zu5 and 272, as the minimum binding region for beta-spectrin. Complementary studies on the ankyrin-binding domain of spectrin have been somewhat more conclusive yet have not presented binding in terms of well-phased, integral numbers of spectrin repeats. Thus, the objective of this study was to clearly define and characterize the minimal ankyrin-spectrin binding epitopes. Circular dichroism (CD) wavelength spectra of the aforementioned ankyrin subdomains show that these fragments are 30-60% unstructured. In contrast, human erythroid beta-spectrin repeats 13, 14, 15, and 16 (prepared in all combinations of two adjacent repeats) demonstrated proper folding and stability as determined by CD and tryptophan wavelength and heat denaturation scans. Native polyacrylamide gel electrophoresis (PAGE) gel shifts as well as affinity pull-down assays implicated Zu5 and beta-spectrin repeats 14-15 as the minimum binding epitopes. These results were confirmed by analytical ultracentrifugation to sedimentation equilibrium by which a 1:1 complex was obtained if and only if Zu5 was mixed with beta-spectrin constructs containing repeats 14 and 15 in tandem. Surface plasmon resonance yielded a K D of 15.2 nM for binding of beta-spectrin fragments to the ankyrin subdomain Zu5, accounting for all of the binding observed between the intact molecules. Collectively, these results show the 14th and 15th beta-spectrin repeats comprise the minimal, phased region of beta-spectrin, which binds ankyrin at the Zu5 subdomain with high affinity.
Collapse
Affiliation(s)
| | | | | | - Ruby I. MacDonald
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University, Evanston, IL 60208
| |
Collapse
|
18
|
Mirza A, Menhart N. Stability of dystrophin STR fragments in relation to junction helicity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1301-9. [PMID: 18589007 DOI: 10.1016/j.bbapap.2008.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/22/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
Abstract
Dystrophin is a rod shaped protein consisting of amino- and carboxy-terminal binding domains linked by a large central rod composed of 24 homologous copies of the STR motif and 4 non-homologous regions termed hinges. These hinges are proposed to confer local flexibility; conversely, the tacit implication is that the STR regions away from the hinges are comparatively rigid. This, and the repeating nature of this rod, has contributed to the view that the STR region of the rod is uniform and monolithic. However, we have produced various 2 STR fragments, chosen to have high and low alpha-helix content at their junctions with each other, and show that they exhibit markedly different stabilities. In contrast to a related protein, spectrin, these differences are not correlated with the calculated helicity, but appear to be an intrinsic property of the motifs themselves. A full understanding of how these properties vary along the length of the rod has implications for the engineering of these rods regions in exon skipping and minidystrophin therapies.
Collapse
Affiliation(s)
- Ahmed Mirza
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616, USA
| | | |
Collapse
|
19
|
Batey S, Clarke J. The folding pathway of a single domain in a multidomain protein is not affected by its neighbouring domain. J Mol Biol 2008; 378:297-301. [PMID: 18371978 PMCID: PMC2828540 DOI: 10.1016/j.jmb.2008.02.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/21/2008] [Accepted: 02/15/2008] [Indexed: 11/24/2022]
Abstract
Domains are the structural, functional, and evolutionary components of proteins. Most folding studies to date have concentrated on the folding of single domains, but more than 70% of human proteins contain more than one domain, and interdomain interactions can affect both the stability and the folding kinetics. Whether the folding pathway is altered by interdomain interactions is not yet known. Here we investigated the effect of a folded neighbouring domain on the folding pathway of spectrin R16 (the 16th α-helical repeat from chicken brain α-spectrin) by using the two-domain construct R1516. The R16 folds faster and unfolds more slowly in the presence of its folded neighbour R15 (the 15th α-helical repeat from chicken brain α-spectrin). An extensive Φ-value analysis of the R16 domain in R1516 was completed to compare the transition state of the R16 domain alone with that of the R16 domain in a multidomain construct. The results indicate that the folding pathways are the same. This result validates the current approach of breaking up larger proteins into domains for the study of protein folding pathways.
Collapse
|
20
|
Randles LG, Batey S, Steward A, Clarke J. Distinguishing specific and nonspecific interdomain interactions in multidomain proteins. Biophys J 2007; 94:622-8. [PMID: 17890397 PMCID: PMC2157218 DOI: 10.1529/biophysj.107.119123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multidomain proteins account for over two-thirds of the eukaryotic genome. Although there have been extensive studies into the biophysical properties of isolated domains, few have investigated how the domains interact. Spectrin is a well-characterized multidomain protein with domains linked in tandem array by contiguous helices. Several of these domains have been shown to be stabilized by their neighbors. Until now, this stabilization has been attributed to specific interactions between the natural neighbors, however we have recently observed that nonnatural neighboring domains can also induce a significant amount of stabilization. Here we investigate this nonnative stabilizing effect. We created spectrin-titin domain pairs of both spectrin R16 and R17 with a single titin I27 domain at either the N- or the C-terminus and found that spectrin domains are significantly stabilized, through slowed unfolding, by nonnative interactions at the C-terminus only. Of particular importance, we show that specific interactions between natural folded neighbors at either terminus confer even greater stability by additionally increasing the folding rate constants. We demonstrate that it is possible to distinguish between natural stabilizing interactions and nonspecific stabilizing effects through examination of the kinetics of well chosen mutant proteins. This work adds to the complexity of studying multidomain proteins.
Collapse
Affiliation(s)
- Lucy G Randles
- Cambridge University Chemical Laboratory, MRC Centre for Protein Engineering, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
21
|
An X, Zhang X, Salomao M, Guo X, Yang Y, Wu Y, Gratzer W, Baines AJ, Mohandas N. Thermal stabilities of brain spectrin and the constituent repeats of subunits. Biochemistry 2007; 45:13670-6. [PMID: 17087521 PMCID: PMC4401158 DOI: 10.1021/bi061368x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The different genes that encode mammalian spectrins give rise to proteins differing in their apparent stiffness. To explore this, we have compared the thermal stabilities of the structural repeats of brain spectrin subunits (alphaII and betaII) with those of erythrocyte spectrin (alphaI and betaI). The unfolding transition midpoints (T(m)) of the 36 alphaII- and betaII-spectrin repeats extend between 24 and 82 degrees C, with an average higher by some 10 degrees C than that of the alphaI- and betaI-spectrin repeats. This difference is reflected in the T(m) values of the intact brain and erythrocyte spectrins. Two of three tandem-repeat constructs from brain spectrin exhibited strong cooperative coupling, with elevation of the T(m) of the less stable partner corresponding to coupling free energies of approximately -4.4 and -3.5 kcal/mol. The third tandem-repeat construct, by contrast, exhibited negligible cooperativity. Tandem-repeat mutants, in which a part of the "linker" helix that connects the two domains was replaced with a corresponding helical segment from erythroid spectrin, showed only minor perturbation of the thermal melting profiles, without breakdown of cooperativity. Thus, the linker regions, which tolerate few point mutations without loss of cooperative function, have evidently evolved to permit conformational coupling in specified regions. The greater structural stability of the repeats in alphaII- and betaII-spectrin may account, at least in part, for the higher rigidity of brain compared to erythrocyte spectrin.
Collapse
Affiliation(s)
- Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Randles LG, Rounsevell RWS, Clarke J. Spectrin domains lose cooperativity in forced unfolding. Biophys J 2007; 92:571-7. [PMID: 17085494 PMCID: PMC1751415 DOI: 10.1529/biophysj.106.093690] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
Spectrin is a multidomain cytoskeletal protein, the component three-helix bundle domains are expected to experience mechanical force in vivo. In thermodynamic and kinetic studies, neighboring domains of chicken brain alpha-spectrin R16 and R17 have been shown to behave cooperatively. Is this cooperativity maintained under force? The effect of force on these spectrin domains was investigated using atomic force microscopy. The response of the individual domains to force was compared to that of the tandem repeat R1617. Importantly, nonhelical linkers (all-beta immunoglobulin domains) were used to avoid formation of nonnative helical linkers. We show that, in contrast to previous studies on spectrin repeats, only 3% of R1617 unfolding events gave an increase in contour length consistent with cooperative two-domain unfolding events. Furthermore, the unfolding forces for R1617 were the same as those for the unfolding of R16 or R17 alone. This is a strong indication that the cooperative unfolding behavior observed in the stopped-flow studies is absent between these spectrin domains when force is acting as a denaturant. Our evidence suggests that the rare double unfolding events result from misfolding between adjacent repeats. We suggest that this switch from cooperative to independent behavior allows multidomain proteins to maintain integrity under applied force.
Collapse
Affiliation(s)
- Lucy G Randles
- Department of Chemistry, University of Cambridge, MRC Centre for Protein Engineering, Cambridge, United Kingdom
| | | | | |
Collapse
|
23
|
Mirijanian DT, Chu JW, Ayton GS, Voth GA. Atomistic and Coarse-grained Analysis of Double Spectrin Repeat Units: The Molecular Origins of Flexibility. J Mol Biol 2007; 365:523-34. [PMID: 17070548 DOI: 10.1016/j.jmb.2006.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/02/2006] [Accepted: 10/03/2006] [Indexed: 11/17/2022]
Abstract
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.
Collapse
Affiliation(s)
- Dina T Mirijanian
- Center for Biophysical Modeling and Simulation, University of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
24
|
Johnson CP, Gaetani M, Ortiz V, Bhasin N, Harper S, Gallagher PG, Speicher DW, Discher DE. Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding. Blood 2006; 109:3538-43. [PMID: 17192394 PMCID: PMC1852230 DOI: 10.1182/blood-2006-07-038588] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic mutations in alpha and beta spectrin result in a variety of syndromes, including hereditary elliptocytosis (HE), hereditary pyropoikilocytosis (HPP), and hereditary spherocytosis (HS). Although some mutations clearly lie at sites of interaction, such as the sites of spectrin alpha-betatetramer formation, a surprising number of HE-causing mutations have been identified within linker regions between distal spectrin repeats. Here we apply solution structural and single molecule methods to the folding and stability of recombinant proteins consisting of the first 5 spectrin repeats of alpha-spectrin, comparing normal spectrin with a pathogenic linker mutation, Q471P, between repeats R4 and R5. Results show that the linker mutation destabilizes a significant fraction of the 5-repeat construct at 37 degrees C, whereas the WT remains fully folded well above body temperature. In WT protein, helical linkers propagate stability from one repeat to the next, but the mutation disrupts the stabilizing influence of adjacent repeats. The results suggest a molecular mechanism for the high frequency of disease caused by proline mutations in spectrin linkers.
Collapse
Affiliation(s)
- Colin P Johnson
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, 3699 Market Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Batey S, Clarke J. Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains. Proc Natl Acad Sci U S A 2006; 103:18113-8. [PMID: 17108086 PMCID: PMC1636339 DOI: 10.1073/pnas.0604580103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Approximately 75% of eukaryotic proteins contain more than one so-called independently folding domain. However, there have been relatively few systematic studies to investigate the effect of interdomain interactions on protein stability and fewer still on folding kinetics. We present the folding of pairs of three-helix bundle spectrin domains as a paradigm to indicate how complex such an analysis can be. Equilibrium studies show an increase in denaturant concentration required to unfold the domains with only a single unfolding transition; however, in some cases, this is not accompanied by the increase in m value, which would be expected if the protein is a truly cooperative, all-or-none system. We analyze the complex kinetics of spectrin domain pairs, both wild-type and carefully selected mutants. By comparing these pairs, we are able to demonstrate that equilibrium data alone are insufficient to describe the folding of multidomain proteins and to quantify the effects that one domain can have on its neighbor.
Collapse
Affiliation(s)
- Sarah Batey
- Department of Chemistry, University of Cambridge, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Paramore S, Voth GA. Examining the influence of linkers and tertiary structure in the forced unfolding of multiple-repeat spectrin molecules. Biophys J 2006; 91:3436-45. [PMID: 16891371 PMCID: PMC1614492 DOI: 10.1529/biophysj.106.091108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unfolding pathways of multiple-repeat spectrin molecules were examined using steered molecular dynamics (SMD) simulations to forcibly unfold double- and triple-repeat spectrin molecules. Although SMD has previously been used to study other repeating-domain proteins, spectrin offers a unique challenge in that the linker connecting repeat units has a definite secondary structure, that of an alpha-helix. Therefore, the boundary conditions imposed on a double- or triple-repeat spectrin must be carefully considered if any relationship to the real system is to be deduced. This was accomplished by imposing additional forces on the system which ensure that the terminal alpha-helices behave as if there were no free noncontiguous helical ends. The results of the SMD simulations highlight the importance of the rupture of the alpha-helical linker on the subsequent unfolding events. Rupture of the linker propagates unfolding in the adjacent repeat units by destabilizing the tertiary structure, ultimately resulting in complete unfolding of the affected repeat unit. Two dominant classes of unfolding pathways are observed after the initial rupture of a linker which involve either rupture of another linker (possibly adjacent) or rupture of the basic tertiary structure of a repeat unit. The relationship between the force response observed on simulation timescales and those of experiment or physiological conditions is also discussed.
Collapse
Affiliation(s)
- Sterling Paramore
- Department of Chemistry, Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, 84112-0850, USA
| | | |
Collapse
|
27
|
Menhart N. Hybrid spectrin type repeats produced by exon-skipping in dystrophin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:993-9. [PMID: 16716778 PMCID: PMC1925050 DOI: 10.1016/j.bbapap.2006.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/09/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Dystrophin is the protein whose defect underlies Duchenne Muscular Dystrophy, DMD, a common (1:3500 male births) and fatal condition in which muscle tissue deteriorates leading to death in the second or third decade of life. Dystrophin is coded for by the largest human gene, and one of the most complex. It is translated from at least 7 distinct promoters, with the largest transcripts (which are the ones involved in DMD) containing 79 exons over >2.5 Mbp [K.F. O'Brien, L.M. Kunkel, Dystrophin and muscular dystrophy: past, present, and future, Mol. Genet. Metab. 74 (2001) 75-88, H.M. Sadoulet-Puccio, L.M. Kunkel, Dystrophin and its isoforms, Brain Pathol. 6 (1996) 25-35]. Exacerbating this complexity, it has recently been shown that dystrophin is subject to extensive alternative RNA processing, potentially producing a wide variety dystrophin variants [M. Sironi, R. Cagliani, U. Pozzoli, A. Bardoni, G.P. Comi, R. Giorda, N. Bresolin, The dystrophin gene is alternatively spliced throughout its coding sequence FEBS Lett 517 (2002) 163-166]. The structure of the dystrophin protein is highly modular, with the most common module being a motif termed the spectrin type repeat, or STR, of which there are 24. Each STR is roughly coded for by two exons, and the most common type of multiple exon-skipping events start and end at introns in the middle of STRs [R.G. Roberts, A.J. Coffey, M. Bobrow, D.R. Bentley, Exon structure of the human dystrophin gene Genomics 16 (1993) 536-538, M. Koenig, L.M. Kunkel, Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility, J. Biol. Chem. 265 (1990) 4560-4566]. This would produce fractional STR modules, however, the concept of STRs as proteins domains makes the viability of such fractional motifs questionable. However, certain of these events produce pairs of potentially complementary fractional domain that might reassemble into a hybrid STR motif. We have constructed model fragment corresponding to one such exon-skipping event, and show that the hybrid STR so produced is viable, and furthermore that some of the properties of the protein containing it differ substantially of the native, un-skipped parent.
Collapse
Affiliation(s)
- Nick Menhart
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, 3101 S. Dearborn, Chicago, IL 60616, USA.
| |
Collapse
|
28
|
An X, Guo X, Zhang X, Baines AJ, Debnath G, Moyo D, Salomao M, Bhasin N, Johnson C, Discher D, Gratzer WB, Mohandas N. Conformational Stabilities of the Structural Repeats of Erythroid Spectrin and Their Functional Implications. J Biol Chem 2006; 281:10527-32. [PMID: 16476728 DOI: 10.1074/jbc.m513725200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two polypeptide chains of the erythroid spectrin heterodimer contain between them 36 structural repeating modules, which can function as independently folding units. We have expressed all 36 and determined their thermal stabilities. These vary widely, with unfolding transition mid-points (T(m)) ranging from 21 to 72 degrees C. Eight of the isolated repeats are largely unfolded at physiological temperature. Constructs comprising two or more adjacent repeats show inter-repeat coupling with coupling free energies of several kcal mol(-1). Constructs comprising five successive repeats from the beta-chain displayed cooperativity and strong temperature dependence in forced unfolding by atomic force microscopy. Analysis of aligned sequences and molecular modeling suggests that high stability is conferred by large hydrophobic side chains at position e of the heptad hydrophobic repeats in the first helix of the three-helix bundle that makes up each repeat. This inference was borne out by the properties of mutants in which the critical residues have been replaced. The marginal stability of the tertiary structure at several points in the spectrin chains is moderated by energetic coupling with adjoining structural elements but may be expected to permit adaptation of the membrane to the large distortions that the red cell experiences in the circulation.
Collapse
Affiliation(s)
- Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, 310 E. 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saadat L, Pittman L, Menhart N. Structural cooperativity in spectrin type repeats motifs of dystrophin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:943-54. [PMID: 16603424 DOI: 10.1016/j.bbapap.2006.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/16/2006] [Accepted: 02/17/2006] [Indexed: 11/21/2022]
Abstract
Dystrophin is a member of the spectrin family of proteins, which are characterized as being predominantly composed the spectrin-type-repeat, a triple alpha-helical bundle motif present in multiple tandem copies, producing a rod-like shape. Whether or not this motif, which is determined by sequence homology, is correlated with biophysical domains in the intact protein is uncertain. The nature of the domain structure impacts the flexibility and shape of the rod region of this protein, which is a target for modification in several therapeutic approaches aimed at Duchenne Muscular Dystrophy, a common and fatal genetic disease caused by defective dystrophin. We examined three such motifs in dystrophin, expressing them recombinantly both singly and in tandem, and studying their thermodynamic properties by solvent and thermal denaturation. We have found that the degree to which they are independently stable and expressible varies considerably. The fourth motif appears to be largely stable and independent, whereas the third and second motifs interact strongly.
Collapse
Affiliation(s)
- Laleh Saadat
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, 3101 S. Dearborn, Chicago, IL 60616, USA
| | | | | |
Collapse
|
30
|
Abstract
Spectrin domains are three-helix bundles, commonly found in large tandem arrays. Equilibrium studies have shown that spectrin domains are significantly stabilized by their neighbors. In this work we show that domain:domain interactions can also have profound effects on their kinetic behavior. We have studied the folding of a tandem pair of spectrin domains (R1617) using a combination of single- and double-jump stopped flow experiments (monitoring folding by both circular dichroism and fluorescence). Mutant proteins were also used to investigate the complex folding kinetics. We find that, although the domains fold and unfold individually, there is a single rate-determining step for both folding and unfolding of the protein. This is consistent with the equilibrium observation of cooperative folding of the entire two-domain protein. The results may have important biological implications. Not only will the protein fold more efficiently during cotranslational folding, but the ability of the multidomain protein to withstand thermal unfolding in the cell will be dramatically increased. This study suggests that caution has to be exercised when extrapolating from single domains to larger proteins with a number of independently folding modules arranged in tandem. The multidomain protein spectrin is certainly more than "the sum of its parts".
Collapse
Affiliation(s)
- Sarah Batey
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
31
|
Bhasin N, Law R, Liao G, Safer D, Ellmer J, Discher BM, Sweeney HL, Discher DE. Molecular extensibility of mini-dystrophins and a dystrophin rod construct. J Mol Biol 2005; 352:795-806. [PMID: 16139300 DOI: 10.1016/j.jmb.2005.07.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 07/08/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
Muscular dystrophies arise with various mutations in dystrophin, implicating this protein in force transmission in normal muscle. With 24 three-helix, spectrin repeats interspersed with proline-rich hinges, dystrophin's large size is an impediment to gene therapy, prompting the construction of mini-dystrophins. Results thus far in dystrophic mice suggest that at least one hinge between repeats is necessary though not sufficient for palliative effect. One such mini-dystrophin is studied here in forced extension at the single molecule level. Delta2331 consists of repeats (R) and hinges (H) H1-R1-2 approximately H3 approximately R22-24-H4 linked by native (-) and non-native (approximately) sequence. This is compared to its core fragment R2 approximately H3 approximately R22 as well as an eight-repeat rod fragment middle (RFM: R8-15). We show by atomic force microscopy that all repeats extend and unfold at forces comparable to those that a few myosin molecules can generate. The hinge regions most often extend and transmit force while limiting tandem repeat unfolding. From 23-42 degrees C, the dystrophin constructs also appear less temperature-sensitive in unfolding compared to a well-studied betaI-spectrin construct. The results thus reveal new modes of dystrophin flexibility that may prove central to functions of both dystrophin and mini-dystrophins.
Collapse
Affiliation(s)
- Nishant Bhasin
- Pennsylvania Muscle Institute and Graduate Groups in Physics and Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A spectrin repeat unit was subject to extension using cyclic expansion nonequilibrium molecular dynamics. Periodic boundary conditions were used to examine the effects of the contiguous alpha-helical linker on the force response. The measured force-extension curve shows a linear increase in the force response when the spectrin repeat unit is extended by approximately 0.4 nm. After that point, the force response peaks and subsequently declines. The peak in the force response marks the point where the spectrin repeat unit undergoes a change in its material properties from a strongly elastic material to a mostly viscous one, on the timescales of the simulations. The force peak is also correlated with rupture of the alpha-helical linker, and is likely the event responsible for the peaks in the sawtooth-pattern force-extension curves measured by atomic force microscopy experiments. Rupture of the linker involves simultaneously breaking approximately four hydrogen bonds that maintain the alpha-helical linker. After this initial rupture, the linker undergoes simple helix-to-coil transitions as the spectrin repeat unit continues to be extended. The implications of linker rupture in the interpretation of unfolding and atomic force microscopy experiments are also discussed.
Collapse
Affiliation(s)
- Sterling Paramore
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
33
|
Batey S, Randles LG, Steward A, Clarke J. Cooperative Folding in a Multi-domain Protein. J Mol Biol 2005; 349:1045-59. [PMID: 15913648 DOI: 10.1016/j.jmb.2005.04.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/08/2005] [Accepted: 04/14/2005] [Indexed: 11/27/2022]
Abstract
Most protein domains are found in multi-domain proteins, yet most studies of protein folding have concentrated on small, single-domain proteins or on isolated domains from larger proteins. Spectrin domains are small (106 amino acid residues), independently folding domains consisting of three long alpha-helices. They are found in multi-domain proteins with a number of spectrin domains in tandem array. Structural studies have shown that in these arrays the last helix of one domain forms a continuous helix with the first helix of the following domain. It has been demonstrated that a number of spectrin domains are stabilised by their neighbours. Here we investigate the molecular basis for cooperativity between adjacent spectrin domains 16 and 17 from chicken brain alpha-spectrin (R16 and R17). We show that whereas the proteins unfold as a single cooperative unit at 25 degrees C, cooperativity is lost at higher temperatures and in the presence of stabilising salts. Mutations in the linker region also cause the cooperativity to be lost. However, the cooperativity does not rely on specific interactions in the linker region alone. Most mutations in the R17 domain cause a decrease in cooperativity, whereas proteins with mutations in the R16 domain still fold cooperatively. We propose a mechanism for this behaviour.
Collapse
Affiliation(s)
- Sarah Batey
- University of Cambridge, Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Rd, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
34
|
Ortiz V, Nielsen SO, Klein ML, Discher DE. Unfolding a linker between helical repeats. J Mol Biol 2005; 349:638-47. [PMID: 15896349 DOI: 10.1016/j.jmb.2005.03.086] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/14/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
In many multi-repeat proteins, linkers between repeats have little secondary structure and place few constraints on folding or unfolding. However, the large family of spectrin-like proteins, including alpha-actinin, spectrin, and dystrophin, share three-helix bundle, spectrin repeats that appear in crystal structures to be linked by long helices. All of these proteins are regularly subjected to mechanical stress. Recent single molecule atomic force microscopy (AFM) experiments demonstrate not only forced unfolding but also simultaneous unfolding of tandem repeats at finite frequency, which suggests that the contiguous helix between spectrin repeats can propagate a cooperative helix-to-coil transition. Here, we address what happens atomistically to the linker under stress by steered molecular dynamics simulations of tandem spectrin repeats in explicit water. The results for alpha-actinin repeats reveal rate-dependent pathways, with one pathway showing that the linker between repeats unfolds, which may explain the single-repeat unfolding pathway observed in AFM experiments. A second pathway preserves the structural integrity of the linker, which explains the tandem-repeat unfolding event. Unfolding of the linker begins with a splay distortion of proximal loops away from hydrophobic contacts with the linker. This is followed by linker destabilization and unwinding with increased hydration of the backbone. The end result is an unfolded helix that mechanically decouples tandem repeats. Molecularly detailed insights obtained here aid in understanding the mechanical coupling of domain stability in spectrin family proteins.
Collapse
Affiliation(s)
- Vanessa Ortiz
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
35
|
Kusunoki H, Minasov G, Macdonald RI, Mondragón A. Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin. J Mol Biol 2004; 344:495-511. [PMID: 15522301 DOI: 10.1016/j.jmb.2004.09.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 09/03/2004] [Accepted: 09/12/2004] [Indexed: 11/28/2022]
Abstract
Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain alpha-spectrin and human erythroid beta-spectrin repeats can undergo bending without losing their alpha-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain alpha-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, the three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of alpha-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and alpha-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.
Collapse
Affiliation(s)
- Hideki Kusunoki
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
36
|
Scott KA, Batey S, Hooton KA, Clarke J. The folding of spectrin domains I: wild-type domains have the same stability but very different kinetic properties. J Mol Biol 2004; 344:195-205. [PMID: 15504411 DOI: 10.1016/j.jmb.2004.09.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 09/07/2004] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
The study of proteins with the same architecture, but different sequence has proven to be a valuable tool in the protein folding field. As a prelude to studies on the folding mechanism of spectrin domains we present the kinetic characterisation of the wild-type forms of the 15th, 16th, and 17th domains of chicken brain alpha-spectrin (referred to as R15, R16 and R17, respectively). We show that the proteins all behave in a two-state manner, with different kinetic properties. The folding rate varies remarkably between different members, with a 5000-fold variation in folding rate and 3000-fold variation in unfolding rate seen for proteins differing only 1 kcal mol(-1) in stability. We show clear evidence for significant complexity in the energy landscape of R16, which shows a change in amplitude outside the stopped-flow timescale and curvature in the unfolding arm of the chevron plot. The accompanying paper describes the characterisation of the folding pathway of this domain.
Collapse
Affiliation(s)
- Kathryn A Scott
- MRC Centre for Protein Engineering, University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
37
|
Kusunoki H, MacDonald RI, Mondragón A. Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure 2004; 12:645-56. [PMID: 15062087 DOI: 10.1016/j.str.2004.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/20/2004] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
Erythroid spectrin, a major component of the cytoskeletal network of the red cell which contributes to both the stability and the elasticity of the red cell membrane, is composed of two subunits, alpha and beta, each formed by 16-20 tandem repeats. The properties of the repeats and their relative arrangement are thought to be key determinants of spectrin flexibility. Here we report a 2.4 A resolution crystal structure of human erythroid beta-spectrin repeats 8 and 9. This two-repeat fragment is unusual as it exhibits low stability of folding and one of its repeats lacks two tryptophans highly conserved among spectrin repeats. Two key factors responsible for the lower stability and, possibly, its flexibility, are revealed by the structure. A third novel feature of the structure is the relative orientation of the two repeats, which increases the range of possible conformations and provides new insights into atomic models of spectrin flexibility.
Collapse
Affiliation(s)
- Hideki Kusunoki
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208 USA
| | | | | |
Collapse
|