1
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
2
|
Tereshchenkov EA, Panyukov IV, Misko M, Shishkov VY, Andrianov ES, Zasedatelev AV. Thermalization rate of polaritons in strongly-coupled molecular systems. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2635-2649. [PMID: 39678661 PMCID: PMC11635947 DOI: 10.1515/nanoph-2023-0800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/23/2024] [Indexed: 12/17/2024]
Abstract
Polariton thermalization is a key process in achieving light-matter Bose-Einstein condensation, spanning from solid-state semiconductor microcavities at cryogenic temperatures to surface plasmon nanocavities with molecules at room temperature. Originated from the matter component of polariton states, the microscopic mechanisms of thermalization are closely tied to specific material properties. In this work, we investigate polariton thermalization in strongly-coupled molecular systems. We develop a microscopic theory addressing polariton thermalization through electron-phonon interactions (known as exciton-vibration coupling) with low-energy molecular vibrations. This theory presents a simple analytical method to calculate the temperature-dependent polariton thermalization rate, utilizing experimentally accessible spectral properties of bare molecules, such as the Stokes shift and temperature-dependent linewidth of photoluminescence, in conjunction with well-known parameters of optical cavities. Our findings demonstrate qualitative agreement with recent experimental reports of nonequilibrium polariton condensation in both ground and excited states, and explain the thermalization bottleneck effect observed at low temperatures. This study showcases the significance of vibrational degrees of freedom in polariton condensation and offers practical guidance for future experiments, including the selection of suitable material systems and cavity designs.
Collapse
Affiliation(s)
- Evgeny A. Tereshchenkov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Dolgoprudny141700, Moscow Region, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow125412, Russia
| | - Ivan V. Panyukov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Dolgoprudny141700, Moscow Region, Russia
| | - Mikhail Misko
- Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Dolgoprudny141700, Moscow Region, Russia
| | - Vladislav Y. Shishkov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Dolgoprudny141700, Moscow Region, Russia
| | - Evgeny S. Andrianov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Dolgoprudny141700, Moscow Region, Russia
| | - Anton V. Zasedatelev
- Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090Vienna, Austria
| |
Collapse
|
3
|
Lindenthal S, Fazzi D, Zorn NF, El Yumin AA, Settele S, Weidinger B, Blasco E, Zaumseil J. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion. ACS NANO 2023; 17:18240-18252. [PMID: 37695780 PMCID: PMC10540269 DOI: 10.1021/acsnano.3c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Graphene nanoribbons are one-dimensional stripes of graphene with width- and edge-structure-dependent electronic properties. They can be synthesized bottom-up in solution to obtain precise ribbon geometries. Here we investigate the optical properties of solution-synthesized 9-armchair graphene nanoribbons (9-aGNRs) that are stabilized as dispersions in organic solvents and further fractionated by liquid cascade centrifugation (LCC). Absorption and photoluminescence spectroscopy reveal two near-infrared absorption and emission peaks whose ratios depend on the LCC fraction. Low-temperature single-nanoribbon photoluminescence spectra suggest the presence of two different nanoribbon species. Based on density functional theory (DFT) and time-dependent DFT calculations, the lowest energy transition can be assigned to pristine 9-aGNRs, while 9-aGNRs with edge-defects, caused by incomplete graphitization, result in more blue-shifted transitions and higher Raman D/G-mode ratios. Hole doping of 9-aGNR dispersions with the electron acceptor F4TCNQ leads to concentration dependent bleaching and quenching of the main absorption and emission bands and the appearance of red-shifted, charge-induced absorption features but no additional emission peaks, thus indicating the formation of polarons instead of the predicted trions (charged excitons) in doped 9-aGNRs.
Collapse
Affiliation(s)
- Sebastian Lindenthal
- Institute
for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Daniele Fazzi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | | | - Simon Settele
- Institute
for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Britta Weidinger
- Institute
for Molecular Systems Engineering and Advanced Materials and Institute
of Organic Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Eva Blasco
- Institute
for Molecular Systems Engineering and Advanced Materials and Institute
of Organic Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Kashani S, Wang Z, Risko C, Ade H. Relating reorganization energies, exciton diffusion length and non-radiative recombination to the room temperature UV-vis absorption spectra of NF-SMA. MATERIALS HORIZONS 2023; 10:443-453. [PMID: 36515185 DOI: 10.1039/d2mh01228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding excited-state reorganization energies, exciton diffusion lengths and non-radiative (NR) recombination, and the overall optoelectronic responses of nonfullerene small molecule acceptors (NF-SMAs) is important in order to rationally design new materials with controlled properties. While the effects of structural modifications on the optical gaps and electron affinities of NF-SMAs have been studied extensively, analyses of their absorption spectra that carefully characterize electronic and vibrational contributions that allow comparisons of reorganization energies and their implications for exciton diffusion lengths and NR recombination have yet to be reported. Here, we study the room temperature absorption spectra of three structural classes of NF-SMAs in dilute solutions through multiparameter Franck Condon (MFC) analyses and density functional theory (DFT) calculations. We show that the absorption spectra of these NF-SMAs can be categorized based on molecular structure-spectra correlation. The absorption spectra of curved, Y6-like structures can be described using an MFC model with two electronic transitions and two effective vibrational modes. The results of MFC/DFT analyses reveal that Y6 exhibits the smallest intra-molecular reorganization energy among the materials studied. Linear ITIC-like molecular structures reveal larger reorganization energies and reduced conformational uniformity compared to Y6. Meanwhile structures such as IDTBR and IEICO, which have an extra π-conjugated moiety between the donor and acceptor moieties, have large excited-state reorganization energies and low degrees of conformational uniformity. Since the intra-molecular reorganization energy is correlated with exciton diffusion length and nonradiative voltage losses (ΔVnr), our results highlight the power of RT absorption spectroscopy and DFT calculations as simple tools to designing improved OSCs materials with small reorganization energies, small ΔVnr, large exciton diffusion length and low energetic disorder (due to a strongly dominant conformation).
Collapse
Affiliation(s)
- Somayeh Kashani
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| | - Zhen Wang
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| | - Chad Risko
- Department of Chemistry and Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Ammenhäuser R, Klein P, Schmid E, Streicher S, Vogelsang J, Lehmann CW, Lupton JM, Meskers SCJ, Scherf U. Circularly Polarized Light Probes Excited-State Delocalization in Rectangular Ladder-type Pentaphenyl Helices. Angew Chem Int Ed Engl 2023; 62:e202211946. [PMID: 36345828 PMCID: PMC10107742 DOI: 10.1002/anie.202211946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Ladder-type pentaphenyl chromophores have a rigid, planar π-system and show bright fluorescence featuring pronounced vibrational structure. Such moieties are ideal for studying interchromophoric interactions and delocalization of electronic excitations. We report the synthesis of helical polymers with a rigid square structure based on spiro-linked ladder-type pentaphenyl units. The variation of circular dichroism with increasing chain length provides direct evidence for delocalization of electronic excitations over at least 10 monomeric units. The change in the degree of circular polarization of the fluorescence across the vibronic side bands shows that vibrational motion can localize the excitation dynamically to almost one single unit through breakdown of the Born-Oppenheimer approximation. The dynamic conversion between delocalized and localized excited states provides a new paradigm for interpreting circular dichroism in helical polymers such as proteins and polynucleic acids.
Collapse
Affiliation(s)
- Robin Ammenhäuser
- Department of Chemistry, Macromolecular Chemistry group (BUWmakro), and Wuppertal Institute for Smart Materials and Systems (CM@S), Bergische Universität Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Patrick Klein
- Department of Chemistry, Macromolecular Chemistry group (BUWmakro), and Wuppertal Institute for Smart Materials and Systems (CM@S), Bergische Universität Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Eva Schmid
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Sabrina Streicher
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Christian W Lehmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems and Institute of Complex Molecular Systems, Technische Universiteit Eindhoven, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry group (BUWmakro), and Wuppertal Institute for Smart Materials and Systems (CM@S), Bergische Universität Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| |
Collapse
|
6
|
Abstract
It is challenging to increase the rigidity of a macromolecule while maintaining solubility. Established strategies rely on templating by dendrons, or by encapsulation in macrocycles, and exploit supramolecular arrangements with limited robustness. Covalently bonded structures have entailed intramolecular coupling of units to resemble the structure of an alternating tread ladder with rungs composed of a covalent bond. We introduce a versatile concept of rigidification in which two rigid-rod polymer chains are repeatedly covalently associated along their contour by stiff molecular connectors. This approach yields almost perfect ladder structures with two well-defined π-conjugated rails and discretely spaced nanoscale rungs, easily visualized by scanning tunnelling microscopy. The enhancement of molecular rigidity is confirmed by the fluorescence depolarization dynamics and complemented by molecular-dynamics simulations. The covalent templating of the rods leads to self-rigidification that gives rise to intramolecular electronic coupling, enhancing excitonic coherence. The molecules are characterized by unprecedented excitonic mobility, giving rise to excitonic interactions on length scales exceeding 100 nm. Such interactions lead to deterministic single-photon emission from these giant rigid macromolecules, with potential implications for energy conversion in optoelectronic devices.
Collapse
|
7
|
van de Laar T, Hooiveld E, Higler R, van der Scheer P, Sprakel J. Gel Trapping Enables Optical Spectroscopy of Single Solvated Conjugated Polymers in Equilibrium. ACS NANO 2019; 13:13185-13195. [PMID: 31647632 PMCID: PMC6887849 DOI: 10.1021/acsnano.9b06164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Single-molecule studies have provided a wealth of insight into the photophysics of conjugated polymers in the solid and desolvated state. Desolvating conjugated chains, e.g., by their embedding in inert solid matrices, invariably leads to chain collapse and the formation of intermolecular aggregates, which have a pronounced effect on their properties. By contrast, the luminescent properties of individual semiconducting polymers in their solvated and thermodynamic state remain largely unexplored. In this paper, we demonstrate a versatile gel trapping technique that enables the chemistry-free immobilization and interrogation of individual conjugated macromolecules, which retain a fully equilibrated conformation by contrast to conventional solid-state immobilization methods. We show how the technique can be used to record full luminescence spectra of single chains, to evaluate their time-resolved fluorescence, and to probe their photodynamics. Finally, we explore how the photophysics of different conjugated polymers is strongly affected by desolvation and chain collapse.
Collapse
|
8
|
Eder T, Vogelsang J, Bange S, Remmerssen K, Schmitz D, Jester SS, Keller TJ, Höger S, Lupton JM. Interplay Between J- and H-Type Coupling in Aggregates of π-Conjugated Polymers: A Single-Molecule Perspective. Angew Chem Int Ed Engl 2019; 58:18898-18902. [PMID: 31596527 PMCID: PMC6973276 DOI: 10.1002/anie.201912374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Strong dipole–dipole coupling within and between π‐conjugated segments shifts electronic transitions, and modifies vibronic coupling and excited‐state lifetimes. Since J‐type coupling between monomers along the conjugated‐polymer (CP) chain and H‐type coupling of chromophores between chains of a CP compete, a superposition of the spectral modifications arising from each type of coupling emerges, making the two couplings hard to discern in the ensemble. We introduce a single‐molecule H‐type aggregate of fixed spacing and variable length of up to 10 nm. HJ‐type aggregate formation is visualized intuitively in the scatter of single‐molecule spectra.
Collapse
Affiliation(s)
- Theresa Eder
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Sebastian Bange
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Klaas Remmerssen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Daniela Schmitz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Stefan-S Jester
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Tristan J Keller
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - John M Lupton
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Eder T, Vogelsang J, Bange S, Remmerssen K, Schmitz D, Jester S, Keller TJ, Höger S, Lupton JM. Interplay Between J‐ and H‐Type Coupling in Aggregates of π‐Conjugated Polymers: A Single‐Molecule Perspective. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Theresa Eder
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Jan Vogelsang
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Sebastian Bange
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Klaas Remmerssen
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Daniela Schmitz
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Stefan‐S. Jester
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Tristan J. Keller
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - John M. Lupton
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
10
|
Carbazolevinylene and phenylenevinylene polymers by ring-opening metathesis polymerization and their characterization, nanoaggregates and optical and electrochemical properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Datko BD, Grey JK. Population dynamics of multiple triplet excitons revealed from time-dependent fluorescence quenching of single conjugated polymer chains. Sci Rep 2019; 9:817. [PMID: 30692627 PMCID: PMC6349865 DOI: 10.1038/s41598-018-37477-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/02/2018] [Indexed: 01/02/2023] Open
Abstract
The advent of multiple exciton harvesting schemes and prolonging exciton lifetimes to improve performance attributes of solar cells based on conjugated organic materials presents some interesting challenges that must be overcome in order to realize the full potential of these strategies. This is especially important for applications involving multi-chromophoric conjugated polymers where interactions between multiple spin-forbidden triplet excitons can be significant and are mediated by chain conformation. We use single molecule spectroscopic techniques to investigate interactions between multiple triplet excitons and emissive singlets by monitoring time-dependent fluorescence quenching on time scales commensurate with the triplet lifetime. Structurally related conjugated polymers differing by heteroatom substitution were targeted and we use a stochastic photodynamic model to numerically simulate the evolution of multi-exciton populations following photoexcitation. Single chains of poly(3-hexylthiophene) (P3HT) exhibit longer-lived triplet dynamics and larger steady-state triplet occupancies compared to those of poly(3-hexylselenophene) (P3HS), which has a larger reported triplet yield. Triplet populations evolve and relax much faster in P3HS which only becomes evident when considering all kinetic factors governing exciton population dynamics. Overall, we uncover new guidelines for effectively managing multi-exciton populations and interactions in conjugated polymers and improving their light harvesting efficiency.
Collapse
Affiliation(s)
- Benjamin D Datko
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - John K Grey
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
12
|
Hedley GJ, Steiner F, Vogelsang J, Lupton JM. Fluctuations in the Emission Polarization and Spectrum in Single Chains of a Common Conjugated Polymer for Organic Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1804312. [PMID: 30444577 DOI: 10.1002/smll.201804312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Measuring the nanoscale organization of conjugated polymer chains used in organic photovoltaic (OPV) blends is vital if one wants to understand the materials. This is made very difficult with high efficiency OPV polymers such as PTB7 that form aggregates, as a lack of periodicity and a high degree of disorder make understanding of the nanoscale organization challenging. Here, single molecule spectroscopy is used to observe single chains and aggregates of PTB7. Using four detectors the photoluminescence intensity, wavelength, polarization, and lifetime are simultaneously monitored. Fast (milliseconds) and slow (seconds) fluctuations are observed over a time window of 30 s in all of these observables from single aggregates and chains as individual chromophores activate and deactivate, leading to dynamical changes in the emission spectrum and dipole orientation. This information can be used to help reconstruct the spatial and spectral organization of disordered aggregates of PTB7, thereby adding valuable new information on how the chains are arranged in space.
Collapse
Affiliation(s)
- Gordon J Hedley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
| | - Florian Steiner
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377, München, Germany
| | - Jan Vogelsang
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377, München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
| |
Collapse
|
13
|
Yu CY, Lai YC. Soluble Phenylenevinylene Polymers Containing Tetraphenylethene Units by Ring-Opening Metathesis Polymerization. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chin-Yang Yu
- Department of Materials Science and Engineering; National Taiwan University of Science and Technology; 43, Section 4, Keelung Road Taipei 10607 Taiwan
| | - Yu-Chun Lai
- Department of Materials Science and Engineering; National Taiwan University of Science and Technology; 43, Section 4, Keelung Road Taipei 10607 Taiwan
| |
Collapse
|
14
|
van de Laar T, Schuurman H, van der Scheer P, Maarten van Doorn J, van der Gucht J, Sprakel J. Light from Within: Sensing Weak Strains and FemtoNewton Forces in Single Molecules. Chem 2018. [DOI: 10.1016/j.chempr.2017.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Eder T, Stangl T, Gmelch M, Remmerssen K, Laux D, Höger S, Lupton JM, Vogelsang J. Switching between H- and J-type electronic coupling in single conjugated polymer aggregates. Nat Commun 2017; 8:1641. [PMID: 29158508 PMCID: PMC5696370 DOI: 10.1038/s41467-017-01773-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022] Open
Abstract
The aggregation of conjugated polymers and electronic coupling of chromophores play a central role in the fundamental understanding of light and charge generation processes. Here we report that the predominant coupling in isolated aggregates of conjugated polymers can be switched reversibly between H-type and J-type coupling by partially swelling and drying the aggregates. Aggregation is identified by shifts in photoluminescence energy, changes in vibronic peak ratio, and photoluminescence lifetime. This experiment unravels the internal electronic structure of the aggregate and highlights the importance of the drying process in the final spectroscopic properties. The electronic coupling after drying is tuned between H-type and J-type by changing the side chains of the conjugated polymer, but can also be entirely suppressed. The types of electronic coupling correlate with chain morphology, which is quantified by excitation polarization spectroscopy and the efficiency of interchromophoric energy transfer that is revealed by the degree of single-photon emission.
Collapse
Affiliation(s)
- Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Thomas Stangl
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Max Gmelch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Klaas Remmerssen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Dirk Laux
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
16
|
Du L, Xiong W, Cheng SC, Shi H, Chan WK, Phillips DL. Direct Observation of an Efficient Triplet Exciton Diffusion Process in a Platinum-Containing Conjugated Polymer. J Phys Chem Lett 2017; 8:2475-2479. [PMID: 28514159 DOI: 10.1021/acs.jpclett.7b00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the synthesis and characterization of a conjugated polymer incorporated with cyclometalated platinum complexes on the main chain. The polymer may serve as an efficient triplet sensitizer in light-harvesting systems. The photophysical properties of the polymer were studied by nanosecond and femtosecond time-resolved transient absorption spectroscopies. After excitation, an energy-transfer process from the thiophene units on the conjugated main chain to the singlet excited state of the Pt complex moieties occurred in less than 150 fs. The subsequent intersystem crossing process resulted in the formation of a triplet excited state at the Pt complex moieties in ∼3.2 ps, which was then followed by an efficient triplet diffusion process that led to the formation of triplet excitons on the polymer main chain in ∼283 ps. This proposed efficient triplet sensitized polymer system not only enhances the exciton diffusion length but also reduces energy loss in the process, which displays remarkable implications in the design of novel materials for triplet sensitized solar cells.
Collapse
Affiliation(s)
- Lili Du
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong , Hong Kong S.A.R., China
| | - Wenjuan Xiong
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong , Hong Kong S.A.R., China
| | - Shun-Cheung Cheng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong , Hong Kong S.A.R., China
| | - Haiting Shi
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong , Hong Kong S.A.R., China
| | - Wai Kin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong , Hong Kong S.A.R., China
| | - David Lee Phillips
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong , Hong Kong S.A.R., China
| |
Collapse
|
17
|
Simine L, Rossky PJ. Relating Chromophoric and Structural Disorder in Conjugated Polymers. J Phys Chem Lett 2017; 8:1752-1756. [PMID: 28350467 DOI: 10.1021/acs.jpclett.7b00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The optoelectronic properties of amorphous conjugated polymers are sensitive to the details of the conformational disorder, and spectroscopy provides the means for structural characterization of the fragments of the chain that interact with light-"chromophores". A faithful interpretation of spectroscopic conformational signatures, however, presents a theoretical challenge. Here we investigate the relationship between the ground-state optical gaps, the properties of the excited states, and the structural features of chromophores of a single molecule poly(3-hexyl)-thiophene (P3HT) using quantum-classical atomistic simulations. Our results demonstrate that chromophoric disorder arises through the interplay between excited-state delocalization and electron-hole polarization, controlled by the torsional disorder introduced by side chains. Within this conceptual framework, we predict and explain the counterintuitive spectral behavior of P3HT, a red-shifted absorption, despite shortening of chromophores, with increasing temperature. This discussion introduces the concept of disorder-induced separation of charges in amorphous conjugated polymers.
Collapse
Affiliation(s)
- Lena Simine
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
18
|
Hou L, Adhikari S, Tian Y, Scheblykin IG, Orrit M. Absorption and Quantum Yield of Single Conjugated Polymer Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) Molecules. NANO LETTERS 2017; 17:1575-1581. [PMID: 28221806 PMCID: PMC5345118 DOI: 10.1021/acs.nanolett.6b04726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Indexed: 05/28/2023]
Abstract
We simultaneously measured the absorption and emission of single conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) molecules in a poly(methyl methacrylate) (PMMA) matrix using near-critical xenon to enhance the photothermal contrast for direct absorption measurements. We directly measured the number of monomers and the quantum yield of single conjugated polymer molecules. Simultaneous absorption and emission measurements provided new insight into the photophysics of single conjugated polymers under optical excitation: quenching in larger molecules is more efficient than in smaller ones. Photoinduced traps and defects formed under prolonged illumination lead to decrease of both polymer fluorescence and absorption signals with the latter declining slower.
Collapse
Affiliation(s)
- Lei Hou
- LION, Huygens-Kamerlingh
Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300RA Leiden, The Netherlands
| | - Subhasis Adhikari
- LION, Huygens-Kamerlingh
Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300RA Leiden, The Netherlands
| | - Yuxi Tian
- Chemical Physics and Nano Lund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Key Laboratory of Mesoscopic
Chemistry of MOE and School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Ivan G. Scheblykin
- Chemical Physics and Nano Lund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Michel Orrit
- LION, Huygens-Kamerlingh
Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300RA Leiden, The Netherlands
| |
Collapse
|
19
|
Raithel D, Baderschneider S, de Queiroz TB, Lohwasser R, Köhler J, Thelakkat M, Kümmel S, Hildner R. Emitting Species of Poly(3-hexylthiophene): From Single, Isolated Chains to Bulk. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02077] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Thiago B. de Queiroz
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, 09510-580, Santo André-SP, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Baderschneider S, Scherf U, Köhler J, Hildner R. Influence of the Conjugation Length on the Optical Spectra of Single Ladder-Type (p-Phenylene) Dimers and Polymers. J Phys Chem A 2016; 120:233-40. [PMID: 26696134 DOI: 10.1021/acs.jpca.5b10879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ low-temperature single-molecule photoluminescence spectroscopy on a π-conjugated ladder-type (p-phenylene) dimer and the corresponding polymer methyl-substituted ladder-type poly(p-phenylene), MeLPPP, to study the impact of the conjugation length (π-electron delocalization) on their optical properties on a molecular scale. Our data show that the linear electron-phonon coupling to intramolecular vibrational modes is very sensitive to the conjugation length, a well-known behavior of organic (macro-) molecules. In particular, the photoluminescence spectra of single dimers feature a rather strong low-energy (150 cm(-1)) skeletal mode of the backbone, which does not appear in the spectra of individual chromophores on single MeLPPP chains. We attribute this finding to a strongly reduced electron-phonon coupling strength and/or vibrational energy of this mode for MeLPPP with its more delocalized π-electron system as compared to the dimer. In contrast, the line widths of the purely electronic zero-phonon lines (ZPL) in single-molecule spectra do not show differences between the dimer and MeLPPP; for both systems the ZPLs are apparently broadened by fast unresolved spectral diffusion. Finally, we demonstrate that the low-temperature ensemble photoluminescence spectrum of the dimer cannot be reproduced by the distribution of spectral positions of the ZPLs. The dimer's bulk spectrum is rather apparently broadened by electron-phonon coupling to the low-energy skeletal mode, whereas for MeLPPP the inhomogeneous bulk line shape resembles the distribution of spectral positions of the ZPLs of single chromophores.
Collapse
Affiliation(s)
- Sebastian Baderschneider
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| | - Uli Scherf
- Fachbereich C - Mathematik und Naturwissenschaften and Institut für Polymertechnologie, Universität Wuppertal , Gauss-Strasse 20, 42097 Wuppertal, Germany
| | - Jürgen Köhler
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| | - Richard Hildner
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| |
Collapse
|
21
|
Barisien T, Legrand L, Mu Z, Hameau S. Excitonic linewidth of organic quantum wires generated in reduced dimensionality matrices. Phys Chem Chem Phys 2016; 18:12928-37. [DOI: 10.1039/c6cp00629a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanostructured crystalline film achieving a 2D bath for single conjugated polymer chain linewidth spectroscopy.
Collapse
Affiliation(s)
- Thierry Barisien
- Sorbonne Universités
- UPMC Université Paris 06
- CNRS-UMR 7588
- Institut des NanoSciences de Paris
- Paris
| | - Laurent Legrand
- Sorbonne Universités
- UPMC Université Paris 06
- CNRS-UMR 7588
- Institut des NanoSciences de Paris
- Paris
| | - Zhao Mu
- Sorbonne Universités
- UPMC Université Paris 06
- CNRS-UMR 7588
- Institut des NanoSciences de Paris
- Paris
| | - Sophie Hameau
- Sorbonne Universités
- UPMC Université Paris 06
- CNRS-UMR 7588
- Institut des NanoSciences de Paris
- Paris
| |
Collapse
|
22
|
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers. Proc Natl Acad Sci U S A 2015; 112:E5560-6. [PMID: 26417079 DOI: 10.1073/pnas.1512582112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An appealing definition of the term "molecule" arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder.
Collapse
|
23
|
Stangl T, Wilhelm P, Schmitz D, Remmerssen K, Henzel S, Jester SS, Höger S, Vogelsang J, Lupton JM. Temporal Fluctuations in Excimer-Like Interactions between π-Conjugated Chromophores. J Phys Chem Lett 2015; 6:1321-1326. [PMID: 26263130 DOI: 10.1021/acs.jpclett.5b00328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bichromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state--spectral red shifting and broadening and a slowing of photoluminescence decay--correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point for describing a molecular solid. Such spectral sensitivity to sub-Ångström molecular dynamics could prove complementary to conventional FRET-based molecular rulers.
Collapse
Affiliation(s)
- Thomas Stangl
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Philipp Wilhelm
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Daniela Schmitz
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Klaas Remmerssen
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Sebastian Henzel
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Stefan-S Jester
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Sigurd Höger
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jan Vogelsang
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M Lupton
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Single Molecule Studies of a Ladder Type Conjugated Polymer: Vibronic Spectra, Line Widths, and Energy Transfer. Macromol Rapid Commun 2015; 36:1096-102. [DOI: 10.1002/marc.201400739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/25/2015] [Indexed: 11/07/2022]
|
25
|
Liu S, Borys NJ, Sapra S, Eychmüller A, Lupton JM. Localization and Dynamics of Long-Lived Excitations in Colloidal Semiconductor Nanocrystals with Dual Quantum Confinement. Chemphyschem 2015; 16:1663-9. [DOI: 10.1002/cphc.201402826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 01/30/2015] [Indexed: 11/08/2022]
|
26
|
Yang J, Ham S, Kim TW, Park KH, Nakao K, Shimizu H, Iyoda M, Kim D. Inhomogeneity in the excited-state torsional disorder of a conjugated macrocycle. J Phys Chem B 2015; 119:4116-26. [PMID: 25700008 DOI: 10.1021/jp5123689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The photophysics of conjugated polymers has generally been explained based on the interactions between the component conjugated chromophores in a tangled chain. However, conjugated chromophores are entities with static and dynamic structural disorder, which directly affects the conjugated polymer photophysics. Here we demonstrate the impact of chain structure torsional disorder on the spectral characteristics for a macrocyclic oligothiophene 1, which is obscured in conventional linear conjugated chromophores by diverse structural disorders such as those in chromophore size and shape. We used simultaneous multiple fluorescence parameter measurement for a single molecule and quantum-mechanical calculations to show that within the fixed conjugation length across the entire ring an inhomogeneity from torsional disorder in the structure of 1 plays a crucial role in causing its energetic disorder, which affords the spectral broadening of ∼220 meV. The torsional disorder in 1 fluctuated on the time scale of hundreds of milliseconds, typically accompanied by spectral drifts on the order of ∼10 meV. The fluctuations could generate torsional defects and change the electronic structure of 1 associated with the ring symmetry. These findings disclose the fundamental nature of conjugated chromophore that is the most elementary spectroscopic unit in conjugated polymers and suggest the importance of engineering structural disorder to optimize polymer-based device photophysics. Additionally, we combined defocused wide-field fluorescence microscopy and linear dichroism obtained from the simultaneous measurements to show that 1 emits polarized light with a changing polarization direction based on the torsional disorder fluctuations.
Collapse
Affiliation(s)
- Jaesung Yang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles. Nat Chem 2013; 5:964-70. [DOI: 10.1038/nchem.1758] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/14/2013] [Indexed: 11/08/2022]
|
28
|
Abstract
The spectral breadth of conjugated polymers gives these materials a clear advantage over other molecular compounds for organic photovoltaic applications and is a key factor in recent efficiencies topping 10%. However, why do excitonic transitions, which are inherently narrow, lead to absorption over such a broad range of wavelengths in the first place? Using single-molecule spectroscopy, we address this fundamental question in a model material, poly(3-hexylthiophene). Narrow zero-phonon lines from single chromophores are found to scatter over 200 nm, an unprecedented inhomogeneous broadening that maps the ensemble. The giant red shift between solution and bulk films arises from energy transfer to the lowest-energy chromophores in collapsed polymer chains that adopt a highly ordered morphology. We propose that the extreme energetic disorder of chromophores is structural in origin. This structural disorder on the single-chromophore level may actually enable the high degree of polymer chain ordering found in bulk films: both structural order and disorder are crucial to materials physics in devices.
Collapse
|
29
|
Lee P, Li WC, Chen BJ, Yang CW, Chang CC, Botiz I, Reiter G, Lin TL, Tang J, Yang ACM. Massive enhancement of photoluminescence through nanofilm dewetting. ACS NANO 2013; 7:6658-6666. [PMID: 23888931 DOI: 10.1021/nn4009752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Due to the rather low efficiencies of conjugated polymers in solid films, their successful applications are scarce. However, recently several experiments indicated that a proper control of molecular conformations and stresses acting on the polymers may provide constructive ways to boost efficiency. Here, we report an amazingly large enhancement of photoluminescence as a consequence of strong shear forces acting on the polymer chains during nanofilm dewetting. Such sheared chains exhibited an emission probability many times higher than the nonsheared chains within a nondewetted film. This increase in emission probability was accompanied by the emergence of an additional blue-shifted emission peak, suggesting reductions in conjugation length induced by the dewetting-driven mass redistribution. Intriguingly, exciton quenching on narrow-band-gap substrates was also reduced, indicating suppression of vibronic interactions of excitons. Dewetting and related shearing processes resulting in enhanced photoluminescence efficiency are compatible with existing fabrication methods of polymer-based diodes and solar cells.
Collapse
Affiliation(s)
- Peiwei Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Camacho R, Thomsson D, Sforazzini G, Anderson HL, Scheblykin IG. Inhomogeneous Quenching as a Limit of the Correlation Between Fluorescence Polarization and Conformation of Single Molecules. J Phys Chem Lett 2013; 4:1053-1058. [PMID: 26291377 DOI: 10.1021/jz400142x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The photophysical properties of conjugated polymers (CPs) largely depend on the interactions between the CP and its environment. We present a study of two polymers with identical conjugated backbones, bare and insulated, that showed different fluorescence excitation modulation depth histograms. However, the polarization differences are not related to differences in conformation, as commonly believed, but to the existence of "dark" chromophores in the bare polymer that are statically quenched. This results in inhomogeneous quenching of the polymer chain that breaks the correlation between excitation fluorescence polarization and conjugated polymer chain conformation.
Collapse
Affiliation(s)
- Rafael Camacho
- †Chemical Physics, Lund University, Box 124 22100, Lund, Sweden
| | - Daniel Thomsson
- †Chemical Physics, Lund University, Box 124 22100, Lund, Sweden
| | - Giuseppe Sforazzini
- ‡Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Harry L Anderson
- ‡Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | | |
Collapse
|
31
|
Stangl T, Bange S, Schmitz D, Würsch D, Höger S, Vogelsang J, Lupton JM. Temporal Switching of Homo-FRET Pathways in Single-Chromophore Dimer Models of π-Conjugated Polymers. J Am Chem Soc 2012; 135:78-81. [DOI: 10.1021/ja3108643] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Stangl
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sebastian Bange
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Daniela Schmitz
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Dominik Würsch
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sigurd Höger
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jan Vogelsang
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M. Lupton
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
32
|
Steyrleuthner R, Schubert M, Howard I, Klaumünzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D. Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. J Am Chem Soc 2012; 134:18303-17. [DOI: 10.1021/ja306844f] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Ian Howard
- Max Planck Institute for Polymer Research, D-55021 Mainz, Germany
| | | | | | - Zhihua Chen
- Polyera Corporation, Skokie, Illinois
60077, United States
| | | | - Frédéric Laquai
- Max Planck Institute for Polymer Research, D-55021 Mainz, Germany
| | | | | |
Collapse
|
33
|
Camacho R, Thomsson D, Yadav D, Scheblykin I. Quantitative characterization of light-harvesting efficiency in single molecules and nanoparticles by 2D polarization microscopy: Experimental and theoretical challenges. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Li Y, Liu J, Liu B, Tomczak N. Highly emissive PEG-encapsulated conjugated polymer nanoparticles. NANOSCALE 2012; 4:5694-5702. [PMID: 22878417 DOI: 10.1039/c2nr31267k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel bioimaging probe based on a conjugated polymer, poly(9,9-dihexylfluorene-alt-2,1,3-benzoxadiazole) (PFBD), is demonstrated. Transfer of the hydrophobic polymer into water using a short chain poly(ethylene glycol) (PEG) resulted in conjugated polymer nanoparticles (PEG-PFBD) with a fluorescence quantum yield of 46%. The PEG-PFBD nanoparticles possessed several desirable structural and photophysical properties, such as colloidal stability in a broad range of pH values, sub-20 nm particle size, the presence of surface chemical functionality, as well as desirable excitation and emission spectra, for bioimaging applications. PEG-PFBD nanoparticles were conjugated with cyclic RGDfK targeting peptide for labeling of membrane α(V)β(3) integrin receptors on live HT-29 adenocarcinoma cells. Single nanoparticle microscopy revealed that the PEG-capped PFBD nanoparticles exhibit at least ten times higher emitted photon counts than single quantum dots (QD655) of comparable size. In addition, Fluorescence Lifetime Imaging Microscopy (FLIM) of single PEG-PFBD nanoparticles revealed that the nanoparticles display a clearly resolvable single nanoparticle fluorescence lifetime.
Collapse
Affiliation(s)
- Yuqiong Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602
| | | | | | | |
Collapse
|
35
|
Wang L, Puodziukynaite E, Vary RP, Grumstrup EM, Walczak RM, Zolotarskaya OY, Schanze KS, Reynolds JR, Papanikolas JM. Competition between Ultrafast Energy Flow and Electron Transfer in a Ru(II)-Loaded Polyfluorene Light-Harvesting Polymer. J Phys Chem Lett 2012; 3:2453-2457. [PMID: 26292132 DOI: 10.1021/jz300979j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Letter describes the synthesis and photophysical characterization of a Ru(II) assembly consisting of metal polypyridyl complexes linked together by a polyfluorene scaffold. Unlike many scaffolds incorporating saturated linkages, the conjugated polymer in this system acts as a functional light-harvesting component. Conformational disorder breaks the conjugation in the polymer backbone, resulting in a chain composed of many chromophore units, whose relative energies depend on the segment lengths. Photoexcitation of the polyfluorene by a femtosecond laser pulse results in the excitation of polyfluorene, which then undergoes direct energy transfer to the pendant Ru(II) complexes, producing Ru(II)* excited states within 500 fs after photoexcitation. Femtosecond transient absorption data show the presence of electron transfer from PF* to Ru(II) to form charge-separated (CS) products within 1-2 ps. The decay of the oxidized and reduced products, PF(+•) and Ru(I), through back electron transfer are followed using picosecond transient absorption methods.
Collapse
Affiliation(s)
- Li Wang
- †Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Egle Puodziukynaite
- ‡Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Ryan P Vary
- †Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik M Grumstrup
- †Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan M Walczak
- ‡Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Olga Y Zolotarskaya
- ‡Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Kirk S Schanze
- ‡Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States
| | - John R Reynolds
- ‡Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States
- §School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John M Papanikolas
- †Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
36
|
Vogelsang J, Lupton JM. Solvent Vapor Annealing of Single Conjugated Polymer Chains: Building Organic Optoelectronic Materials from the Bottom Up. J Phys Chem Lett 2012; 3:1503-1513. [PMID: 26285629 DOI: 10.1021/jz300294m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optoelectronic devices based on organic materials show a strong relationship between the morphological structure of the material and the function of the device. One of the grand challenges in improving the efficiencies of these devices is hence achieving morphological control throughout the entire course of processing. One of the most important postprocessing methods is solvent vapor annealing, which has repeatedly demonstrated its utility in improving the efficiency of organic-material-based devices by changing bulk-film morphology. This Perspective discusses the recent impact of single-molecule spectroscopy techniques in unraveling morphological changes and molecular dynamics and presents solvent vapor annealing as a tool to build organic optoelectronic materials from the bottom up. In particular, we discuss examples of how solvent vapor annealing at the single-chain level can be split into two different regimes, (i) the solvation regime, in which intrachain interactions and molecular dynamics during solvent vapor annealing can be probed, and (ii) the aggregation regime, in which the influence of interchain interactions can be probed. Finally, it will be shown that solvent vapor annealing in the aggregation regime can be used to build highly ordered mesoscopic objects with distinct properties such as long-range energy transfer.
Collapse
Affiliation(s)
- Jan Vogelsang
- §Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M Lupton
- §Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
- †Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Ghiggino KP, Bell TDM, Hooley EN. Synthetic polymers for solar harvesting. Faraday Discuss 2012; 155:79-88; discussion 103-14. [DOI: 10.1039/c1fd00100k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Lupton JM. Chromophores in Conjugated Polymers-All Straight? Chemphyschem 2011; 13:901-7. [DOI: 10.1002/cphc.201100770] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 11/10/2022]
|
39
|
Feist FA, Zickler MF, Basché T. Origin of the Red Sites and Energy Transfer Rates in Single MEH-PPV Chains at Low Temperature. Chemphyschem 2011; 12:1499-508. [DOI: 10.1002/cphc.201001010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Indexed: 11/10/2022]
|
40
|
Habuchi S, Onda S, Vacha M. Molecular weight dependence of emission intensity and emitting sites distribution within single conjugated polymer molecules. Phys Chem Chem Phys 2011; 13:1743-53. [DOI: 10.1039/c0cp01729a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Hildner R, Brinks D, Stefani FD, van Hulst NF. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy. Phys Chem Chem Phys 2011; 13:1888-94. [DOI: 10.1039/c0cp02231d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Karam P, Ngo AT, Rouiller I, Cosa G. Unraveling electronic energy transfer in single conjugated polyelectrolytes encapsulated in lipid vesicles. Proc Natl Acad Sci U S A 2010; 107:17480-5. [PMID: 20876146 PMCID: PMC2955115 DOI: 10.1073/pnas.1008068107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method for the study of conjugated polyelectrolyte (CPE) photophysics in solution at the single-molecule level is described. Extended observation times of single polymer molecules are enabled by the encapsulation of the CPEs within 200-nm lipid vesicles, which are in turn immobilized on a surface. When combined with a molecular-level visualization of vesicles and CPE via cryo-transmission electron microscopy, these single-molecule spectroscopy studies on CPEs enable us to directly correlate the polymer conformation with its spectroscopic features. These studies are conducted with poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylene-vinylene] (MPS-PPV, a negatively charged CPE), when encapsulated in neutral and in negatively charged lipid vesicles. MPS-PPV exists as a freely diffusing polymer when confined in negatively charged vesicles. Individual MPS-PPV molecules adopt a collapsed-chain conformation leading to efficient energy migration over multiple chromophores. Both the presence of stepwise photobleaching in fluorescence intensity-time trajectories and emission from low-energy chromophores along the chain are observed. These results correlate with the amplified sensing potential reported for MPS-PPV in aqueous solution. When confined within neutral vesicles, single MPS-PPV molecules adopt an extended conformation upon insertion in the lipid bilayer. In this case emission arises from multiple chromophores within the isolated polymer chains, leading to an exponential decay of the intensity over time and a broad blue-shifted emission spectrum.
Collapse
Affiliation(s)
- Pierre Karam
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
- Centre for Self-Assembled Chemical Structures; and
| | - An Thien Ngo
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
- Centre for Self-Assembled Chemical Structures; and
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Strathcona Anatomy and Dentistry Building, Room 115, 3640 University Street, Montreal, QC, Canada H3A 2B2
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
- Centre for Self-Assembled Chemical Structures; and
| |
Collapse
|
43
|
Tian Z, Yu J, Wu C, Szymanski C, McNeill J. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. NANOSCALE 2010; 2:1999-2011. [PMID: 20697652 DOI: 10.1039/c0nr00322k] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanoparticles primarily consisting of π-conjugated polymers have emerged as extraordinarily bright fluorescent tags with potential applications in biological imaging and sensing. As fluorescent tags, conjugated polymer nanoparticles possess a number of advantageous properties, such as small particle size, extraordinary fluorescence brightness, excellent photostability, and high emission rate. Exciton diffusion occurring in the nanoparticles results in amplified energy transfer, doubling the energy transfer efficiency in some cases. Amplified energy transfer has been exploited to obtain highly red-shifted emission, oxygen-sensing nanoparticles, and fluorescence photoswitching. Additional observed phenomena are attributable to amplified energy transfer in conjugated polymers, including superquenching by metal nanoparticles, and fluorescence modulation by hole polarons. This feature article presents an overview of recent investigations of optical properties and energy transfer phenomena of this relatively novel type of fluorescent nanoparticle with a viewpoint towards demanding fluorescence-based imaging and sensing applications.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Andrew G. Tennyson
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712
| | - Brent Norris
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712
| | - Christopher W. Bielawski
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712
| |
Collapse
|
45
|
Moscatelli A, Livingston K, So WY, Lee SJ, Scherf U, Wildeman J, Peteanu LA. Electric-field-induced fluorescence quenching in polyfluorene, ladder-type polymers, and MEH-PPV: evidence for field effects on internal conversion rates in the low concentration limit. J Phys Chem B 2010; 114:14430-9. [PMID: 20707332 DOI: 10.1021/jp101307p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electric field-induced fluorescence quenching has been measured for a series of conjugated polymers with applications in organic light-emitting diodes. Electrofluorescence measurements on isolated chains in a glassy matrix at 77 K show that the quenching efficiency for poly[2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) is an order of magnitude larger than that for either a ladder-type polymer (MeLPPP) or polyfluorene (PFH). This effect is explained in terms of the relatively high probability of field-enhanced internal conversion deactivation in MEH-PPV relative to either MeLPPP or PFH. These data, obtained under dilute sample conditions such that chain-chain interactions are minimal, are contrasted with the much higher quenching efficiencies observed in the corresponding polymer films, and several explanations for the differences are considered. In addition, the values of the change in dipole moment and change in polarizability on excitation (|Δμ| and tr(Δα), respectively) are reported, and trends in these values as a function of molecular structure and chain length are discussed.
Collapse
Affiliation(s)
- Alberto Moscatelli
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Schindler F, Lupton JM. Electrothermal manipulation of individual chromophores in single conjugated polymer chains: controlling intrachain FRET, blinking, and spectral diffusion. NANO LETTERS 2010; 10:2683-2689. [PMID: 20536210 DOI: 10.1021/nl101526p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Single molecule spectroscopy of individual chains of a conjugated polymer opens up deep insight into electronic localization phenomena, which govern the underlying optical properties of these complex and disordered materials. We explore the nature of a single chromophore arising in a delocalized pi-electron system by applying periodic electrothermal perturbations at low temperatures. Brief heating of the chromophore leads to a dramatic increase in the transition line width and is generally accompanied by a random jump of the emission energy. This observation demonstrates that chromophores on a polymer chain are not only defined by structural disorder but also by the subtleties of the local dielectric environment. The effect of thermal perturbation becomes more complex when long polymer chains are considered, which can potentially support the formation of multiple chromophores. Here, a momentary increase in temperature can promote intrachain energy transfer to quenching sites, leading to a strong modulation of emission intensity with temperature. Unexpectedly, such energy transfer can serve to either raise or lower the transition line width and quantum yield of the ensemble with increasing temperature, depending on the specific energetics of the chromophores in the system, which in turn vary with time. The controlled perturbation of both the emission spectrum and the intensity by brief heating of the polymer chain offers insight into possible microscopic origins of fluorescence blinking and spectral diffusion, which ultimately impact on the efficiency and spectral purity of devices.
Collapse
Affiliation(s)
- Florian Schindler
- Department of Physics, Ludwig-Maximilians University of Munich, Munich, Germany
| | | |
Collapse
|
47
|
Lupton JM, McCamey DR, Boehme C. Coherent Spin Manipulation in Molecular Semiconductors: Getting a Handle on Organic Spintronics. Chemphyschem 2010; 11:3040-58. [DOI: 10.1002/cphc.201000186] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Thomsson D, Lin H, Scheblykin IG. Correlation analysis of fluorescence intensity and fluorescence anisotropy fluctuations in single-molecule spectroscopy of conjugated polymers. Chemphyschem 2010; 11:897-904. [PMID: 20087921 DOI: 10.1002/cphc.200900724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule spectroscopy techniques are used to investigate time fluctuations of the fluorescence properties of two different types of conjugated polymer, a polythiophene derivative (PDOPT) and a phenylene vinylene derivative (MEH-PPV), at 100 and 293 K. Linear correlation coefficients between fluorescence intensity and polarization are used to characterize fluctuations. We are able to distinguish between different blinking and bleaching effects on the polarization. Furthermore, the polarization data reveal clear differences in the topology of these two polymers, which is related to the ordered conformation of the MEH-PPV. Plots of correlation coefficients appear to be very different for the two polymers and are also very sensitive to temperature. These observations prove that correlation analysis is a useful tool to understand fluorescence fluctuations in multi-chromophoric systems.
Collapse
Affiliation(s)
- Daniel Thomsson
- Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | | | | |
Collapse
|
49
|
Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory. MATERIALS 2010. [PMCID: PMC5445912 DOI: 10.3390/ma3053430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.
Collapse
|
50
|
Lupton JM. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:1689-721. [PMID: 20496402 DOI: 10.1002/adma.200902306] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.
Collapse
Affiliation(s)
- John M Lupton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|