1
|
Long AB, Wilson IM, Terry TT, Van Sciver RE, Caspary T. ARL13B-Cerulean rescues Arl13b-null mouse from embryonic lethality and reveals a role for ARL13B in spermatogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644968. [PMID: 40196635 PMCID: PMC11974714 DOI: 10.1101/2025.03.24.644968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
ARL13B is a regulatory GTPase enriched in cilia, making it a popular marker for this organelle. Arl13b hnn/hnn mice lack ARL13B expression, die during midgestation, and exhibit defects in ciliogenesis. The R26Arl13b-Fucci2aR biosensor mouse line directs the expression of fluorescently tagged full-length Arl13b cDNA upon Cre recombination. To determine whether constitutive, ubiquitous expression of ARL13B-Cerulean can replace endogenous gene expression, we generated Arl13b hnn/hnn animals expressing ARL13B-Cerulean. We show that Arl13b hnn/hnn ;Arl13b-Cerulean mice survive to adulthood with no obvious physical or behavioral defects, indicating that the fluorescently tagged protein can functionally replace the endogenous protein during development. However, we observed that rescued males failed to sire offspring, revealing a role for ARL13B in spermatogenesis. This work shows that the R26Arl13b-Fucci2aR mouse contains an inducible allele of Arl13b capable of functioning in most tissues and biological processes.
Collapse
Affiliation(s)
- Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Isabella M. Wilson
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Graduate Program in Molecular Biology, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Zhong BH, Nie N, Dong M. Molecular mechanisms of the obesity associated with Bardet-Biedl syndrome: An update. Obes Rev 2025; 26:e13859. [PMID: 39477210 DOI: 10.1111/obr.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 02/05/2025]
Abstract
Obesity is a prominent feature of Bardet-Biedl syndrome (BBS), which represents a major and growing public health problem. More than half of BBS patients carry mutations in one of eight genes that encode subunits of a protein complex known as the BBSome, which has emerged as a key regulator of energy and glucose homeostasis. However, the mechanisms underlying obesity in BBS are complex. Numerous studies have identified a high prevalence of insulin resistance and metabolic syndrome among individuals with BBS. However, the exact mechanisms are not fully understood. This review summarized evidence from experiments using mouse and cell models, focusing on the energy imbalance that leads to obesity in patients with BBS. The studies discussed in this review contribute to understanding the functional role of the BBSome in the obesity associated with BBS, laying the foundation for developing new preventive or therapeutic strategies for obese patients.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Nie
- Comprehensive Geriatric First Ward, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Kanie T, Ng R, Abbott KL, Tanvir NM, Lorentzen E, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the preciliary vesicle at distal appendages. eLife 2025; 14:e85998. [PMID: 39882855 PMCID: PMC11984960 DOI: 10.7554/elife.85998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland UniversitySaarbrückenGermany
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
Moye AR, Robichaux MA, Agosto MA, Rivolta C, Moulin AP, Wensel TG. Ciliopathy-associated protein, CEP290, is required for ciliary necklace and outer segment membrane formation in retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633784. [PMID: 39896654 PMCID: PMC11785020 DOI: 10.1101/2025.01.20.633784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The most common genetic cause of the childhood blinding disease Leber Congenital Amaurosis is mutation of the ciliopathy gene CEP290. Though studied extensively, the photoreceptor-specific roles of CEP290 remain unclear. Using advanced microscopy techniques, we investigated the sub-ciliary localization of CEP290 and its role in mouse photoreceptors during development. CEP290 was found throughout the connecting cilium between the microtubules and membrane, with nine-fold symmetry. In the absence of CEP290 ciliogenesis occurs, but the connecting cilium membrane is aberrant, and sub-structures, such as the ciliary necklace and Y-links, are defective or absent throughout the mid to distal connecting cilium. Transition zone proteins AHI1 and NPHP1 were abnormally restricted to the proximal connecting cilium in the absence of CEP290, while others like NPHP8 and CEP89 were unaffected. Although outer segment disc formation is inhibited in CEP290 mutant retina, we observed large numbers of extracellular vesicles. These results suggest roles for CEP290 in ciliary membrane structure, outer segment disc formation and photoreceptor-specific spatial distribution of a subset of transition zone proteins, which collectively lead to failure of outer segment formation and photoreceptor degeneration.
Collapse
Affiliation(s)
- Abigail R Moye
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, 4031, Switzerland
- Department of Ophthalmology, University of Basel, Basel, 4031, Switzerland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael A Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, 4031, Switzerland
- Department of Ophthalmology, University of Basel, Basel, 4031, Switzerland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Guggeri L, Sosa-Redaelli I, Cárdenas-Rodríguez M, Alonso M, González G, Naya H, Prieto-Echagüe V, Lepanto P, Badano JL. Follistatin like-1 ( Fstl1) regulates adipose tissue development in zebrafish. Adipocyte 2024; 13:2435862. [PMID: 39644214 PMCID: PMC11633180 DOI: 10.1080/21623945.2024.2435862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
Collapse
Affiliation(s)
- Lucía Guggeri
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ileana Sosa-Redaelli
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Martina Alonso
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gisell González
- Zebrafish Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
6
|
Havrylov S, Chrystal P, van Baarle S, French CR, MacDonald IM, Avasarala J, Rogers RC, Berry FB, Kume T, Waskiewicz AJ, Lehmann OJ. Pleiotropy in FOXC1-attributable phenotypes involves altered ciliation and cilia-dependent signaling. Sci Rep 2024; 14:20278. [PMID: 39217245 PMCID: PMC11365983 DOI: 10.1038/s41598-024-71159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Alterations to cilia are responsible for a wide range of severe disease; however, understanding of the transcriptional control of ciliogenesis remains incomplete. In this study we investigated whether altered cilia-mediated signaling contributes to the pleiotropic phenotypes caused by the Forkhead transcription factor FOXC1. Here, we show that patients with FOXC1-attributable Axenfeld-Rieger Syndrome (ARS) have a prevalence of ciliopathy-associated phenotypes comparable to syndromic ciliopathies. We demonstrate that altering the level of Foxc1 protein, via shRNA mediated inhibition, CRISPR/Cas9 mutagenesis and overexpression, modifies cilia length in vitro. These structural changes were associated with substantially perturbed cilia-dependent signaling [Hedgehog (Hh) and PDGFRα], and altered ciliary compartmentalization of the Hh pathway transcription factor, Gli2. Consistent with these data, in primary cultures of murine embryonic meninges, cilia length was significantly reduced in heterozygous and homozygous Foxc1 mutants compared to controls. Meningeal expression of the core Hh signaling components Gli1, Gli3 and Sufu was dysregulated, with comparable dysregulation of Pdgfrα signaling evident from significantly altered Pdgfrα and phosphorylated Pdgfrα expression. On the basis of these clinical and experimental findings, we propose a model that altered cilia-mediated signaling contributes to some FOXC1-induced phenotypes.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Chrystal
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Suey van Baarle
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Curtis R French
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jagannadha Avasarala
- Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | | | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, 3002D Li Ka Shing Centre, University of Alberta, Edmonton, AB, Canada
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
7
|
Carvalho LML, Jorge AADL, Bertola DR, Krepischi ACV, Rosenberg C. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, Clinical Features and Molecular Diagnosis. Curr Obes Rep 2024; 13:313-337. [PMID: 38277088 DOI: 10.1007/s13679-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Lewandowski D, Gao F, Imanishi S, Tworak A, Bassetto M, Dong Z, Pinto AFM, Tabaka M, Kiser PD, Imanishi Y, Skowronska-Krawczyk D, Palczewski K. Restoring retinal polyunsaturated fatty acid balance and retina function by targeting ceramide in AdipoR1-deficient mice. J Biol Chem 2024; 300:107291. [PMID: 38636661 PMCID: PMC11107370 DOI: 10.1016/j.jbc.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Fangyuan Gao
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksander Tworak
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorota Skowronska-Krawczyk
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, and Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| |
Collapse
|
9
|
Takita S, Jahan S, Imanishi S, Harikrishnan H, LePage D, Mann RJ, Conlon RA, Miyagi M, Imanishi Y. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. FASEB J 2024; 38:e23606. [PMID: 38648465 PMCID: PMC11047207 DOI: 10.1096/fj.202302260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.
Collapse
Affiliation(s)
- Shimpei Takita
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sultana Jahan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel J. Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Brewer KK, Brewer KM, Terry TT, Caspary T, Vaisse C, Berbari NF. Postnatal Dynamic Ciliary ARL13B and ADCY3 Localization in the Mouse Brain. Cells 2024; 13:259. [PMID: 38334651 PMCID: PMC10854790 DOI: 10.3390/cells13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Collapse
Affiliation(s)
- Katlyn K. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Kathryn M. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Christian Vaisse
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, CA 92697, USA;
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
- Stark Neurosciences Research Institute, Indiana University-Indianapolis, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Katami H, Suzuki S, Fujii T, Ueno M, Tanaka A, Ohta KI, Miki T, Shimono R. Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats. Pediatr Res 2023; 94:1650-1658. [PMID: 37225778 DOI: 10.1038/s41390-023-02638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.
Collapse
Affiliation(s)
- Hiroto Katami
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takayuki Fujii
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Aya Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan.
| |
Collapse
|
12
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Williams J, Hurling C, Munir S, Harley P, Machado CB, Cujba AM, Alvarez-Fallas M, Danovi D, Lieberam I, Sancho R, Beales P, Watt FM. Modelling renal defects in Bardet-Biedl syndrome patients using human iPS cells. Front Cell Dev Biol 2023; 11:1163825. [PMID: 37333983 PMCID: PMC10272764 DOI: 10.3389/fcell.2023.1163825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney.
Collapse
Affiliation(s)
- James Williams
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Chloe Hurling
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Sabrina Munir
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Peter Harley
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Carolina Barcellos Machado
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Ana-Maria Cujba
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Mario Alvarez-Fallas
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Davide Danovi
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
- Bit.bio, Babraham Research Campus, Cambridge, United Kingdom
| | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Rocio Sancho
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Philip Beales
- Institute of Child Health, Genetic and Genomic Medicine, University College London, London, United Kingdom
| | - Fiona M. Watt
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
14
|
Ning K, Bhuckory MB, Lo CH, Sendayen BE, Kowal TJ, Chen M, Bansal R, Chang KC, Vollrath D, Berbari NF, Mahajan VB, Hu Y, Sun Y. Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium. Sci Rep 2023; 13:8205. [PMID: 37211572 PMCID: PMC10200793 DOI: 10.1038/s41598-023-35099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ming Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
15
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Hsu Y, Bhattarai S, Thompson JM, Mahoney A, Thomas J, Mayer SK, Datta P, Garrison J, Searby CC, Vandenberghe LH, Seo S, Sheffield VC, Drack AV. Subretinal gene therapy delays vision loss in a Bardet-Biedl Syndrome type 10 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:164-181. [PMID: 36700052 PMCID: PMC9841241 DOI: 10.1016/j.omtn.2022.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. BBS10, mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death. Cone photoreceptors lacking BBS10 have congenitally low electrical function in electroretinography. In this study, we performed gene augmentation therapy by injecting a viral construct subretinally to deliver the coding sequence of the mouse Bbs10 gene to treat retinal degeneration in a BBS10 mouse model. Long-term efficacy was assessed by measuring the electrical functions of the retina over time, imaging of the treated regions to visualize cell survival, conducting visually guided swim assays to measure functional vision, and performing retinal histology. We show that subretinal gene therapy slowed photoreceptor cell death and preserved retinal function in treated eyes. Notably, cone photoreceptors regained their electrical function after gene augmentation. Measurement of functional vision showed that subretinal gene therapy provided a significant benefit in delaying vision loss.
Collapse
Affiliation(s)
- Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Jacob M. Thompson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Angela Mahoney
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Sara K. Mayer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Janelle Garrison
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | - Luk H. Vandenberghe
- Massachusetts Eye and Ear, Grousbeck Gene Therapy Center, Harvard Medical School, Boston, MA, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C. Sheffield
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Kanie T, Ng R, Abbott KL, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the ciliary vesicle at distal appendages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523037. [PMID: 36712037 PMCID: PMC9881967 DOI: 10.1101/2023.01.06.523037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Keene L. Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine (CIPPM), Saarland University, Homburg, Germany
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
18
|
Delvallée C, Dollfus H. Retinal Degeneration Animal Models in Bardet-Biedl Syndrome and Related Ciliopathies. Cold Spring Harb Perspect Med 2023; 13:a041303. [PMID: 36596648 PMCID: PMC9808547 DOI: 10.1101/cshperspect.a041303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinal degeneration due to photoreceptor ciliary-related proteins dysfunction accounts for more than 25% of all inherited retinal dystrophies. The cilium, being an evolutionarily conserved and ubiquitous organelle implied in many cellular functions, can be investigated by way of many models from invertebrate models to nonhuman primates, all these models have massively contributed to the pathogenesis understanding of human ciliopathies. Taking the Bardet-Biedl syndrome (BBS) as an emblematic example as well as other related syndromic ciliopathies, the contribution of a wide range of models has enabled to characterize the role of the BBS proteins in the archetypical cilium but also at the level of the connecting cilium of the photoreceptors. There are more than 24 BBS genes encoding for proteins that form different complexes such as the BBSome and the chaperone proteins complex. But how they lead to retinal degeneration remains a matter of debate with the possible accumulation of proteins in the inner segment and/or accumulation of unwanted proteins in the outer segment that cannot return in the inner segment machinery. Many BBS proteins (but not the chaperonins for instance) can be modeled in primitive organisms such as Paramecium, Chlamydomonas reinardtii, Trypanosoma brucei, and Caenorhabditis elegans These models have enabled clarifying the role of a subset of BBS proteins in the primary cilium as well as their relations with other modules such as the intraflagellar transport (IFT) module, the nephronophthisis (NPHP) module, or the Meckel-Gruber syndrome (MKS)/Joubert syndrome (JBTS) module mostly involved with the transition zone of the primary cilia. Assessing the role of the primary cilia structure of the connecting cilium of the photoreceptor cells has been very much studied by way of zebrafish modeling (Danio rerio) as well as by a plethora of mouse models. More recently, large animal models have been described for three BBS genes and one nonhuman primate model in rhesus macaque for BBS7 In completion to animal models, human cell models can now be used notably thanks to gene editing and the use of induced pluripotent stem cells (iPSCs). All these models are not only important for pathogenesis understanding but also very useful for studying therapeutic avenues, their pros and cons, especially for gene replacement therapy as well as pharmacological triggers.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| |
Collapse
|
19
|
Guo DF, Merrill RA, Qian L, Hsu Y, Zhang Q, Lin Z, Thedens DR, Usachev YM, Grumbach I, Sheffield VC, Strack S, Rahmouni K. The BBSome regulates mitochondria dynamics and function. Mol Metab 2023; 67:101654. [PMID: 36513220 PMCID: PMC9792363 DOI: 10.1016/j.molmet.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Lan Qian
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ying Hsu
- Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daniel R Thedens
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Isabella Grumbach
- Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
20
|
Moruzzi N, Leibiger B, Barker CJ, Leibiger IB, Berggren PO. Novel aspects of intra-islet communication: Primary cilia and filopodia. Adv Biol Regul 2023; 87:100919. [PMID: 36266190 DOI: 10.1016/j.jbior.2022.100919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Pancreatic islets are micro-organs composed of a mixture of endocrine and non-endocrine cells, where the former secrete hormones and peptides necessary for metabolic homeostasis. Through vasculature and innervation the cells within the islets are in communication with the rest of the body, while they interact with each other through juxtacrine, paracrine and autocrine signals, resulting in fine-tuned sensing and response to stimuli. In this context, cellular protrusion in islet cells, such as primary cilia and filopodia, have gained attention as potential signaling hubs. During the last decade, several pieces of evidence have shown how the primary cilium is required for islet vascularization, function and homeostasis. These findings have been possible thanks to the development of ciliary/basal body specific knockout models and technological advances in microscopy, which allow longitudinal monitoring of engrafted islets transplanted in the anterior chamber of the eye in living animals. Using this technique in combination with optogenetics, new potential paracrine interactions have been suggested. For example, reshaping and active movement of filopodia-like protrusions of δ-cells were visualized in vivo, suggesting a continuous cell remodeling to increase intercellular contacts. In this review, we discuss these recent discoveries regarding primary cilia and filopodia and their role in islet homeostasis and intercellular islet communication.
Collapse
Affiliation(s)
- Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
21
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
22
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
23
|
Dang H, Martin‐Villalba A, Schiebel E. Centrosome linker protein C-Nap1 maintains stem cells in mouse testes. EMBO Rep 2022; 23:e53805. [PMID: 35599622 PMCID: PMC9253759 DOI: 10.15252/embr.202153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
The centrosome linker component C-Nap1 (encoded by CEP250) anchors filaments to centrioles that provide centrosome cohesion by connecting the two centrosomes of an interphase cell into a single microtubule organizing unit. The role of the centrosome linker during development of an animal remains enigmatic. Here, we show that male CEP250-/- mice are sterile because sperm production is abolished. Premature centrosome separation means that germ stem cells in CEP250-/- mice fail to establish an E-cadherin polarity mark and are unable to maintain the older mother centrosome on the basal site of the seminiferous tubules. This failure prompts premature stem cell differentiation in expense of germ stem cell expansion. The concomitant induction of apoptosis triggers the complete depletion of germ stem cells and consequently infertility. Our study reveals a role for centrosome cohesion in asymmetric cell division, stem cell maintenance, and fertility.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)Universität HeidelbergHeidelbergGermany
| | - Ana Martin‐Villalba
- Deutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| |
Collapse
|
24
|
Abstract
Primary cilia as a signaling organelle have garnered recent attention as a regulator of pancreatic islet function. These rod-like sensors exist on all major islet endocrine cell types and transduce a variety of external cues, while dysregulation of cilia function contributes to the development of diabetes. The complex role of islet primary cilia has been examined using genetic deletion targeting various components of cilia. In this review, we summarize experimental models for the study of islet cilia and current understanding of mechanisms of cilia regulation of islet hormone secretion. Consensus from these studies shows that pancreatic cilia perturbation can cause both endocrine and exocrine defects that are relevant to human disease. We discuss future research directions that would further elucidate cilia action in distinct groups of islet cells, including paracrine and juxtacrine regulation, GPCR signaling, and endocrine-exocrine crosstalk.
Collapse
Affiliation(s)
| | - Jing W. Hughes
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
25
|
Fabregat M, Niño-Rivero S, Pose S, Cárdenas-Rodríguez M, Bresque M, Hernández K, Prieto-Echagüe V, Schlapp G, Crispo M, Lagos P, Lago N, Escande C, Irigoín F, Badano JL. Generation and characterization of Ccdc28b mutant mice links the Bardet-Biedl associated gene with mild social behavioral phenotypes. PLoS Genet 2022; 18:e1009896. [PMID: 35653384 PMCID: PMC9197067 DOI: 10.1371/journal.pgen.1009896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/14/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes. BBS is caused by mutations in any one of 22 genes known to date. In some families, BBS can be inherited as an oligogenic trait whereby mutations in more than one BBS gene collaborate in the presentation of the syndrome. In addition, CCDC28B was originally identified as a modifier of BBS, whereby a reduction in CCDC28B levels was associated with a more severe presentation of the syndrome. Different mechanisms, all relying on functional redundancy, have been proposed to explain these genetic interactions. The characterization of BBS proteins supported this functional redundancy hypothesis: BBS proteins play a role in cilia maintenance/function and subsets of BBS proteins can even interact directly in multiprotein complexes. We have previously shown that CCDC28B also participates in cilia biology regulating the length of the organelle: knockdown of CCDC28B in cells results in cilia shortening and targeting ccdc28b in zebrafish also results in early embryonic phenotypes characteristic of other cilia mutants. In this work, we generated a Ccdc28b mutant mouse to determine whether abrogating Ccdc28b function would be sufficient to cause a ciliopathy phenotype in mammals, and to generate a tool to continue dissecting its modifying role in the context of BBS. Overall, Ccdc28b mutant mice presented a mild phenotype, a finding fully compatible with its role as a modifier, rather than a causal BBS gene. In addition, we found that Ccdc28b mutants showed behavioral phenotypes, similar to the deficits observed in rodent autism spectrum disorder (ASD) models. Thus, our results underscore a novel causal link between CCDC28B and behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Matías Fabregat
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sofía Niño-Rivero
- Departamento de Fisiología, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Pose
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Magdalena Cárdenas-Rodríguez
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bresque
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Metabolic Diseases and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Karina Hernández
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Victoria Prieto-Echagüe
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Universidad de la República, Montevideo, Uruguay
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Escande
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Metabolic Diseases and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Irigoín
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (FI); (JLB)
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- * E-mail: (FI); (JLB)
| |
Collapse
|
26
|
Oh JK, Vargas Del Valle JG, Lima de Carvalho JR, Sun YJ, Levi SR, Ryu J, Yang J, Nagasaki T, Emanuelli A, Rasool N, Allikmets R, Sparrow JR, Izquierdo NJ, Duncan JL, Mahajan VB, Tsang SH. Expanding the phenotype of TTLL5-associated retinal dystrophy: a case series. Orphanet J Rare Dis 2022; 17:146. [PMID: 35365235 PMCID: PMC8973795 DOI: 10.1186/s13023-022-02295-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inherited retinal dystrophies describe a heterogeneous group of retinal diseases that lead to the irreversible degeneration of rod and cone photoreceptors and eventual blindness. Recessive loss-of-function mutations in Tubulin Tyrosine Ligase Like 5 (TTLL5) represent a recently described cause of inherited cone-rod and cone dystrophy. This study describes the unusual phenotypes of three patients with autosomal recessive mutations in TTLL5. Examination of these patients included funduscopic evaluation, spectral-domain optical coherence tomography, short-wavelength autofluorescence, and full-field electroretinography (ffERG). Genetic diagnoses were confirmed using whole exome capture. Protein modeling of the identified variants was performed to explore potential genotype-phenotype correlations. RESULTS Genetic testing revealed five novel variants in TTLL5 in three unrelated patients with retinal dystrophy. Clinical imaging demonstrated features of sectoral cone-rod dystrophy and cone dystrophy, with phenotypic variability seen across all three patients. One patient also developed high-frequency hearing loss during a similar time period as the onset of retinal disease, potentially suggestive of a syndromic disorder. Retinal structure findings were corroborated with functional measures including ffERG findings that supported these diagnoses. Modeling of the five variants suggest that they cause different effects on protein function, providing a potential reason for genotype-phenotype correlation in these patients. CONCLUSIONS The authors report retinal phenotypic findings in three unrelated patients with novel mutations causing autosomal recessive TTLL5-mediated retinal dystrophy. These findings broaden the understanding of the phenotypes associated with TTLL5-mediated retinal disease and suggest that mutations in TTLL5 should be considered as a potential cause of sectoral retinal dystrophy in addition to cone-rod and cone dystrophies.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | | | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Ophthalmology, Hospital das Clinicas de Pernambuco (HCPE) - Empresa Brasileira de Servicos Hospitalares (EBSERH), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Young Joo Sun
- Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Sarah R Levi
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joseph Ryu
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing Yang
- Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andres Emanuelli
- Department of Ophthalmology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Nailyn Rasool
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Natalio J Izquierdo
- Department of Surgery, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Harkness Eye Institute, Columbia University Medical Center, 635 West 165th Street, Box 212, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Primary cilia and their effects on immune cell functions and metabolism: a model. Trends Immunol 2022; 43:366-378. [DOI: 10.1016/j.it.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
28
|
Xu C, Tang D, Shao Z, Geng H, Gao Y, Li K, Tan Q, Wang G, Wang C, Wu H, Li G, Lv M, He X, Cao Y. Homozygous SPAG6 variants can induce nonsyndromic asthenoteratozoospermia with severe MMAF. Reprod Biol Endocrinol 2022; 20:41. [PMID: 35232447 PMCID: PMC8886842 DOI: 10.1186/s12958-022-00916-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multiple morphological abnormalities of the sperm flagella (MMAF) is a subtype of severe asthenoteratozoospermia with poorly understood genetic etiology. SPAG6 is a core axonemal component that plays a critical role in the formation of cilia and sperm flagella. Previous studies have reported that mutations in SPAG6 cause primary ciliary dyskinesia (PCD), but the association between SPAG6 gene variants and the MMAF phenotype has not yet been described. METHODS We performed whole-exome sequencing (WES) in two unrelated Han Chinese men with MMAF. Sanger sequencing was used to validate the candidate variants. Routine semen analysis was carried out according to the WHO guidelines (5th Edition). Sperm morphology was assessed using modified Papanicolaou staining. Scanning and transmission electron microscopy (S/TEM) was performed to observe the ultrastructural defects of the sperm flagella. Western blot analysis and immunofluorescence (IF) of spermatozoa were performed to examine the expression of SPAG6 protein. Assisted fertilization with intracytoplasmic sperm injection (ICSI) was applied. RESULTS Two homozygous SPAG6 variants were identified by WES and Sanger validation in two patients with MMAF phenotype (F1 II-1: c.308C > A, p. A103D; F2 II-1: c. 585delA, p. K196Sfs*6). Semen analysis showed progressive rates of less than 1%, and most of the spermatozoa presented MMAF by Papanicolaou staining. TEM revealed that the overall axonemal ultrastructure was disrupted and primarily presented an abnormal "9 + 0" configuration. No other PCD-related symptoms were found on physical examination and medical consultations, as well as lung CT screening. The level of SPAG6 protein was significantly decreased in the spermatozoa, and IF analysis revealed that SPAG6 staining was extremely weak and discontinuous in the sperm flagella of the two patients. Notably, F1 II-1 and his wife conceived successfully after undergoing ICSI. CONCLUSIONS Our research provides new evidence for a potential correlation between SPAG6 variants and the MMAF phenotype.
Collapse
Affiliation(s)
- Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhongmei Shao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guanxiong Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
29
|
Abstract
The BBSome is an octameric protein complex involved in Bardet-Biedl syndrome (BBS), a human pleiotropic, autosomal recessive condition. Patients with BBS display various clinical features including obesity, hypertension, and renal abnormalities. Association studies have also linked the BBS genes to hypertension and other cardiovascular risks in the general population. The BBSome was originally associated with the function of cilia, a highly specialized organelle that extend from the cell membrane of most vertebrate cells. However, subsequent studies have implicated the BBSome in the control of a myriad of other cellular processes not related to cilia including cell membrane localization of receptors and gene expression. The development of animal models of BBS such as mouse lines lacking various components of the BBSome and associated proteins has facilitated studying their role in the control of cardiovascular function and deciphering the pathophysiological mechanisms responsible for the cardiovascular aberrations associated with BBS. These studies revealed the importance of the neuronal, renal, vascular, and cardiac BBSome in the regulation of blood pressure, renal function, vascular reactivity, and cardiac development. The BBSome has also emerged as a critical regulator of key systems involved in cardiovascular control including the renin-angiotensin system. Better understanding of the influence of the BBSome on the molecular and physiological processes relevant to cardiovascular health and disease has the potential of identifying novel mechanisms underlying hypertension and other cardiovascular risks.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Human Toxicology Graduate Program, University of Iowa Graduate College, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Iowa City VA Health Care System, Iowa City, IA, USA,Corresponding author: Kamal Rahmouni, Ph.D., Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA, , Tel: 319 353 5256, Fax: 319 353 5350
| |
Collapse
|
30
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
31
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
32
|
Grudzinska Pechhacker MK, Jacobson SG, Drack AV, Scipio MD, Strubbe I, Pfeifer W, Duncan JL, Dollfus H, Goetz N, Muller J, Vincent AL, Aleman TS, Tumber A, Van Cauwenbergh C, De Baere E, Bedoukian E, Leroy BP, Maynes JT, Munier FL, Tavares E, Saleh E, Vincent A, Heon E. Comparative Natural History of Visual Function From Patients With Biallelic Variants in BBS1 and BBS10. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34940782 PMCID: PMC8711006 DOI: 10.1167/iovs.62.15.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to compare the natural history of visual function change in cohorts of patients affected with retinal degeneration due to biallelic variants in Bardet-Biedl syndrome genes: BBS1 and BBS10. Methods Patients were recruited from nine academic centers from six countries (Belgium, Canada, France, New Zealand, Switzerland, and the United States). Inclusion criteria were: (1) female or male patients with a clinical diagnosis of retinal dystrophy, (2) biallelic disease-causing variants in BBS1 or BBS10, and (3) measures of visual function for at least one visit. Retrospective data collected included genotypes, age, onset of symptoms, and best corrected visual acuity (VA). When possible, data on refractive error, fundus images and autofluorescence (FAF), optical coherence tomography (OCT), Goldmann kinetic perimetry (VF), electroretinography (ERG), and the systemic phenotype were collected. Results Sixty-seven individuals had variants in BBS1 (n = 38; 20 female patients and 18 male patients); or BBS10 (n = 29; 14 female patients and 15 male patients). Missense variants were the most common type of variants for patients with BBS1, whereas frameshift variants were most common for BBS10. When ERGs were recordable, rod-cone dystrophy (RCD) was observed in 82% (23/28) of patients with BBS1 and 73% (8/11) of patients with BBS10; cone-rod dystrophy (CORD) was seen in 18% of patients with BBS1 only, and cone dystrophy (COD) was only seen in 3 patients with BBS10 (27%). ERGs were nondetectable earlier in patients with BBS10 than in patients with BBS1. Similarly, VA and VF declined more rapidly in patients with BBS10 compared to patients with BBS1. Conclusions Retinal degeneration appears earlier and is more severe in BBS10 cases as compared to those with BBS1 variants. The course of change of visual function appears to relate to genetic subtypes of BBS.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arlene V Drack
- Department of Ophthalmology, Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wanda Pfeifer
- Department of Ophthalmology, Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Helene Dollfus
- CARGO ( Centre de référence pour les affections rares génétiques ), IGMA Institut de Génétqiue Médicale d'Alsace , Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France
| | - Nathalie Goetz
- UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France
| | - Jean Muller
- CARGO ( Centre de référence pour les affections rares génétiques ), IGMA Institut de Génétqiue Médicale d'Alsace , Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France.,Laboratoire de diagnostique génétique, IGMA ( Institut de génétique Médicale d'Alsace ) Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Andrea L Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Tomas S Aleman
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.,Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Emma Bedoukian
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Biochemistry and Anesthesiology and Pain Medicine, University of Toronto, Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Erika Tavares
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Eman Saleh
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
33
|
Husson H, Bukanov NO, Moreno S, Smith MM, Richards B, Zhu C, Picariello T, Park H, Wang B, Natoli TA, Smith LA, Zanotti S, Russo RJ, Madden SL, Klinger KW, Modur V, Ibraghimov-Beskrovnaya O. Correction of cilia structure and function alleviates multi-organ pathology in Bardet-Biedl syndrome mice. Hum Mol Genet 2021; 29:2508-2522. [PMID: 32620959 PMCID: PMC7471507 DOI: 10.1093/hmg/ddaa138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2−/− cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2−/− mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2−/− mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2−/− mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.
Collapse
Affiliation(s)
- Hervé Husson
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Nikolay O Bukanov
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Sarah Moreno
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Mandy M Smith
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | | | - Cheng Zhu
- Translational Sciences, Sanofi, Framingham, MA 01701, USA
| | - Tyler Picariello
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Hyejung Park
- Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA
| | - Bing Wang
- Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA
| | - Thomas A Natoli
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Laurie A Smith
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Stefano Zanotti
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Ryan J Russo
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | | | | | - Vijay Modur
- Rare Diseases Development, Sanofi, Cambridge, MA 02142, USA
| | | |
Collapse
|
34
|
Datta P, Ruffcorn A, Seo S. Limited time window for retinal gene therapy in a preclinical model of ciliopathy. Hum Mol Genet 2021; 29:2337-2352. [PMID: 32568387 DOI: 10.1093/hmg/ddaa124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Retinal degeneration is a common clinical feature of ciliopathies, a group of genetic diseases linked to ciliary dysfunction, and gene therapy is an attractive treatment option to prevent vision loss. Although the efficacy of retinal gene therapy is well established by multiple proof-of-concept preclinical studies, its long-term effect, particularly when treatments are given at advanced disease stages, is controversial. Incomplete treatment and intrinsic variability of gene delivery methods may contribute to the variable outcomes. Here, we used a genetic rescue approach to 'optimally' treat retinal degeneration at various disease stages and examined the long-term efficacy of gene therapy in a mouse model of ciliopathy. We used a Bardet-Biedl syndrome type 17 (BBS17) mouse model, in which the gene-trap that suppresses Bbs17 (also known as Lztfl1) expression can be removed by tamoxifen administration, restoring normal gene expression systemically. Our data indicate that therapeutic effects of retinal gene therapy decrease gradually as treatments are given at later stages. These results suggest the presence of limited time window for successful gene therapy in certain retinal degenerations. Our study also implies that the long-term efficacy of retinal gene therapy may depend on not only the timing of treatment but also other factors such as the function of mutated genes and residual activities of mutant alleles.
Collapse
Affiliation(s)
- Poppy Datta
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.,Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Avri Ruffcorn
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.,Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.,Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Endothelial BBSome is essential for vascular, metabolic, and retinal functions. Mol Metab 2021; 53:101308. [PMID: 34303879 PMCID: PMC8379702 DOI: 10.1016/j.molmet.2021.101308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells. Methods We studied the effects of BBSome disruption in endothelial cells on vascular function, body weight, glucose homeostasis, and the liver and retina. For this, we generated mice with selective BBSome disruption in endothelial cells through Bbs1 gene deletion. Results We found that endothelial cell–specific BBSome disruption causes endothelial dysfunction, as indicated by the impaired acetylcholine-induced vasorelaxation in both the aorta and mesenteric artery. This was associated with an increase in the contractile response to thromboxane A2 receptor agonist (U46619) in the mesenteric artery. Mechanistically, we demonstrated that mice lacking the Bbs1 gene in endothelial cells show elevated vascular angiotensinogen gene expression, implicating renin-angiotensin system activation in the vascular changes evoked by endothelial BBSome deficiency. Strikingly, our data indicate that endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis along with alterations in hepatic expression of lipid metabolism–related genes and metabolomics profile. In addition, electroretinogram and optical coherence tomography analyses revealed functional and structural abnormalities in the retina, evoked by absence of the endothelial BBSome. Conclusions Our findings demonstrate that the BBSome in endothelial cells is required for the regulation of vascular function, adiposity, hepatic lipid metabolism, and retinal function. Disruption of the BBSome in endothelial cells alters vascular reactivity. Loss of the BBSome in endothelial cells increases vascular angiotensinogen gene expression. Endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis. Absence of the endothelial BBSome induces functional and structural abnormalities in the retina.
Collapse
|
36
|
The Transition Zone Protein AHI1 Regulates Neuronal Ciliary Trafficking of MCHR1 and Its Downstream Signaling Pathway. J Neurosci 2021; 41:3932-3943. [PMID: 33741721 DOI: 10.1523/jneurosci.2993-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
The Abelson-helper integration site 1 (AHI1) gene encodes for a ciliary transition zone localizing protein that when mutated causes the human ciliopathy, Joubert syndrome. We prepared and examined neuronal cultures derived from male and female embryonic Ahi1 +/+ and Ahi1 -/- mice (littermates) and found that the distribution of ciliary melanin-concentrating hormone receptor-1 (MchR1) was significantly reduced in Ahi1 -/- neurons; however, the total and surface expression of MchR1 on Ahi1 -/- neurons was similar to controls (Ahi1 +/+). This indicates that a pathway for MchR1 trafficking to the surface plasma membrane is intact, but the process of targeting MchR1 into cilia is impaired in Ahi1-deficient mouse neurons, indicating a role for Ahi1 in localizing MchR1 to the cilium. Mouse Ahi1 -/- neurons that fail to accumulate MchR1 in the ciliary membrane have significant decreases in two downstream MchR1 signaling pathways [cAMP and extracellular signal-regulated kinase (Erk)] on MCH stimulation. These results suggest that the ciliary localization of MchR1 is necessary and critical for MchR1 signaling, with Ahi1 participating in regulating MchR1 localization to cilia, and further supporting cilia as critical signaling centers in neurons.SIGNIFICANCE STATEMENT Our work here demonstrates that neuronal primary cilia are powerful and focused signaling centers for the G-protein-coupled receptor (GPCR), melanin-concentrating hormone receptor-1 (MCHR1), with a role for the ciliary transition zone protein, Abelson-helper integration site 1 (AHI1), in mediating ciliary trafficking of MCHR1. Moreover, our manuscript further expands the repertoire of cilia functions on neurons, a cell type that has not received significant attention in the cilia field. Lastly, our work demonstrates the significant influence of ciliary GPCR signaling in the overall signaling of neurons.
Collapse
|
37
|
Hsu Y, Seo S, Sheffield VC. Photoreceptor cilia, in contrast to primary cilia, grant entry to a partially assembled BBSome. Hum Mol Genet 2021; 30:87-102. [PMID: 33517424 DOI: 10.1093/hmg/ddaa284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
The BBSome is a protein complex consisting of BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and BBS18 that associates with intraflagellar transport complexes and specializes in ciliary trafficking. In primary cilia, ciliary entry requires the fully assembled BBSome as well as the small GTPase, ARL6 (BBS3). Retinal photoreceptors possess specialized cilia. In light of key structural and functional differences between primary and specialized cilia, we examined the principles of BBSome recruitment to photoreceptor cilia. We performed sucrose gradient fractionation using retinal lysates of Bbs2-/-, Bbs7-/-, Bbs8-/- and Bbs3-/- mice to determine the status of BBSome assembly, then determined localization of BBSome components using immunohistochemistry. Surprisingly, we found that a subcomplex of the BBSome containing at least BBS1, BBS5, BBS8 and BBS9 is recruited to cilia in the absence of BBS2 or BBS7. In contrast, a BBSome subcomplex consisting of BBS1, BBS2, BBS5, BBS7 and BBS9 is found in Bbs8-/- retinas and is denied ciliary entry in photoreceptor cells. In addition, the BBSome remains fully assembled in Bbs3-/- retinas and can be recruited to photoreceptor cilia in the absence of BBS3. We compared phenotypic severity of their retinal degeneration phenotypes. These findings demonstrate that unlike primary cilia, photoreceptor cilia admit a partially assembled BBSome meeting specific requirements. In addition, the recruitment of the BBSome to photoreceptor cilia does not require BBS3. These findings indicate that the ciliary entry of the BBSome is subjected to cell-specific regulation, particularly in cells with highly adapted forms of cilia such as photoreceptors.
Collapse
Affiliation(s)
- Ying Hsu
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Zhang Z. Some thoughts about intraflagellar transport in reproduction. Mol Reprod Dev 2021; 88:115-118. [PMID: 33507597 DOI: 10.1002/mrd.23451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Zhibing Zhang
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
39
|
CCDC66 frameshift variant associated with a new form of early-onset progressive retinal atrophy in Portuguese Water Dogs. Sci Rep 2020; 10:21162. [PMID: 33273526 PMCID: PMC7712861 DOI: 10.1038/s41598-020-77980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Aberrant photoreceptor function or morphogenesis leads to blinding retinal degenerative diseases, the majority of which have a genetic aetiology. A variant in PRCD previously identified in Portuguese Water Dogs (PWDs) underlies prcd (progressive rod-cone degeneration), an autosomal recessive progressive retinal atrophy (PRA) with a late onset at 3–6 years of age or older. Herein, we have identified a new form of early-onset PRA (EOPRA) in the same breed. Pedigree analysis suggested an autosomal recessive inheritance. Four PWD full-siblings affected with EOPRA diagnosed at 2–3 years of age were genotyped (173,661 SNPs) along with 2 unaffected siblings, 2 unaffected parents, and 15 unrelated control PWDs. GWAS, linkage analysis and homozygosity mapping defined a 26-Mb candidate region in canine chromosome 20. Whole-genome sequencing in one affected dog and its obligatory carrier parents identified a 1 bp insertion (CFA20:g.33,717,704_33,717,705insT (CanFam3.1); c.2262_c.2263insA) in CCDC66 predicted to cause a frameshift and truncation (p.Val747SerfsTer8). Screening of an extended PWD population confirmed perfect co-segregation of this genetic variant with the disease. Western blot analysis of COS-1 cells transfected with recombinant mutant CCDC66 expression constructs showed the mutant transcript translated into a truncated protein. Furthermore, in vitro studies suggest that the mutant CCDC66 is mislocalized to the nucleus relative to wild type CCDC66. CCDC66 variants have been associated with inherited retinal degenerations (RDs) including canine and murine ciliopathies. As genetic variants affecting the primary cilium can cause ciliopathies in which RD may be either the sole clinical manifestation or part of a syndrome, our findings further support a role for CCDC66 in retinal function and viability, potentially through its ciliary function.
Collapse
|
40
|
Koscinski I, Mark M, Messaddeq N, Braun JJ, Celebi C, Muller J, Zinetti-Bertschy A, Goetz N, Dollfus H, Rossignol S. Reproduction Function in Male Patients With Bardet Biedl Syndrome. J Clin Endocrinol Metab 2020; 105:dgaa551. [PMID: 32835378 PMCID: PMC7538103 DOI: 10.1210/clinem/dgaa551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a ciliopathy with a wide spectrum of symptoms due to primary cilia dysfunction, including genitourinary developmental anomalies as well as impaired reproduction, particularly in males. Primary cilia are known to be required at the following steps of reproduction function: (i) genitourinary organogenesis, (ii) in fetal firing of hypothalamo-pituitary axe, (iii) sperm flagellum structure, and (iv) first zygotic mitosis conducted by proximal sperm centriole. BBS phenotype is not fully understood. METHODS This study explored all steps of reproduction in 11 French male patients with identified BBS mutations. RESULTS BBS patients frequently presented with genitourinary malformations, such as cryptorchidism (5/11), short scrotum (5/8), and micropenis (5/8), but unexpectedly, with normal testis size (7/8). Ultrasonography highlighted epididymal cysts or agenesis of one seminal vesicle in some cases. Sexual hormones levels were normal in all patients except one. Sperm numeration was normal in 8 out of the 10 obtained samples. Five to 45% of sperm presented a progressive motility. Electron microscopy analysis of spermatozoa did not reveal any homogeneous abnormality. Moreover, a psychological approach pointed to a decreased self-confidence linked to blindness and obesity explaining why so few BBS patients express a child wish. CONCLUSIONS Primary cilia dysfunction in BBS impacts the embryology of the male genital tract, especially epididymis, penis, and scrotum through an insufficient fetal androgen production. However, in adults, sperm structure does not seem to be impacted. These results should be confirmed in a greater BBS patient cohort, focusing on fertility.
Collapse
Affiliation(s)
- Isabelle Koscinski
- Laboratoire de Biologie de la Reproduction/CECOS Lorraine, Hôpitaux universitaires de Nancy, Nancy, France
- Université de Lorraine, Inserm, NGERE, Nancy, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Laboratoire de Biologie de la Reproduction, Hôpitaux universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Jean Jacques Braun
- Service ORL et CCF, Hôpitaux universitaires de Strasbourg (HUS), Strasbourg, France
| | - Catherine Celebi
- Laboratoire de Biologie de la Reproduction, Hôpitaux universitaires de Strasbourg (HUS), Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d’Alsace (IGMA), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
| | - Anna Zinetti-Bertschy
- Pôle de Psychiatrie, Santé Mentale et Addictologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, Unité de recherche INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Nathalie Goetz
- Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d’Alsace (IGMA), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
- Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
| | - Sylvie Rossignol
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d’Alsace (IGMA), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Song P, Fogerty J, Cianciolo LT, Stupay R, Perkins BD. Cone Photoreceptor Degeneration and Neuroinflammation in the Zebrafish Bardet-Biedl Syndrome 2 ( bbs2) Mutant Does Not Lead to Retinal Regeneration. Front Cell Dev Biol 2020; 8:578528. [PMID: 33324636 PMCID: PMC7726229 DOI: 10.3389/fcell.2020.578528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a heterogeneous and pleiotropic autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, renal dysfunction, and mental retardation. BBS results from defects in primary and sensory cilia. Mutations in 21 genes have been linked to BBS and proteins encoded by 8 of these genes form a multiprotein complex termed the BBSome. Mutations in BBS2, a component of the BBSome, result in BBS as well as non-syndromic retinal degeneration in humans and rod degeneration in mice, but the role of BBS2 in cone photoreceptor survival is not clear. We used zebrafish bbs2–/– mutants to better understand how loss of bbs2 leads to photoreceptor degeneration. Zebrafish bbs2–/– mutants exhibited impaired visual function as larvae and adult zebrafish underwent progressive cone photoreceptor degeneration. Cone degeneration was accompanied by increased numbers of activated microglia, indicating an inflammatory response. Zebrafish exhibit a robust ability to regenerate lost photoreceptors following retinal damage, yet cone degeneration and inflammation was insufficient to trigger robust Müller cell proliferation. In contrast, high intensity light damage stimulated Müller cell proliferation and photoreceptor regeneration in both wild-type and bbs2–/– mutants, although the bbs2–/– mutants could only restore cones to pre-damaged densities. In summary, these findings suggest that cone degeneration leads to an inflammatory response in the retina and that BBS2 is necessary for cone survival. The zebrafish bbs2 mutant also represents an ideal model to identify mechanisms that will enhance retinal regeneration in degenerating diseases.
Collapse
Affiliation(s)
- Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lauren T Cianciolo
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Rachel Stupay
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brian D Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
42
|
Xiong Y, Scerbo MJ, Seelig A, Volta F, O'Brien N, Dicker A, Padula D, Lickert H, Gerdes JM, Berggren PO. Islet vascularization is regulated by primary endothelial cilia via VEGF-A-dependent signaling. eLife 2020; 9:56914. [PMID: 33200981 PMCID: PMC7695455 DOI: 10.7554/elife.56914] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Islet vascularization is essential for intact islet function and glucose homeostasis. We have previously shown that primary cilia directly regulate insulin secretion. However, it remains unclear whether they are also implicated in islet vascularization. At eight weeks, murine Bbs4-/-islets show significantly lower intra-islet capillary density with enlarged diameters. Transplanted Bbs4-/- islets exhibit delayed re-vascularization and reduced vascular fenestration after engraftment, partially impairing vascular permeability and glucose delivery to β-cells. We identified primary cilia on endothelial cells as the underlying cause of this regulation, via the vascular endothelial growth factor-A (VEGF-A)/VEGF receptor 2 (VEGFR2) pathway. In vitro silencing of ciliary genes in endothelial cells disrupts VEGF-A/VEGFR2 internalization and downstream signaling. Consequently, key features of angiogenesis including proliferation and migration are attenuated in human BBS4 silenced endothelial cells. We conclude that endothelial cell primary cilia regulate islet vascularization and vascular barrier function via the VEGF-A/VEGFR2 signaling pathway.
Collapse
Affiliation(s)
- Yan Xiong
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital L1, Stockholm, Sweden
| | - M Julia Scerbo
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anett Seelig
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Francesco Volta
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University Munich, Munich, Germany
| | - Nils O'Brien
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Dicker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital L1, Stockholm, Sweden
| | - Daniela Padula
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University Munich, Munich, Germany.,Deutsches Zentrum für Diabetesforschung, DZD, Munich, Germany
| | - Jantje Mareike Gerdes
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.,Deutsches Zentrum für Diabetesforschung, DZD, Munich, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital L1, Stockholm, Sweden
| |
Collapse
|
43
|
Shinde SR, Nager AR, Nachury MV. Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. J Biophys Biochem Cytol 2020; 219:211536. [PMID: 33185668 PMCID: PMC7716378 DOI: 10.1083/jcb.202003020] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Regulated trafficking of G protein-coupled receptors (GPCRs) controls cilium-based signaling pathways. β-Arrestin, a molecular sensor of activated GPCRs, and the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, are required for the signal-dependent exit of ciliary GPCRs, but the functional interplay between β-arrestin and the BBSome remains elusive. Here we find that, upon activation, ciliary GPCRs become tagged with ubiquitin chains comprising K63 linkages (UbK63) in a β-arrestin-dependent manner before BBSome-mediated exit. Removal of ubiquitin acceptor residues from the somatostatin receptor 3 (SSTR3) and from the orphan GPCR GPR161 demonstrates that ubiquitination of ciliary GPCRs is required for their regulated exit from cilia. Furthermore, targeting a UbK63-specific deubiquitinase to cilia blocks the exit of GPR161, SSTR3, and Smoothened (SMO) from cilia. Finally, ubiquitinated proteins accumulate in cilia of mammalian photoreceptors and Chlamydomonas cells when BBSome function is compromised. We conclude that Ub chains mark GPCRs and other unwanted ciliary proteins for recognition by the ciliary exit machinery.
Collapse
|
44
|
Dlec1 is required for spermatogenesis and male fertility in mice. Sci Rep 2020; 10:18883. [PMID: 33144677 PMCID: PMC7642295 DOI: 10.1038/s41598-020-75957-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Deleted in lung and esophageal cancer 1 (DLEC1) is a tumour suppressor gene that is downregulated in various cancers in humans; however, the physiological and molecular functions of DLEC1 are still unclear. This study investigated the critical role of Dlec1 in spermatogenesis and male fertility in mice. Dlec1 was significantly expressed in testes, with dominant expression in germ cells. We disrupted Dlec1 in mice and analysed its function in spermatogenesis and male fertility. Dlec1 deletion caused male infertility due to impaired spermatogenesis. Spermatogenesis progressed normally to step 8 spermatids in Dlec1−/− mice, but in elongating spermatids, we observed head deformation, a shortened tail, and abnormal manchette organization. These phenotypes were similar to those of various intraflagellar transport (IFT)-associated gene-deficient sperm. In addition, DLEC1 interacted with tailless complex polypeptide 1 ring complex (TRiC) and Bardet–Biedl Syndrome (BBS) protein complex subunits, as well as α- and β-tubulin. DLEC1 expression also enhanced primary cilia formation and cilia length in A549 lung adenocarcinoma cells. These findings suggest that DLEC1 is a possible regulator of IFT and plays an essential role in sperm head and tail formation in mice.
Collapse
|
45
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
46
|
Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs. Genes (Basel) 2020; 11:genes11091090. [PMID: 32962042 PMCID: PMC7565673 DOI: 10.3390/genes11091090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet–Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet–Biedl syndrome with heterogeneous clinical signs.
Collapse
|
47
|
Bales KL, Bentley MR, Croyle MJ, Kesterson RA, Yoder BK, Gross AK. BBSome Component BBS5 Is Required for Cone Photoreceptor Protein Trafficking and Outer Segment Maintenance. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32776140 PMCID: PMC7441369 DOI: 10.1167/iovs.61.10.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose To identify the role of the BBSome protein Bardet-Biedl syndrome 5 (BBS5) in photoreceptor function, protein trafficking, and structure using a congenital mutant mouse model. Methods Bbs5-/- mice (2 and 9 months old) were used to assess retinal function and morphology. Hematoxylin and eosin staining of retinal sections was performed to visualize histology. Electroretinography was used to analyze rod and cone photoreceptor function. Retinal protein localization was visualized using immunofluorescence (IF) within retinal cryosections. TUNEL staining was used to quantify cell death. Transmission electron microscopy (TEM) was used to examine retinal ultrastructure. Results In the Bbs5-/- retina, there was a significant loss of nuclei in the outer nuclear layer accompanied by an increase in cell death. Through electroretinography, Bbs5-/- mice showed complete loss of cone photoreceptor function. IF revealed mislocalization of the cone-specific proteins M- and S-opsins, arrestin-4, CNGA3, and GNAT2, as well as a light-dependent arrestin-1 mislocalization, although perpherin-2 was properly localized. TEM revealed abnormal outer segment disk orientation in Bbs5-/-. Conclusions Collectively, these data suggest that, although BBS5 is a core BBSome component expressed in all ciliated cells, its role within the retina mediates specific photoreceptor protein cargo transport. In the absence of BBS5, cone-specific protein mislocalization and a loss of cone photoreceptor function occur.
Collapse
Affiliation(s)
- Katie L. Bales
- Department of Optometry and Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Melissa R. Bentley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alecia K. Gross
- Department of Optometry and Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
48
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
49
|
Wormser O, Levy Y, Bakhrat A, Bonaccorsi S, Graziadio L, Gatti M, AbuMadighem A, McKenney RJ, Okada K, El Riati S, Har-Vardi I, Huleihel M, Levitas E, Birk OS, Abdu U. Absence of SCAPER causes male infertility in humans and Drosophila by modulating microtubule dynamics during meiosis. J Med Genet 2020; 58:254-263. [PMID: 32527956 PMCID: PMC10405349 DOI: 10.1136/jmedgenet-2020-106946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mutation in S-phase cyclin A-associated protein rin the endoplasmic reticulum (SCAPER) have been found across ethnicities and have been shown to cause variable penetrance of an array of pathological traits, including intellectual disability, retinitis pigmentosa and ciliopathies. METHODS Human clinical phenotyping, surgical testicular sperm extraction and testicular tissue staining. Generation and analysis of short spindle 3 (ssp3) (SCAPER orthologue) Drosophila CAS9-knockout lines. In vitro microtubule (MT) binding assayed by total internal reflection fluorescence microscopy. RESULTS We show that patients homozygous for a SCAPER mutation lack SCAPER expression in spermatogonia (SPG) and are azoospermic due to early defects in spermatogenesis, leading to the complete absence of meiotic cells. Interestingly, Drosophila null mutants for the ubiquitously expressed ssp3 gene are viable and female fertile but male sterile. We further show that male sterility in ssp3 null mutants is due to failure in both chromosome segregation and cytokinesis. In cells undergoing male meiosis, the MTs emanating from the centrosomes do not appear to interact properly with the chromosomes, which remain dispersed within dividing spermatocytes (SPCs). In addition, mutant SPCs are unable to assemble a normal central spindle and undergo cytokinesis. Consistent with these results, an in vitro assay demonstrated that both SCAPER and Ssp3 directly bind MTs. CONCLUSIONS Our results show that SCAPER null mutations block the entry into meiosis of SPG, causing azoospermia. Null mutations in ssp3 specifically disrupt MT dynamics during male meiosis, leading to sterility. Moreover, both SCAPER and Ssp3 bind MTs in vitro. These results raise the intriguing possibility of a common feature between human and Drosophila meiosis.
Collapse
Affiliation(s)
- Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ygal Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Graziadio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Ali AbuMadighem
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev Faculty of Health Sciences, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev Faculty of Health Sciences, Beer-Sheva, Israel
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, UC Davis, Davis, California, USA
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, UC Davis, Davis, California, USA
| | - Saad El Riati
- Southern District, Clalit Health Services, Beer-Sheva, Israel
| | - Iris Har-Vardi
- The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev Faculty of Health Sciences, Beer-Sheva, Israel.,Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Mahmoud Huleihel
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev Faculty of Health Sciences, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev Faculty of Health Sciences, Beer-Sheva, Israel
| | - Eliahu Levitas
- The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev Faculty of Health Sciences, Beer-Sheva, Israel.,Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
50
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|