1
|
Archibald JM. Mosaic evolution of eukaryotic carbon metabolism. Nat Ecol Evol 2025; 9:537-538. [PMID: 40033104 DOI: 10.1038/s41559-025-02652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Karki S, Aylward FO. Evolution of ubiquitin, cytoskeleton, and vesicular trafficking machinery in giant viruses. J Virol 2025; 99:e0171524. [PMID: 39932282 PMCID: PMC11915834 DOI: 10.1128/jvi.01715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Members of the phylum Nucleocytoviricota, which include "giant viruses" known for their large physical dimensions and genome lengths, are a diverse group of dsDNA viruses that infect a wide range of eukaryotic hosts. The genomes of nucleocytoviruses frequently encode eukaryotic signature proteins (ESPs) such as RNA- and DNA-processing proteins, vesicular trafficking factors, cytoskeletal components, and proteins involved in ubiquitin signaling. Despite the prevalence of these genes in many nucleocytoviruses, the timing and number of gene acquisitions remains unclear. While the presence of DNA- and RNA-processing proteins in nucleocytoviruses likely reflects ancient gene transfers, the origins and evolutionary history of other proteins are largely unknown. In this study, we examined the distribution and evolutionary history of a subset of viral-encoded ESPs (vESPs) that are widespread in nucleocytoviruses. Our results demonstrate that most vESPs involved in vesicular trafficking were acquired multiple times independently by nucleocytoviruses at different time points after the emergence of the eukaryotic supergroups, while viral proteins associated with cytoskeletal and ubiquitin system proteins exhibited a more complex evolutionary pattern exhibited by both shallow and deep branching viral clades. This pattern reveals a dynamic interplay between the co-evoluton of eukaryotes and their viruses, suggesting that the viral acquisition of many genes involved in cellular processes has occurred both through ancient and more recent horizontal gene transfers. The timing and frequency of these gene acquisitions may provide insight into their role and functional significance during viral infection.IMPORTANCEThis research is pertinent for understanding the evolution of nucleocytoviruses and their interactions with eukaryotic hosts. By investigating the distribution and evolutionary history of viral-encoded eukaryotic signature proteins, the study reveals gene transfer patterns, highlighting how viruses acquire genes that allow them to manipulate host cellular processes. Identifying the timing and frequency of gene acquisitions related to essential cellular functions provides insights into their roles during viral infections. This work expands our understanding of viral diversity and adaptability, contributing valuable knowledge to virology and evolutionary biology, while offering new perspectives on the relationship between viruses and their hosts.
Collapse
Affiliation(s)
- Sangita Karki
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Yadav AJ, Bhagat K, Padhi AK. Integrated computational characterization of valosin-containing protein double-psi β-barrel domain: Insights into structural stability, binding mechanisms, and evolutionary significance. Int J Biol Macromol 2024; 283:137865. [PMID: 39566806 DOI: 10.1016/j.ijbiomac.2024.137865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Valosin-containing protein (VCP) plays a crucial role in various cellular processes, yet the molecular mechanisms and structural dynamics of its double-psi β-barrel (DPBB) domain, particularly in human, remain insufficiently explored. While previous studies have characterized the VCP_DPBB domain in other organisms, such as thermoplasma acidophilum and methanopyrus kandleri, its evolutionary conservation, binding potential, and stability in human require further investigation. To address this gap, we first employed all-atom molecular dynamics (AAMD) simulations to examine the structural dynamics of the human VCP_DPBB domain. We also assessed its amino acid interaction energies, stability, folding enthalpy, evolutionary conservation, solubility, and crystallizability using various computational frameworks. Additionally, to uncover the plausible biological function, protein-peptide docking was performed to evaluate the interactions between the DPBB domain and the C-terminal gp78 peptide of the E3 ubiquitin ligase. Further, AAMD and coarse-grained molecular dynamics (CGMD) simulations explored the binding preferences, fluctuations, and stability of human VCP_DPBB-gp78 complexes. Our findings indicate that, while thermoplasma acidophilum VCP_DPBB-gp78 showed stronger initial binding, the human VCP_DPBB-gp78 complex exhibited superior stability, binding affinity, and more stabilizing interactions. This integrated analysis provides valuable insights into the evolutionary significance and functionality of the DPBB domain, with potential therapeutic implications for VCP-related diseases.
Collapse
Affiliation(s)
- Amar Jeet Yadav
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Khushboo Bhagat
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, Dessimoz C, Dolezal P, Fritz-Laylin LK, Gabaldón T, Hampl V, Kops GJPL, Leger MM, Lopez-Garcia P, McInerney JO, Moreira D, Muñoz-Gómez SA, Richter DJ, Ruiz-Trillo I, Santoro AE, Sebé-Pedrós A, Snel B, Stairs CW, Tromer EC, van Hooff JJE, Wickstead B, Williams TA, Roger AJ, Dacks JB, Wideman JG. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol 2024; 22:e3002917. [PMID: 39585925 PMCID: PMC11627563 DOI: 10.1371/journal.pbio.3002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.
Collapse
Affiliation(s)
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United States of America
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pavel Dolezal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Lillian K. Fritz-Laylin
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Geert J. P. L. Kops
- Hubrecht Institute-KNAW, Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Michelle M. Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - James O. McInerney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Arnau Sebé-Pedrós
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
5
|
Ajay A, Begum T, Arya A, Kumar K, Ahmad S. Global and local genomic features together modulate the spontaneous single nucleotide mutation rate. Comput Biol Chem 2024; 112:108107. [PMID: 38875896 DOI: 10.1016/j.compbiolchem.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Spontaneous mutations are evolutionary engines as they generate variants for the evolutionary downstream processes that give rise to speciation and adaptation. Single nucleotide mutations (SNM) are the most abundant type of mutations among them. Here, we perform a meta-analysis to quantify the influence of selected global genomic parameters (genome size, genomic GC content, genomic repeat fraction, number of coding genes, gene count, and strand bias in prokaryotes) and local genomic features (local GC content, repeat content, CpG content and the number of SNM at CpG islands) on spontaneous SNM rates across the tree of life (prokaryotes, unicellular eukaryotes, multicellular eukaryotes) using wild-type sequence data in two different taxon classification systems. We find that the spontaneous SNM rates in our data are correlated with many genomic features in prokaryotes and unicellular eukaryotes irrespective of their sample sizes. On the other hand, only the number of coding genes was correlated with the spontaneous SNM rates in multicellular eukaryotes primarily contributed by vertebrates data. Considering local features, we notice that local GC content and CpG content significantly were correlated with the spontaneous SNM rates in the unicellular eukaryotes, while local repeat fraction is an important feature in prokaryotes and certain specific uni- and multi-cellular eukaryotes. Such predictive features of the spontaneous SNM rates often support non-linear models as the best fit compared to the linear model. We also observe that the strand asymmetry in prokaryotes plays an important role in determining the spontaneous SNM rates but the SNM spectrum does not.
Collapse
Affiliation(s)
- Akash Ajay
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, origin, and evolution of the ESCRT systems. mBio 2024; 15:e0033524. [PMID: 38380930 PMCID: PMC10936438 DOI: 10.1128/mbio.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, Origin and Evolution of the ESCRT Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579148. [PMID: 38903064 PMCID: PMC11188069 DOI: 10.1101/2024.02.06.579148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Endosomal Sorting Complexes Required for Transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold, using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The Last Archaeal Common Ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
8
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
9
|
Tirichine L, Piganeau G. Editorial: Algal symbiotic relationships in freshwater and marine environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1155759. [PMID: 36890883 PMCID: PMC9987335 DOI: 10.3389/fpls.2023.1155759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
| | - Gwenael Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
10
|
Mencía M. Acid digestion and symbiont: Proton sharing at the origin of mitochondriogenesis?: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria. Bioessays 2023; 45:e2200136. [PMID: 36373631 DOI: 10.1002/bies.202200136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The initial relationships between organisms leading to endosymbiosis and the first eukaryote are currently a topic of hot debate. Here, I present a theory that offers a gradual scenario in which the origins of phagocytosis and mitochondria are intertwined in such a way that the evolution of one would not be possible without the other. In this scenario, the premitochondrial bacterial symbiont became initially associated with a protophagocytic host on the basis of cooperation to kill prey with symbiont-produced toxins and reactive oxygen species (ROS). Subsequently, the cooperation was focused on the digestion stage, through the acidification of the protophagocytic cavities via exportation of protons produced by the aerobic respiration of the symbiont. The host gained an improved phagocytic capacity and the symbiont received organic compounds from prey. As the host gradually lost its membrane energetics to develop lysosomal digestion, respiration was centralized in the premitochondrial symbiont for energy production for the consortium.
Collapse
Affiliation(s)
- Mario Mencía
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma de Madrid, Madrid, 28409, Spain
| |
Collapse
|
11
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
12
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
14
|
Méheust R, Castelle CJ, Jaffe AL, Banfield JF. Conserved and lineage-specific hypothetical proteins may have played a central role in the rise and diversification of major archaeal groups. BMC Biol 2022; 20:154. [PMID: 35790962 PMCID: PMC9258230 DOI: 10.1186/s12915-022-01348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Archaea play fundamental roles in the environment, for example by methane production and consumption, ammonia oxidation, protein degradation, carbon compound turnover, and sulfur compound transformations. Recent genomic analyses have profoundly reshaped our understanding of the distribution and functionalities of Archaea and their roles in eukaryotic evolution. RESULTS Here, 1179 representative genomes were selected from 3197 archaeal genomes. The representative genomes clustered based on the content of 10,866 newly defined archaeal protein families (that will serve as a community resource) recapitulates archaeal phylogeny. We identified the co-occurring proteins that distinguish the major lineages. Those with metabolic roles were consistent with experimental data. However, two families specific to Asgard were determined to be new eukaryotic signature proteins. Overall, the blocks of lineage-specific families are dominated by proteins that lack functional predictions. CONCLUSIONS Given that these hypothetical proteins are near ubiquitous within major archaeal groups, we propose that they were important in the origin of most of the major archaeal lineages. Interestingly, although there were clearly phylum-specific co-occurring proteins, no such blocks of protein families were shared across superphyla, suggesting a burst-like origin of new lineages early in archaeal evolution.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France.
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
15
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, Zhao X, Wang F. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. SCIENCE CHINA. LIFE SCIENCES 2022; 65:818-829. [PMID: 34378142 DOI: 10.1007/s11427-021-1969-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The hypothesis that eukaryotes originated from within the domain Archaea has been strongly supported by recent phylogenomic analyses placing Heimdallarchaeota-Wukongarchaeota branch from the Asgard superphylum as the closest known archaeal sister-group to eukaryotes. However, our understanding is still limited in terms of the relationship between eukaryotes and archaea, as well as the evolution and ecological functions of the Asgard archaea. Here, we describe three previously unknown phylum-level Asgard archaeal lineages, tentatively named Sigyn-, Freyr- and Njordarchaeota. Additional members in Wukongarchaeota and Baldrarchaeota from distinct environments are also reported here, further expanding their ecological roles and metabolic capacities. Comprehensive phylogenomic analyses further supported the origin of eukaryotes within Asgard archaea and a new lineage Njordarchaeota was supposed as the known closest branch with the eukaryotic nuclear host lineage. Metabolic reconstruction suggests that Njordarchaeota may have a heterotrophic lifestyle with capability of peptides and amino acids utilization, while Sigynarchaeota and Freyrarchaeota also have the potentials to fix inorganic carbon via the Wood-Ljungdahl pathway and degrade organic matters. Additionally, the Ack/Pta pathway for homoacetogenesis and de novo anaerobic cobalamin biosynthesis pathway were found in Freyrarchaeota and Wukongrarchaeota, respectively. Some previously unidentified eukaryotic signature proteins for intracellular membrane trafficking system, and the homologue of mu/sigma subunit of adaptor protein complex, were identified in Freyrarchaeota. This study expands the Asgard superphylum, sheds new light on the evolution of eukaryotes and improves our understanding of ecological functions of the Asgard archaea.
Collapse
Affiliation(s)
- Ruize Xie
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haining Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiao Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengping Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
17
|
Nobs SJ, MacLeod FI, Wong HL, Burns BP. Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life? Trends Microbiol 2021; 30:421-431. [PMID: 34863611 DOI: 10.1016/j.tim.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
One of the most significant events in the evolution of life is the origin of the eukaryotic cell, an increase in cellular complexity that occurred approximately 2 billion years ago. Ground-breaking research has centered around unraveling the characteristics of the Last Eukaryotic Common Ancestor (LECA) and the nuanced archaeal and bacterial contributions in eukaryogenesis, resulting in fundamental changes in our understanding of the Tree of Life. The archaeal and bacterial roles are covered by theories of endosymbiogenesis wherein an ancestral host archaeon and a bacterial endosymbiont merged to create a new complex cell type - Eukarya - and its mitochondrion. Eukarya is often regarded as a unique and distinct domain due to complex innovations not found in archaea or bacteria, despite housing a chimeric genome containing genes of both archaeal and bacterial origin. However, the discovery of complex cell machineries in recently described Asgard archaeal lineages, and the growing support for diverse bacterial gene transfers prior to and during the time of LECA, is redefining our understanding of eukaryogenesis. Indeed, the uniqueness of Eukarya, as a domain, is challenged. It is likely that many microbial syntrophies, encompassing a 'microbial village', were required to 'raise' a eukaryote during the process of eukaryogenesis.
Collapse
Affiliation(s)
- Stephanie-Jane Nobs
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
18
|
Penev PI, Fakhretaha-Aval S, Patel VJ, Cannone JJ, Gutell RR, Petrov AS, Williams LD, Glass JB. Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. Genome Biol Evol 2021; 12:1694-1710. [PMID: 32785681 PMCID: PMC7594248 DOI: 10.1093/gbe/evaa170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The ribosome’s common core, comprised of ribosomal RNA (rRNA) and universal ribosomal proteins, connects all life back to a common ancestor and serves as a window to relationships among organisms. The rRNA of the common core is similar to rRNA of extant bacteria. In eukaryotes, the rRNA of the common core is decorated by expansion segments (ESs) that vastly increase its size. Supersized ESs have not been observed previously in Archaea, and the origin of eukaryotic ESs remains enigmatic. We discovered that the large ribosomal subunit (LSU) rRNA of two Asgard phyla, Lokiarchaeota and Heimdallarchaeota, considered to be the closest modern archaeal cell lineages to Eukarya, bridge the gap in size between prokaryotic and eukaryotic LSU rRNAs. The elongated LSU rRNAs in Lokiarchaeota and Heimdallarchaeota stem from two supersized ESs, called ES9 and ES39. We applied chemical footprinting experiments to study the structure of Lokiarchaeota ES39. Furthermore, we used covariation and sequence analysis to study the evolution of Asgard ES39s and ES9s. By defining the common eukaryotic ES39 signature fold, we found that Asgard ES39s have more and longer helices than eukaryotic ES39s. Although Asgard ES39s have sequences and structures distinct from eukaryotic ES39s, we found overall conservation of a three-way junction across the Asgard species that matches eukaryotic ES39 topology, a result consistent with the accretion model of ribosomal evolution.
Collapse
Affiliation(s)
- Petar I Penev
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Sara Fakhretaha-Aval
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Vaishnavi J Patel
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Jamie J Cannone
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Anton S Petrov
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Loren Dean Williams
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jennifer B Glass
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
19
|
Ponge J. Communities, ecosystem engineers, and functional domains. Ecol Res 2021. [DOI: 10.1111/1440-1703.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Baluška F, Lyons S. Archaeal Origins of Eukaryotic Cell and Nucleus. Biosystems 2021; 203:104375. [PMID: 33549602 DOI: 10.1016/j.biosystems.2021.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/12/2023]
Abstract
Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.
Collapse
Affiliation(s)
| | - Sherrie Lyons
- Union College, 130 N. College, St. - Schenectady, NY, 12305, USA.
| |
Collapse
|
21
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
22
|
Long X, Xue H, Wong JTF. Descent of Bacteria and Eukarya From an Archaeal Root of Life. Evol Bioinform Online 2020; 16:1176934320908267. [PMID: 32636606 PMCID: PMC7313328 DOI: 10.1177/1176934320908267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 02/05/2023] Open
Abstract
The 3 biological domains delineated based on small subunit ribosomal RNAs (SSU rRNAs) are confronted by uncertainties regarding the relationship between Archaea and Bacteria, and the origin of Eukarya. The similarities between the paralogous valyl-tRNA and isoleucyl-tRNA synthetases in 5398 species estimated by BLASTP, which decreased from Archaea to Bacteria and further to Eukarya, were consistent with vertical gene transmission from an archaeal root of life close to Methanopyrus kandleri through a Primitive Archaea Cluster to an Ancestral Bacteria Cluster, and to Eukarya. The predominant similarities of the ribosomal proteins (rProts) of eukaryotes toward archaeal rProts relative to bacterial rProts established that an archaeal parent rather than a bacterial parent underwent genome merger with bacteria to generate eukaryotes with mitochondria. Eukaryogenesis benefited from the predominantly archaeal accelerated gene adoption (AGA) phenotype pertaining to horizontally transferred genes from other prokaryotes and expedited genome evolution via both gene-content mutations and nucleotidyl mutations. Archaeons endowed with substantial AGA activity were accordingly favored as candidate archaeal parents. Based on the top similarity bitscores displayed by their proteomes toward the eukaryotic proteomes of Giardia and Trichomonas, and high AGA activity, the Aciduliprofundum archaea were identified as leading candidates of the archaeal parent. The Asgard archaeons and a number of bacterial species were among the foremost potential contributors of eukaryotic-like proteins to Eukarya.
Collapse
Affiliation(s)
- Xi Long
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hong Xue
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - J Tze-Fei Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
23
|
Neveu E, Khalifeh D, Salamin N, Fasshauer D. Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Curr Biol 2020; 30:2468-2480.e5. [PMID: 32442459 DOI: 10.1016/j.cub.2020.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A defining feature of eukaryotic cells is the presence of numerous membrane-bound organelles that subdivide the intracellular space into distinct compartments. How the eukaryotic cell acquired its internal complexity is still poorly understood. Material exchange among most organelles occurs via vesicles that bud off from a source and specifically fuse with a target compartment. Central players in the vesicle fusion process are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. These small tail-anchored (TA) membrane proteins zipper into elongated four-helix bundles that pull membranes together. SNARE proteins are highly conserved among eukaryotes but are thought to be absent in prokaryotes. Here, we identified SNARE-like factors in the genomes of uncultured organisms of Asgard archaea of the Heimdallarchaeota clade, which are thought to be the closest living relatives of eukaryotes. Biochemical experiments show that the archaeal SNARE-like proteins can interact with eukaryotic SNARE proteins. We did not detect SNAREs in α-proteobacteria, the closest relatives of mitochondria, but identified several genes encoding for SNARE proteins in γ-proteobacteria of the order Legionellales, pathogens that live inside eukaryotic cells. Very probably, their SNAREs stem from lateral gene transfer from eukaryotes. Together, this suggests that the diverse set of eukaryotic SNAREs evolved from an archaeal precursor. However, whether Heimdallarchaeota actually have a simplified endomembrane system will only be seen when we succeed studying these organisms under the microscope.
Collapse
Affiliation(s)
- Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dany Khalifeh
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Abstract
The emergence of the endomembrane system is a key step in the evolution of cellular complexity during eukaryogenesis. The endosomal sorting complex required for transport (ESCRT) machinery is essential and required for the endomembrane system functions in eukaryotic cells. Recently, genes encoding eukaryote-like ESCRT protein components have been identified in the genomes of Asgard archaea, a newly proposed archaeal superphylum that is thought to include the closest extant prokaryotic relatives of eukaryotes. However, structural and functional features of Asgard ESCRT remain uncharacterized. Here, we show that Vps4, Vps2/24/46, and Vps20/32/60, the core functional components of the Asgard ESCRT, coevolved eukaryote-like structural and functional features. Phylogenetic analysis shows that Asgard Vps4, Vps2/24/46, and Vps20/32/60 are closely related to their eukaryotic counterparts. Molecular dynamics simulation and biochemical assays indicate that Asgard Vps4 contains a eukaryote-like microtubule-interacting and transport (MIT) domain that binds the distinct type 1 MIT-interacting motif and type 2 MIT-interacting motif in Vps2/24/46 and Vps20/32/60, respectively. The Asgard Vps4 partly, but much more efficiently than homologs from other archaea, complements the vps4 null mutant of Saccharomyces cerevisiae, further supporting the functional similarity between the membrane remodeling machineries of Asgard archaea and eukaryotes. Thus, this work provides evidence that the ESCRT complexes from Asgard archaea and eukaryotes are evolutionarily related and functionally similar. Thus, despite the apparent absence of endomembranes in Asgard archaea, the eukaryotic ESCRT seems to have been directly inherited from an Asgard ancestor, to become a key component of the emerging endomembrane system.IMPORTANCE The discovery of Asgard archaea has changed the existing ideas on the origins of eukaryotes. Researchers propose that eukaryotic cells evolved from Asgard archaea. This hypothesis partly stems from the presence of multiple eukaryotic signature proteins in Asgard archaea, including homologs of ESCRT proteins that are essential components of the endomembrane system in eukaryotes. However, structural and functional features of Asgard ESCRT remain unknown. Our study provides evidence that Asgard ESCRT is functionally comparable to the eukaryotic counterparts, suggesting that despite the apparent absence of endomembranes in archaea, eukaryotic ESCRT was inherited from an Asgard archaeal ancestor, alongside the emergence of endomembrane system during eukaryogenesis.
Collapse
|
25
|
Bateman A. Division of labour in a matrix, rather than phagocytosis or endosymbiosis, as a route for the origin of eukaryotic cells. Biol Direct 2020; 15:8. [PMID: 32345370 PMCID: PMC7187495 DOI: 10.1186/s13062-020-00260-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract Two apparently irreconcilable models dominate research into the origin of eukaryotes. In one model, amitochondrial proto-eukaryotes emerged autogenously from the last universal common ancestor of all cells. Proto-eukaryotes subsequently acquired mitochondrial progenitors by the phagocytic capture of bacteria. In the second model, two prokaryotes, probably an archaeon and a bacterial cell, engaged in prokaryotic endosymbiosis, with the species resident within the host becoming the mitochondrial progenitor. Both models have limitations. A search was therefore undertaken for alternative routes towards the origin of eukaryotic cells. The question was addressed by considering classes of potential pathways from prokaryotic to eukaryotic cells based on considerations of cellular topology. Among the solutions identified, one, called here the “third-space model”, has not been widely explored. A version is presented in which an extracellular space (the third-space), serves as a proxy cytoplasm for mixed populations of archaea and bacteria to “merge” as a transitionary complex without obligatory endosymbiosis or phagocytosis and to form a precursor cell. Incipient nuclei and mitochondria diverge by division of labour. The third-space model can accommodate the reorganization of prokaryote-like genomes to a more eukaryote-like genome structure. Nuclei with multiple chromosomes and mitosis emerge as a natural feature of the model. The model is compatible with the loss of archaeal lipid biochemistry while retaining archaeal genes and provides a route for the development of membranous organelles such as the Golgi apparatus and endoplasmic reticulum. Advantages, limitations and variations of the “third-space” models are discussed. Reviewers This article was reviewed by Damien Devos, Buzz Baum and Michael Gray.
Collapse
Affiliation(s)
- Andrew Bateman
- Division of Experimental Medicine, Department of Medicine, McGill University, Glen Site Pavilion E, 1001 Boulevard Decarie, Montreal, Quebec, H4A 3J1, Canada. .,Centre for Translational Biology, Research Institute of McGill University Health Centre, Glen Site Pavilion E, 1001 Boulevard Decarie, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
26
|
Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol 2020; 4:138-147. [PMID: 31819234 PMCID: PMC6942926 DOI: 10.1038/s41559-019-1040-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022]
Abstract
Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal 'tree of life' based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relationship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, UK
| | - Gergely J Szöllősi
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Evolutionary Systems Research Group, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK.
| |
Collapse
|
27
|
Shiratori T, Suzuki S, Kakizawa Y, Ishida KI. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10:5529. [PMID: 31827088 PMCID: PMC6906331 DOI: 10.1038/s41467-019-13499-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Phagocytosis is a key eukaryotic feature, conserved from unicellular protists to animals, that enabled eukaryotes to feed on other organisms. It could also be a driving force behind endosymbiosis, a process by which α-proteobacteria and cyanobacteria evolved into mitochondria and plastids, respectively. Here we describe a planctomycete bacterium, 'Candidatus Uab amorphum', which is able to engulf other bacteria and small eukaryotic cells through a phagocytosis-like mechanism. Observations via light and electron microscopy suggest that this bacterium digests prey cells in specific compartments. With the possible exception of a gene encoding an actin-like protein, analysis of the 'Ca. Uab amorphum' genomic sequence does not reveal any genes homologous to eukaryotic phagocytosis genes, suggesting that cell engulfment in this microorganism is probably not homologous to eukaryotic phagocytosis. The discovery of this "phagotrophic" bacterium expands our understanding of the cellular complexity of prokaryotes, and may be relevant to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan.
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Shigekatsu Suzuki
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
| | - Yukako Kakizawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| |
Collapse
|
28
|
Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, Teske AP, Ettema TJG, Baker BJ. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 2019; 10:1822. [PMID: 31015394 PMCID: PMC6478937 DOI: 10.1038/s41467-019-09364-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 01/25/2023] Open
Abstract
Large reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbon-rich Guaymas Basin. The genomes encode methyl-CoM reductase-like enzymes that are similar to those found in butane-oxidizing archaea, as well as several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. We suggest that members of the Helarchaeota have the potential to activate and subsequently anaerobically oxidize hydrothermally generated short-chain hydrocarbons.
Collapse
Affiliation(s)
- Kiley W Seitz
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
- NIOZ, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, 1797 SZ, AB, The Netherlands
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, 91400, France
| | - Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, 1797 SZ, AB, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | - Jonathan Lombard
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | | | - Andreas P Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, NL-6708WE, The Netherlands
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA.
| |
Collapse
|
29
|
Ying G, Frederick JM, Baehr W. Deletion of both centrin 2 (CETN2) and CETN3 destabilizes the distal connecting cilium of mouse photoreceptors. J Biol Chem 2019; 294:3957-3973. [PMID: 30647131 DOI: 10.1074/jbc.ra118.006371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 02/03/2023] Open
Abstract
Centrins (CETN1-4) are ubiquitous and conserved EF-hand-family Ca2+-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors. Here, to explore centrin redundancy, we generated Cetn3 GT/GT single-knockout and Cetn2 -/-;Cetn3 GT/GT double-knockout mice. Whereas the Cetn3 deletion alone did not affect photoreceptor function, simultaneous ablation of Cetn2 and Cetn3 resulted in attenuated scotopic and photopic electroretinography (ERG) responses in mice at 3 months of age, with nearly complete retina degeneration at 1 year. Removal of CETN2 and CETN3 activity from the lumen of the connecting cilium (CC) destabilized the photoreceptor axoneme and reduced the CC length as early as postnatal day 22 (P22). In Cetn2 -/-;Cetn3 GT/GT double-knockout mice, spermatogenesis-associated 7 (SPATA7), a key organizer of the photoreceptor-specific distal CC, was depleted gradually, and CETN1 was condensed to the mid-segment of the CC. Ultrastructural analysis revealed that in this double knockout, the axoneme of the CC expanded radially at the distal end, with vertically misaligned outer segment discs and membrane whorls. These observations suggest that CETN2 and CETN3 cooperate in stabilizing the CC/axoneme structure.
Collapse
Affiliation(s)
- Guoxin Ying
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| | - Jeanne M Frederick
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132, .,the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112, and.,the Department of Biology, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
30
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
31
|
Baluška F, Lyons S. Energide-cell body as smallest unit of eukaryotic life. ANNALS OF BOTANY 2018; 122:741-745. [PMID: 29474513 PMCID: PMC6215040 DOI: 10.1093/aob/mcy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Background The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. Scope and Conclusions The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.
Collapse
|
32
|
Díaz Casas A, Casanova Sepúlveda G, Sánchez Negrón O, Caro Muñiz AP, Malavé Ramos SR, Cebollero López AR, Pastrana-Ríos B. Molecular biophysical characterization of the third FF domain of Homo sapiens Prp40 homolog A. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Fournier GP, Poole AM. A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. Front Microbiol 2018; 9:1896. [PMID: 30158917 PMCID: PMC6104171 DOI: 10.3389/fmicb.2018.01896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
The recent discovery of the Lokiarchaeota and other members of the Asgard superphylum suggests that closer analysis of the cell biology and evolution of these groups may help shed light on the origin of the eukaryote cell. Asgard lineages often appear in molecular phylogenies as closely related to eukaryotes, and possess “Eukaryote Signature Proteins” coded by genes previously thought to be unique to eukaryotes. This phylogenetic affinity to eukaryotes has been widely interpreted as indicating that Asgard lineages are “eukaryote-like archaea,” with eukaryotes evolving from within a paraphyletic Archaea. Guided by the established principles of systematics, we examine the potential implications of the monophyly of Asgard lineages and Eukarya. We show that a helpful parallel case is that of Synapsida, a group that includes modern mammals and their more “reptile-like” ancestors, united by shared derived characters that evolved in their common ancestor. While this group contains extinct members that share many similarities with modern reptiles and their extinct relatives, they are evolutionarily distinct from Sauropsida, the group which includes modern birds, reptiles, and all other amniotes. Similarly, Asgard lineages and eukaryotes are united by shared derived characters to the exclusion of all other groups. Consequently, the Asgard group is not only highly informative for our understanding of eukaryogenesis, but may be better understood as being early diverging members of a broader group including eukaryotes, for which we propose the name “Eukaryomorpha.” Significantly, this means that the relationship between Eukarya and Asgard lineages cannot, on its own, resolve the debate over 2 vs. 3 Domains of life; instead, resolving this debate depends upon identifying the root of Archaea with respect to Bacteria.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anthony M Poole
- Bioinformatics Institute, Te Ao Mārama - Centre for Fundamental Inquiry, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
35
|
Kauko A, Lehto K. Eukaryote specific folds: Part of the whole. Proteins 2018; 86:868-881. [PMID: 29675831 DOI: 10.1002/prot.25517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
The origin of eukaryotes is one of the central transitions in the history of life; without eukaryotes there would be no complex multicellular life. The most accepted scenarios suggest the endosymbiosis of a mitochondrial ancestor with a complex archaeon, even though the details regarding the host and the triggering factors are still being discussed. Accordingly, phylogenetic analyses have demonstrated archaeal affiliations with key informational systems, while metabolic genes are often related to bacteria, mostly to the mitochondrial ancestor. Despite of this, there exists a large number of protein families and folds found only in eukaryotes. In this study, we have analyzed structural superfamilies and folds that probably appeared during eukaryogenesis. These folds typically represent relatively small binding domains of larger multidomain proteins. They are commonly involved in biological processes that are particularly complex in eukaryotes, such as signaling, trafficking/cytoskeleton, ubiquitination, transcription and RNA processing, but according to recent studies, these processes also have prokaryotic roots. Thus the folds originating from an eukaryotic stem seem to represent accessory parts that have contributed in the expansion of several prokaryotic processes to a new level of complexity. This might have taken place as a co-evolutionary process where increasing complexity and fold innovations have supported each other.
Collapse
Affiliation(s)
- Anni Kauko
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Kirsi Lehto
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Castelle CJ, Banfield JF. Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell 2018. [DOI: 10.1016/j.cell.2018.02.016] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiol (Oxf) 2018; 222. [PMID: 28665546 DOI: 10.1111/apha.12915] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Intracellular organelles, including secretory vesicles, emerged when eukaryotic cells evolved some 3 billion years ago. The primordial organelles that evolved in Archaea were similar to endolysosomes, which developed, arguably, for specific metabolic tasks, including uptake, metabolic processing, storage and disposal of molecules. In comparison with prokaryotes, cell volume of eukaryotes increased by several orders of magnitude and vesicle traffic emerged to allow for communication between distant intracellular locations. Lysosomes, first described in 1955, a prominent intermediate of endo- and exocytotic pathways, operate virtually in all eukaryotic cells including astroglia, the most heterogeneous type of homeostatic glia in the central nervous system. Astrocytes support neuronal network activity in particular through elaborated secretion, based on a complex intracellular vesicle network dynamics. Deranged homeostasis underlies disease and astroglial vesicle traffic contributes to the pathophysiology of neurodegenerative (Alzheimer's disease, Huntington's disease), neurodevelopmental diseases (intellectual deficiency, Rett's disease) and neuroinfectious (Zika virus) disorders. This review addresses astroglial cell-autonomous vesicular traffic network, as well as its into primary and secondary vesicular network defects in diseases, and considers this network as a target for developing new therapies for neurological conditions.
Collapse
Affiliation(s)
- R. Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
| | - V. Parpura
- Department of Neurobiology; Civitan International Research Center and Center for Glial Biology in Medicine; Evelyn F. McKnight Brain Institute; Atomic Force Microscopy and Nanotechnology Laboratories; University of Alabama; Birmingham AL USA
| | - A. Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
- Faculty of Biology; Medicine and Health; The University of Manchester; Manchester UK
- Achucarro Center for Neuroscience; IKERBASQUE; Basque Foundation for Science; Bilbao Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
| |
Collapse
|
38
|
Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol 2017; 15:711-723. [DOI: 10.1038/nrmicro.2017.133] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Zachar I, Szathmáry E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology. Biol Direct 2017; 12:19. [PMID: 28806979 PMCID: PMC5557255 DOI: 10.1186/s13062-017-0190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023] Open
Abstract
The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. REVIEWERS This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.
Collapse
Affiliation(s)
- István Zachar
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
| | - Eörs Szathmáry
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Munich, Germany
| |
Collapse
|
40
|
Staley JT, Fuerst JA. Ancient, highly conserved proteins from a LUCA with complex cell biology provide evidence in support of the nuclear compartment commonality (NuCom) hypothesis. Res Microbiol 2017; 168:395-412. [PMID: 28111289 DOI: 10.1016/j.resmic.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/23/2022]
Abstract
The nuclear compartment commonality (NuCom) hypothesis posits a complex last common ancestor (LUCA) with membranous compartments including a nuclear membrane. Such a LUCA then evolved to produce two nucleated lineages of the tree of life: the Planctomycetes-Verrucomicrobia-Chlamydia superphylum (PVC) within the Bacteria, and the Eukarya. We propose that a group of ancient essential protokaryotic signature proteins (PSPs) originating in LUCA were incorporated into ancestors of PVC Bacteria and Eukarya. Tubulins, ubiquitin system enzymes and sterol-synthesizing enzymes are consistent with early origins of these features shared between the PVC superphylum and Eukarya.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle 98195, USA
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
41
|
Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017; 541:353-358. [PMID: 28077874 DOI: 10.1038/nature21031] [Citation(s) in RCA: 676] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.
Collapse
Affiliation(s)
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Disa Bäckström
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lina Juzokaite
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Emmelien Vancaester
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kiley W Seitz
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Piotr Starnawski
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kasper U Kjeldsen
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Matthew B Stott
- GNS Science, Extremophile Research Group, Private Bag 2000, Taupō 3352, New Zealand
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Andreas Schramm
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brett J Baker
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
42
|
Abstract
A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins.
Collapse
|
43
|
Mariscal C, Doolittle WF. Eukaryotes first: how could that be? Philos Trans R Soc Lond B Biol Sci 2016; 370:20140322. [PMID: 26323754 DOI: 10.1098/rstb.2014.0322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier 'progenotic' period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through 'streamlining'. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested.
Collapse
Affiliation(s)
- Carlos Mariscal
- Departments of Philosophy, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2 Biochemistry and Molecular Biology, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - W Ford Doolittle
- Biochemistry and Molecular Biology, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
44
|
|
45
|
Brunet T, Arendt D. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150043. [PMID: 26598726 PMCID: PMC4685582 DOI: 10.1098/rstb.2015.0043] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system.
Collapse
Affiliation(s)
- Thibaut Brunet
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany
| |
Collapse
|
46
|
Peek GW, Tollefsbol TO. Combinatorial PX-866 and Raloxifene Decrease Rb Phosphorylation, Cyclin E2 Transcription, and Proliferation of MCF-7 Breast Cancer Cells. J Cell Biochem 2015; 117:1688-96. [PMID: 26660119 DOI: 10.1002/jcb.25462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/10/2015] [Indexed: 01/03/2023]
Abstract
As a potential means to reduce proliferation of breast cancer cells, a multiple-pathway approach with no effect on control cells was explored. The human interactome being constructed by the Center for Cancer Systems Biology will prove indispensable to understanding composite effects of multiple pathways, but its discovered protein-protein interactions require characterization. Accordingly, we explored the effects of regulators of one protein on downstream targets of the other protein. MCF-7 estrogen receptor-positive (ER+) breast cancer cells were treated with raloxifene to upregulate the TGF-β pathway and PX-866 to down-regulate the PI3K/Akt pathway. This resulted in highly significant downstream reduction of cell cycle proliferation in breast cancer cells with no significant proliferation reduction following similar treatment of noncancerous MCF10A breast epithelial cells. Reduced phosphorylation of p107 and substantial reduction of Rb phosphorylation were observed in response. The effects of reduced Rb and p107 phosphorylation were reflected in significant decline in E2F-1 transcriptional activity, which is dependent on pocket protein phosphorylation status. The reduced proliferation was related to decreased expression of cyclins, including E2F-1-regulated Cyclin E2, which was also in response to raloxifene and PX-866. All combinations of raloxifene and PX-866 produced significant or highly significant results for reduced MCF-7 cell proliferation, reduced Cyclin E2 transcription, and reduced Rb phosphorylation. These studies demonstrated that uncontrolled proliferation of ER+ breast cancer cells can be significantly reduced by combinational targeting of two relevant pathways. J. Cell. Biochem. 117: 1688-1696, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gregory W Peek
- Department of Biology, University of Alabama, Birmingham, Alabama
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama, Birmingham, Alabama.,Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama.,Comprehensive Center for Healthy Aging, University of Alabama, Birmingham, Alabama.,Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama.,Nutrition Obesity Research Center, University of Alabama, Birmingham, Alabama
| |
Collapse
|
47
|
Zhao Y, Cocco C, Domenichini S, Samson ML, Rabinow L. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus. Dev Biol 2015; 407:224-31. [DOI: 10.1016/j.ydbio.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
|
48
|
|
49
|
Gräf R, Batsios P, Meyer I. Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. Eur J Cell Biol 2015; 94:249-56. [DOI: 10.1016/j.ejcb.2015.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/08/2023] Open
|
50
|
Shi J, Zhao Y, Vonderfecht T, Winey M, Klymkowsky MW. Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. Sci Rep 2015; 5:10283. [PMID: 26014913 PMCID: PMC4650658 DOI: 10.1038/srep10283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/27/2015] [Indexed: 01/06/2023] Open
Abstract
Centrins (Cetns) are highly conserved, widely expressed, and multifunctional Ca2+-binding eukaryotic signature proteins best known for their roles in ciliogenesis and as critical components of the global genome nucleotide excision repair system. Two distinct Cetn subtypes, Cetn2-like and Cetn3-like, have been recognized and implicated in a range of cellular processes. In the course of morpholino-based loss of function studies in Xenopus laevis, we have identified a previously unreported Cetn2-specific function, namely in fibroblast growth factor (FGF) mediated signaling, specifically through the regulation of FGF and FGF receptor RNA levels. Cetn2 was found associated with the RNA polymerase II binding sites of the Cetn2-regulated FGF8 and FGFR1a genes, but not at the promoter of a gene (BMP4) whose expression was altered indirectly in Cent2 morphant embryos. These observations point to a previously unexpected role of Cetn2 in the regulation of gene expression and embryonic development.
Collapse
Affiliation(s)
- Jianli Shi
- Molecular, Cellular &Developmental Biology University of Colorado Boulder, Boulder, Colorado 80309
| | - Ying Zhao
- Molecular, Cellular &Developmental Biology University of Colorado Boulder, Boulder, Colorado 80309
| | - Tyson Vonderfecht
- Molecular, Cellular &Developmental Biology University of Colorado Boulder, Boulder, Colorado 80309
| | - Mark Winey
- Molecular, Cellular &Developmental Biology University of Colorado Boulder, Boulder, Colorado 80309
| | - Michael W Klymkowsky
- Molecular, Cellular &Developmental Biology University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|